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Topological tensor products and asymptotic
developments(*)

JORGE MOZO-FERNÁNDEZ(1)

Annales de la Faculté des Sciences de Toulouse Vol. VIII, n° 2, 1999
pp. 281-295

Dans cet article, on etudie la structure topologique des es-
paces de fonctions avec développement asymptotique fort, dans le cas
Poincare et le cas Gevrey. On démontre qu’ils sont nucleaires, et ils

sont le complete du produit tensoriel des espaces a une variable. Nous
démontrons aussi que les espaces de series multisommables a une variable

sont nucléaires. Ceci permet de définir ces espaces a plusieurs variables.

ABSTRACT. - In this paper, we study the topological structure of the
spaces of functions that admit an asymptotic development in several com-
plex variables, in the Poincaré and Gevrey cases. We show that they are
nuclear, and they are a completed tensor product of the one variable case.
We also show that the spaces of multisummable series in one variable, are
nuclear. This allows to extend the definition of these spaces to several

variables.

1. Introduction

In [T], Tougeron develops a notion of multisummability in several vari-
ables, considering completed tensor products of the sets of multisummble
series in one variable. The aim of this paper is to formalize this situation.

More precisely, we study the topological structure of the vector spaces
of functions with asymptotic development, in the general and Gevrey cases,

( * ) Recu le 5 février 1999, accepté le 1 juin 1999.
(~ > Departamento de Matematica Aplicada Fundamental. ETS de Arquitectura.

Avenida Salamanca s/n. 47014 Valladolid. Spain.



and of the spaces of summable and multisummable series. We show that
all these spaces are nuclear, and that the sets of holomorphic functions in
several variables that have asymptotic development, in the sense defined
by Majima [Ml] and Haraoka [Ha] (for the Gevrey case) are precisely the
completed tensor product of the corresponding sets in one variable case.

The spaces of summable and multisummable series being nuclear, the
definition of multisummability in several variables as a completed tensor
product, as Tougeron does, seems to be the most appropriate, and we think
that should be developed. Moreover, this should provide, using the Kunneth
formula for Fréchet sheaves developed in [G, K], a way of computing the
cohomology of asymptotic sheaves in several variables. Nevertheless, this
situation does not verify the hypothesis required in the mentioned papers,
and in fact, the result is not what we would obtained using a reasonable
Kunneth formula.

In the paper, if U is an open set, O(U), Coo(U) will denote the set of
holomorphic functions and of C°° functions, respectively, in U. If K is com-
pact, Coo(K) will be the set of C°° functions in the sense of Whitney defined
in K. We shall use multiindex notations. For instance, if A = (A1, ... An ) ,
N = (NI,... , Nn), AN will denote AN11 ... ANnn, and N! := Nl ! - - - The
number Ni + ... + Nn is represented by 

The author wants to thank Prof. J.P. Ramis, of the University Paul
Sabatier (Toulouse) for his help and ideas.

2. Reminds on topological tensor products and nuclear spaces

2.1. Topological tensor products

In this section, we shall recall the main definitions and the properties
we shall need about topological tensor products and nuclear spaces. Besides
the original work of Grothendieck [Gl], these results can be read in [D].

Let (E, p), (F, q) complex seminormed vector spaces. In E ® F we shall
define the following two seminorms:

where E’, F’ are the topological duals of E, F, respectively. These two
seminorms are the lower and the upper bound of all natural seminorms
that can be defined on E ® F, as it is explained in [D].



More generally, if (E, { pi }iE I ) (F, are locally convex spaces, we
define E ®~ F, E @e F as the topological spaces whose ground set is E @ F
and the topology is given by the family {Pi 3~ q~ or {p2 ®~ qj ~Z, j These
spaces represent different functors, and so they can be defined by means of
universal properties as follows:

(*)~ Given a locally convex space G and f E B(E, F; G) (bilinear and
continuous), it exists one and only one f E L(E 0~r F, G) such that the
diagram

commutes.

(*)g The diagram

commutes, where a, ~3, W and cp are the obvious continuous maps. Moreover,
they are isometries for every couple p, q of seminorms in E, F.

We denote jE’0?rF, E0eF the completions of respectively.
They are again locally convex spaces. The space E03C0F verifies the same
universal property that E @ F, simply replacing the expression "locally
convex space G" by "locally convex and complete space G" . .

We shall use the following property that relates the behaviour of these
constructions with respect to projective limits:

(*) If E = lim Ei and E ~ Ei has dense image, then

Some classical, but very important examples, are:

1. If X is a locally compact space, F a Fréchet space, then

2. If U, V are open sets in respectively, then



3. If Xi, X2 are compact subsets of ]Rm respectively, then

2.2. Nuclear spaces

The definition of nuclear space is motivated by some of the examples of
the preceding section. We recall the definition:

DEFINITION 2.1. A linear map (E, p) -~ (F, q) between semi-normed
spaces is nuclear if "it can be approximated by maps with finitely generated
image ". More precisely, there exists an E E’, fn E F with

where p’ is the seminorm on E’ induced by p such that if ,Q E E’,

DEFINITION 2.2. - A locally convex space (E, (p2)iEl) is nuclear (where
(P~)iEr is a directed family) if

is nuclear, where EZ is the completion of the seminormed space (E, pZ).

Some examples are:

1. O(U) and are nuclear (U open set).

2. If X is compact, COO(X) is nuclear.

3. Subspaces, quotients, projective limits and numerable inductive limits
of nuclear spaces are nuclear.

4. The sets of convergent series cC { z }, Gevrey series of order s, C[[z]]s,
and Gevrey series of precised order (s A) ( see [R] for details )
are nuclear.

5. If E is nuclear, E@7rF.



Let us detail an important example of nuclear space. If K is compact,
denote the set of Whitney C°° functions on K such that

for certain M, A > 0, where {M~~p o is a sequence of positive numbers.
For a fixed A, denote the corresponding space. Hence,

If U is an open set, denote

where the limit runs over all compacts K C U.

In (Ko~, it is shown:

THEOREM 2.1 If satisfies the condition

then the spaces C{Mp}(K) and are nuclear.

3. Asymptotic developments

3.1. The notion of asymptotic development in one variable is due to
Poincaré. If V is a (open) sector in C, a function f E O(V) has / = E anzn

~,>o

as an asymptotic development at the origin (and we shall write f - /) if,
for every proper subsector W  V and N E N, we have

This notion is generalized by Majima [M1, M2] to several variables. If
V is a polysector (product of sectors) in en, consider families

A holomorphic function f E O(V) has F as an asymptotic development at
the origin ( f N .~) if, for every proper subpolysector W  V and N E N~
we have



where the approximating function is defined as

Denote A(V) the set of holomorphic functions with asymptotic develop-
ment in V. This generalizes the one variable case, taking F = The
asymptotic development, if it exists, it is unique. Moreover, it behaves well
with respect to the usual operations on functions (sums, products, deriva-
tives,...).

An important kind of asymptotic development are the so-called "of

Gevrey type". If s = {sl, ... , sn) E we shall say that f E O(V)
has the family F as s-Gevrey asymptotic development if, in the definition,
C(W, N) can be chosen as

Denote As (V) C A(V) the set of functions with s-Gevrey asymptotic de-
velopment. For further details and properties of asymptotic developments,
see [Ml, M2, Mo].

3.2. Characterization

The following characterization of A(V) and As (V) are important, and
will be used in the sequel:

THEOREM 3.1 ([Z, HE]). - If f E O(V), the following are equivalent:

Similarly, for the Gevrey case we have:

THEOREM 3.2. - If f E O(V), the following are equivalent:



3.3. Topological structure of the spaces of asymptotically devel-
opable functions

The space A(V) can be provided with a Fréchet space structure. If W 
V and N E Nn, the map

is a seminorm, and the set gives to A(V) a structure of locally
convex, Hausdorff space. One can show, by standard techniques of complex
analysis [He] that it is complete and so, a Frechet space, as the topology
can be generated by a numerable family of seminorms.

Alternatively, the family of seminorms

gives to A(V) the same Frechet space structure, as we have bounds

In the same way that in complex analysis it is shown that O(U x V) ~
O(U; O(V)) as Frechet spaces, one can show that there is an isomorphism

x VZ ) ^-_’ .A.(Vl ; .A(V2 ) ), for every pair of polysectors Vl , V2.

In the Gevrey case, there is also a locally convex space structure. If W
is a compact polysector and A > 0, denote

The space is a Banach space with the norm



and we have

So, in .4s (V) there is a locally convex structure but it is not a Frechet space.

Alternatively, as before, one can take seminorms

in 7ZS,A(W). The structure they define in ,.45(V) is the same we have defined
by means of .

3.4. Nuclearity

Firstly, we shall treat the case of A(V) .

THEOREM 3.3. - A(V) is nuclear. If V1, Y2 are polysectors,

Proof.- The space R(W) is a subspace of C°°(W), and so, it is nuclear
(here W is a compact polysector). By theorem 3.1,

hence, A(V) is nuclear.

For the second statement, we first remark that A(V) is dense in R(W) .
0

In fact, as W is a product of simply connected open sets in C, it is a Runge
domain, so every holomorphic function can be approached by polynomials.

Now, as R(W ) C C°° (W ), we have

If is the vector space C[Xi,..., , Xn~ with the topology given by the
seminorms

then Pn,w is a subspace of R(W) and in fact R(W) is the closure of .

So:



It is clear that C x W2). This can be seen looking
at the explicit form of the elements of the x-completed tensor product: an
element of E ~.~ F can be written as

where

for seminorms p, q in E, F respectively. So:

Consider now the Gevrey case. The space is nuclear, as it is a

subspace of with Mp = p!lsl+1, and this sequence satisfies the
condition 

for some C, H > 0.

The same argument as before proves that As (V) is nuclear. We also

have

where (si,S2) denotes the concatenation of Si and s2 . So, it follows that

3.5. Summability

The notion of summability is only well established in the one variable
case. If d is a direction issued from the origin, we shall say that a formal
series

is s-summable in the direction d if there exists a sector V bisected by d, of

opening greater than sx, and f E As (V) with f NS f If is the set

of s-summable power series in direction d, there is an isomorphism



where the inductive limit of the second term runs over all sectors bisected
by d, whose opening is greater than sx. The isomorphism is well defined
because the function f E As (V) such that f ~s f is unique (and is called
the s-sum of / in V).

This gives to (C~z~s,d a locally convex space structure.

Let us recall briefly Borel-Laplace transform. If / = E its
n>o

formal 1-Borel transform is

and the inverse map, jCi is the formal 1-Laplace transform. If V is a sector of
opening greater than 7r bisected by d, and f E d (V), its I-Borel transform
in direction d is

where the path of integration is drawn in the following picture

B1f is a holomorphic function for the values of z where the integral is
defined. The 1-Laplace transform in the direction d of a function f defined
in a sector V, of infinite radius, bisected by d, is

with the same observation as before about the domain of definition.



It is "classic" that / E if and only if 1 is convergent, and can
be extended to an infinite sector V bisected by d, with exponential growing
of order 1, i.e.,

In that case, is defined, and holomorphic in V’, sector bisected
by d, and of opening greater than 7r. Moreover, it is the 1-sum of / in V.

According to this, we can define the locally convex structure of 
in a different way. Let be the union of the closed ball .B(o, R) and
the closed sector (of infinite radius) W. The subset of C°° n

0

is given by the functions f such that

when z E W. It is a locally convex space with the seminorms

The formal 1-Borel transform 81 defines an isomorphism

where R --~ 0, W varies among the sectors bisected by d, and A > 0.

Analogously, by ramification, this can be done for / E The s-

sum of / can be obtained as the k-Laplace transform of formal k-Borel
transform (here k = 1 /s) . Further details can be seen, e.g., in [B].

A series / E C[[z]]s is called s-summab le if it is summable in all directions
but a finite number. Denote the set of series that are summable in

all directions but (perhaps) d. Let V be a sector of opening  + 2x, bisected
by d, in the Riemann surface of the logarithm, and VR = {z E V  R}.
Using Borel-Laplace transform one can see that

If denotes the C-algebra of s-Gevrey series summable in
all directions but (perhaps) dl, ... dr , the set



defines a direct system by the inclusions

So we have

THEOREM 3.4. - are nuclear.

In fact, all the above constructions are projective limits or numerable
inductive limits of nuclear spaces, and so, they are also nuclear.

3.6. Multisummability

There are several definitions of multisummable power series in the lit-
erature, but all of them agree. If 0  sl  s2  ... ~  Sq  =

and d1,..., dq are directions "close enough" (i.e., according to [B],

|dj-dj-1| 03C0 2kj, 2  j  q, where 1/kj = sj - sj-i), a series / e 
is k = (k1,..., kq )-multisummable in the multidirection d = {dl, ... , dq) if
and only if / = /i + ... + /q , where /i E i , di This is equivalent to say
that

is well defined, where are the acceleration operators introduced by
Ecalle, that can be defined by the property

if k > k’ (in appropriate domains, see [B] for details). The function f we have
obtained is called the multisum of f in the multidirection d. This approach,
by means of the acceleration operators, is more useful to our purposes. The
functions

are defined in a sector of bisecting direction dj, and have exponential grow-
ing of order 1~~ there, so a family of seminorms taking into account this
increasing can be defined for each j, as in 3.5. Also, is convergent,
and another family of seminorms reflects this property. Collecting all these
seminorms, a locally convex structure may be defined in as before.



A direction d; is singular of level 1~~ for a series / if directions d~+ 1, ... , dq
can be chosen such that

are well defined ( l j) but is not. If, given k1 > ... > kq, , f has
a finite number of singular directions at each level, / is k-multisummable.

is the set of k-multisummable power series.

The same reasonings as in the summable case allows us to show that
are nuclear locally convex spaces.

4. Conclusion

The properties of nuclearity we have shown for the sheaves of summable
and multisummable series allow us to define similar notions in several vari-

ables. As all the considered spaces are nuclear, the completed tensor product

can be taken as a definition of (si, s2)-summable series in two variables
(si-summable with respect to ?i, s2-summable with respect to s2). The
same can be done in order to define multisummable power series in several

variables.

It would be interesting to find an appropriate version of Kunneth formula
in order to make the computations of the cohomology of asymptotic sheaves
(see M2, Ha, Z, Mo]) easier. Forgetting the radius of the sectors, a
sheaf A (functions with asymptotic development) can be defined over S1.
Let Ao be the subsheaf of A of functions with null asymptotic development.
These are Fréchet sheaves. In two variables, the completed tensor product

is the sheaf over T2 of the functions with asymptotic development,
and the functions f with asymptotic development such that all

the functions of the family T A( f ) are zero. Malgrange and Sibuya showed
that In [K], a Kunneth formula is developed
to compute Hn (X x where are Fréchet sheaves, and X Y
second countable paracompact Hausdorff spaces. The precise result is

THEOREM 4.1.2014 Under the hypothesis:

1. There are arbitrarily fine coverings U, V of X, Y respectively, such
that are Hausdorff (p, q  n).

2. ,~’ (or g ) is nuclear.



Then,

Unfortunately, this result does not fit our situation, in order to compute
Ao ) , because the first hypothesis is not fulfilled: the first cohomology

group is not Hausdorff, as is not closed in
the Frechet topology of c~((z~). In fact, it is known that

where z2} denotes the set of series 03A3 aijzi1 . zj2 such that all the one
i,j

variable series 03A3 aijzj2, 03A3 aijzi1 are convergent with the same radius of
i i

convergence, and the second member of the equivalence (*) in theorem 4.1
would be zero, as Ao) = 0. So, Kfnneth formula seems not to be
applicable in this situation.
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