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Potentials in pluripotential theory *
MAGNUS CARLEHED (1)
RESUME. — Nous traitons des potentiels des mesures positives dans un

domaine de C™, ou le noyau est le logarithme ou la fonction de Green pluri-
complexe. Leur mesure de Monge-Ampére est calculée, et nous étudions
quelles propriétés des potentiels classiques demeurent.

ABSTRACT. — We discuss potentials of positive measures in domains
in C™, where the kernel is the logarithm or the pluricomplex Green func-
tion. Their Monge-Ampeére measure is computed, and we investigate which
properties of classical potentials remain.

1. Introduction and definition of potentials

In classical potential theory in R™, potentials of positive measures play
a crucial role. The theory is linear and, due to Riesz decomposition the-
orem, subharmonic functions are essentially potentials modulo harmonic
functions. Furthermore, we can solve Dirichlet problems using convolutions.
In the case n = 2 we can equally well work in the complex plane, and the
Laplacian is invariant under conformal mappings. For a thorough treatment
of classical potential theory we refer to the book by Hayman and Kennedy
[Ha-Ke]. However, from the point of view of complex analysis classical po-
tential theory is unsatisfactory. The Laplacian is not biholomorphically in-
variant in higher dimensions.

(*) Recu le 19 juin 1998, accepté le 12 octobre 1999
(1) Link&ping University, ITN, Campus Norrkoping, 60174 Norrkdping, Sweden.
E-mail address: magca@itn.liu.se
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Pluripotential theory is the study of plurisubharmonic functions and
the complex Monge-Ampere operator. The operator is defined on certain
classes of plurisubharmonic functions in domains in C™. In the case n = 1,
it reduces to the Laplacian, but in higher dimension it is non-linear. It is
invariant under biholomorphic mappings. We refer to Klimek’s monograph
[K]] for an introduction to pluripotential theory and the basic definitions.

Since pluripotential theory is non-linear, we can not expect potentials
to be as fruitful as in the classical case. Still, it makes sense to study them,
and ask which properties remain, which is the purpose of this article.

We recall the following definition of the multipole Green function.
DEFINITION 1.1 [Lel2]. — Let Q be a domain in C*, and let
A = {(ak,vk),1 < k < p}
be a finite system of points a) € Q with weights vx > 0. Define
9(z,A) =sup{v(z) : v € U(A),v < 0}
where
U(A) ={ve PSH(Q) : v({) < wklog|¢ — ak| + O(1),¢ — ak,1 < k < p}.

We call this the pluricomplex Green function for Q, relative to the system A.

In hyperconvex domains the Green function is continuous, and tends to
zero at the boundary [Lel2]. In the case p = 1,a; = w,v; = 1 we have the
standard pluricomplex Green function g(z,w) with one pole at w € Q.

The following theorem shows that it makes sense to talk about potentials
in pluripotential theory.

THEOREM 1.2 [Lell]. — Let Q be a domain in C*, (T, ) a locally com-
pact measure space, with a positive measure p. Let K : Q@ x T — [—00, 00)
be a function such that

1) K(ze¥,t) is measurable with respect to the product measure df @ p,

2) z — K(z,t) is plurisubharmonic for eacht € T,

3) t — K(z,t) is measurable for each z € Q,

4) the function z — sup;cp K(2,t) is locally upper bounded on Q.

Then qX (2) := [ K(z,w)dp(w) is plurisubharmonic on .

We will mainly study two special cases, so we introduce special notation
for these.
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DEFINITION 1.3. — Let u be a finite, positive measure with support in €2,
where Q is a bounded domain in C™. Let g(z, w) be the pluricomplex Green
function for 2 with pole in w € Q. We define the pluricomplex potential of
U as

Pu(2) = /Q o2 w) du(w),

and the logarithmic potential of u as

tpu(2) = [ log|z — ul du(u).

Clearly both potentials are plurisubharmonic in €2, and if §2 is hyper-
convex, then p,, vanishes on the boundary. For the logarithmic potential in
R?", we refer to [Ha-Ke], Chapter 5.

In Section 2 we prove a characterization of logarithmic potentials, which
can be viewed as a counterpart to Riesz decomposition theorem.

In Section 3 we give some examples of pluricomplex potentials in the
unit ball.

It is possible to define the measures
dd®qg(z,v1) A ... ANdd°g(z,v,) (1)

and
dd®log |z —vi| A...Add°log|z — vy,]. (2)

This is done in Section 4, and there we also show that the latter is absolutely
continuous with respect to the Lebesgue measure unless all v; coincide. If
g(-,v) € C?(Q\ {v}) for all v € 9, the same holds for dd°g(z,v;) A ... A
ddcg(z,vp).

Then (Section 5) we extend the comparison principle and partial integra-
tion formulas to certain classes of unbounded plurisubharmonic functions.

In Section 6, we define so-called integrated measures. Typically we will
have a family of positive measures v(vy,...,v,), depending on the param-
eters v, ..., U, such that the total mass is bounded, uniformly in all the
parameters. Examples are (1) and (2). We then define measures

/Qk v(vi,...,p) du(vy) - - - du(vg),
where 1 < k < n, and p is a given positive measure.
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After that we prove representation formulas for the Monge-Ampére mea-
sures of bounded potentials. For the pluricomplex potential, the formula is

(dd®p,u(2))* = /ﬂn ddig(z,v1) A... Addg(z,vn)dp(v1) ---du(vn). (3)
This is done in Section 7.

In Section 8, we perform the procedure y — p, — (dd°p,)". It turns out
that if g(-,v) € C? and Py is bounded, then t!.c procedure is “smoothing”,
i.e. the resulting measure is absolutely continuous, even if y is not. We also
prove some estimates for this procedure.

Finally, in Section 9, we investigate measures whose pluricomplex po-
tentials in the unit ball have finite energy in the sense of Cegrell [Cel]. We
give a sufficient condition for this, and extend the representation formula to
that class. The procedure p — p, — (dd°p,)" is still “smoothing”. We also
give an example of a measure such that the potential is unbounded but of
finite energy.

We would like to mention two other motivations to study potentials in
several complex variables. The first is the concept of pluri-thin sets. For a
discussion of these, we refer the reader to [Ca). The second motivation is
the following. We define C to be the cone of non-positive plurisubharmonic
functions in a fixed hyperconvex domain. We say that a function ¢ in C
is extremal, if ¢ = @1 + 2, where each ¢; is in C, implies that there are
positive constants o; such that ¢; = a;p, i = 1,2. It is known that the
pluricomplex Green function with one pole is always extremal [Ce-T]. From
the general Choquet theory of convexity the following theorem is known.
Let C be a convex cone. Then for each ¢ € C there is a positive measure
#q supported on the extreme elements of C such that f(q) = [ f(z)dpe(z)
for all affine functions f. In our situation, taking f as a point evaluation
at a point a in the domain, we find that for any function ¢ € C there
is a measure p, such that p(a) = [z(a)du,(z) for all a in the domain.
Here z varies over all extremal plurisubharmonic functions. A pluricomplex
potential is a special case of this, namely where the measure is supported
only on the (one-polar) pluricomplex Green functions. We do not carry this
discussion any further in this paper, however, the results indicate that the
pluricomplex potentials form a very small subset of C (see Theorem 8.1).
Therefore there should be plenty of extremal plurisubharmonic functions,
in addition to the Green functions. To characterize all of these seems almost
impossible, but it would be interesting to have at least a few more examples.

We also make a general remark about dimension. Most of the results of
this paper are valid for domains in C*, but to avoid too unwieldy expressions
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and computations, some results in Sections 8 and 9 are done in C2 only.
However, we suspect that they are true in higher dimensions too.

Most of the results of this article can be found in Paper I in [Ca], and
in some cases more details are given there.

Acknowledgements. I thank my thesis advisor Urban Cegrell for his
guidance and support and the referee for helpful suggestions. Part of this
research was carried out while I was visiting Department of Mathematics
and Statistics, University of Canterbury, Christchurch, New Zealand, and I
thank the staff there for their hospitality. This work was partly supported
by Magnuson’s foundation (Royal Swedish Academy of Sciences) and Lars
Hierta memorial foundation.

2. Characterization of logarithmic potentials

For logarithmic potentials, it is possible to give a counterpart to the
Riesz decomposition theorem.

PROPOSITION 2.1.— There is a positive constant Cy,, such that A™lp, =
Chru, in the distributional sense, for each measure u. Conversely, if u is a
real-valued function, such that A™u exists in the distributional sense, and
equals a positive measure Cnu, then locally we have

u=Ip, +b,
where b is a real analytic function, and A™b = 0.

Proof. — The first claim follows from the fact that log |z| is a fundamen-
tal solution for the operator A™ in R?", see [A-Cr-Li]. To prove the second,
note that

A(u—Ip,) =0

in the sense of distributions. Since the operator A™ is elliptic it has only
classical solutions, and hence v — lp, is an n-harmonic function. These are
real analytic. O

Remark. — In a relatively compact subset of 2, which is star-shaped
with centre a, we can write b as

b(z) = 3 Iz — ol hy(2),

=0

where each h; is harmonic. This is called the Almansi expansion [A-Cr-Li].
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3. Some explicit examples of pluricomplex
potentials in the unit ball

In [Ca] the pluricomplex potentials of some measures are computed ex-
plicitly. Here we only state the results, and refer the reader to [Ca] for the
proofs.

PROPOSITION 3.1.— Let B be the unit ball in C2, and u be the normal-
ized Lebesque measure on the disc D x {0}. Then

(129 = 1) (1 = I22f” + |2l 1og |2 ")
2(1-pzf)2

PROPOSITION 3.2.— Let 0 = o, be the surface measure on the sphere
8B(0,r) in C?, r > 0. Let t = |z|. Then

pu(z) =

-2 (1-73)(1-1t?)
r2 + 242

1
logr? + log(1 —t%), ift<r

Po(2) = po,(2) = 7°r° \ \ \
oge? 4 L=t (1= =#)

7 53 log(1—7r2), ift>r

(To get the potential of the normalized surface measure, divide by 2mr3.)

THEOREM 3.3. — Let p be the normalized Lebesque measure in the unit
ball, i.e. \/boy,, where X\ is the Lebesgue measure. Then the potential is

Pu(2) = (I21* = 1) /(2m),
and hence

c » 2r\™
(@p () = (2 ) n
4. Definition of the Monge-Ampére operator
on certain classes of unbounded functions

It is possible to define measures of the type dd°u® A ... A dd°u™, where
each v/ is plurisubharmonic and locally bounded outside a finite set A. This
can be done by generalizing a method used by Klimek [K]] in the case where
A consists of only one point. We refer the reader to [KI] and [Ca] for details.
The construction is only a special case of the much more general treatment
in [S].
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Let Q be a domain in C*, and A = {ay,...,a,} a fixed finite subset of
Q. Define
PSH(Q; A) = PSH(Q) N LS. (2\ A).

PROPOSITION 4.1.— Let u},...,u™ be functions in PSH(Q; A). Then
there exists a positive Borel measure p on Q such that if {ul}1<i1<jen C
PSHNL2.(Q) and ul \, u/, when i — oo, for all 1 < j < n, then dd°u} A
... Addu} is weak®-convergent to p.

DEFINITION 4.2. — We define dd°u! A ... A dd°u™ = pu, where p is the
measure of the preceding proposition.

The special cases we have in mind are
dd®g(z,v1) A ... Add°g(z,v,)

and
dd®log|z —vi| A ... Add°log|z — vy,|.

In these expressions, we always allow points to be repeated. It is well-known
(see e.g. [K1]) that if all the v; coincide, and are equal to v, then both these
measures are equal to (2w)"d,. We now want to examine what happens if
they do not coincide. We will need the following special case of a theorem
by Demailly [D].

THEOREM 4.3. — Assume that a € , u,v € PSH N C(,[~00, 0]),
u < v inQ\ {a}, u= ({~00}) = v7}({~o0}) = {a}, and

Ty =1

Then (dd°u)™({a}) < (dd°v)™({a}). If the upper limit is a limit, then equality
holds.

PROPOSITION 4.4.— Assume that v; € Q, for all j, and that v; # v;
for some indices i and j. Then dd°logl|z —vi| A ... A dd°log|z — vy| is
an absolutely continuous measure with respect to the Lebesque measure. If
g(-,v) € C3(Q\ {v}) for allv € Q, then dd°g(z,v1) A ... Add°g(z,vy) is an
absolutely continuous measure with respect to the Lebesgue measure.

Proof. — We prove the proposition for g, the proof for the logarithm
being essentially the same. Let 1 < k < n — 1. It is sufficient to show that if
bj #a, foralll1<j<n—k, then

/{ } (dd°g(z,a))* Addg(z,b1) A ... Add°g(z,bni) = 0.
a
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Define

n—k
u(z) = g(z,0) + Y 9(2,b;).
Jj=1
Then using Theorem 4.3 near a, we obtain |, (ay(ddu)" = /, (o} (dd°g(2,0))" =
(2m)™. On the other hand, expanding the wedge product, we get
(ddeuy™ = (dd°g(z,a))" + (dd°g(z,))* A ddeg(z,b1) A ... A ddog(z,bn—)

+ other terms
> (2m)"8, + (ddg(z,a))* Addeg(z,b1) A ... Addg(z,bn_¢).

Thus )
/ (dd°g(z,a))* A dd°g(z,b1) A... A dd°g(z,bnr)
{a}
< / (dd°u)™ — (2m)" =0,
{a}
and the proof is complete. O

The hypothesis about g being C? is fulfilled in a strictly convex domain
with smooth boundary [Lem].

Let A be as in Definition 1.1. Define
P
h(z,4) =Y v;g(2,a5).
j=1

As an example, let us assume that Q@ C C2 is such that g € C?, and compute
(ddeh(z, A))*:

(dd°h(z, A))? = > vZ(dd°g(z,05))* + > vurdd®g(z,a;) Add°g (z,a)
J j#k
= (2n)2 Z 1/?6%. + Z vjvrdd®g(z,a;) A dd°g (z,ax) .
J J#k
The right hand side is the Lebesgue decomposition of the measure rela-

tive to the Lebesgue measure, and the first term of the right hand side is
(dd°g(z, 4))*.

5. Comparison principle and partial integration
for certain unbounded plurisubharmonic functions

In what follows we will often need to compare certain measures and
do partial integration. We therefore need to justify this in a more general
setting than the standard one.
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DEFINITION 5.1. — For any function u with values in [-00,00) and any
integer L, define u’(z) = max {u(z), L} .

PROPOSITION 5.2.— Let Q be a bounded domain in C™, and suppose
that 1, .. ., pn are plurisubharmonic functions in Q2. Assume that for some
neighbourhood U of 0%}, all p; are bounded in U NS). Set

i=1,...,n \zeUNQ

L= min ( inf ga,-(z)).
Then, for all M,N < L,

/ddcga{"/\.../\ddccpnM=/dd°<p{V/\...Addccp£:’.
Q Q

We omit the simple proof, which basically depends on the fact that the
functions coincide in a neighbourhood of the boundary. See [Ca] for details.

COROLLARY 5.3.— With the same assumptions as in Proposition 5.2,
if
/ dd°p1 A ... ANdd°p,
9)

is defined, it equals
/ dd°eM A ... Add°pM
o)
for any M.
COROLLARY 5.4 (Comparison principle). — Let 2 be a hyperconvez,
bounded domain in C". Let u and v be plurisubharmonic functions on S,

and suppose that v < v. Further assume that u and v are upper bounded
exhaustions, that is {z € Q:u < ¢} CC Q for all ¢ < 0, and similarly for v.

Then
/ (dd°uw)™ > / (ddv)™.
Q Q
Proof. — For bounded functions, this is Lemma V:3 in [Ce3]. Hence we
have
/ (ddu™M)" > / (dd°v™)"™,
Q Q
for all M < —1. Now Proposition 5.2 applies, and the corollary is proved.0

THEOREM 5.5 (Partial integration). — Let Q be a hyperconvez, bounded
domain in C™. Let @y, p1,...,pn be plurisubharmonic functions in Q, and
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assume that for some neighbourhood U of 89, all ¢; are bounded in U N 2.
Further assume that po and 1 are ethaustions, continuous as functions
Q — [—00,0), and that

/dd°<p1 A...Add°p, + /ddcgoo Addpa A ... AddCp, < 00.

Then partial integration is allowed, that is

/ podd®p1 A ... Ndd°p, = / p1ddpo Addpa A ... A dd®pn,.
Q Q

We remark that the theorem applies to the class of functions we studied
in Section 4, but is actually more general. We refer to [S] for the definition
of the Monge-Ampeére operator in the more general case.

For the proof of this theorem we refer the reader to the following sources:

[BE2], [Ce4] (where an even more general result is proved) or [Cal.

6. Definition of integrated measures

Let Q be a hyperconvex, bounded domain in C", and suppose that A is
a finite subset of Q. We refer to Section 1 for notation and the definition of
the multipole pluricomplex Green function. Here we will make the following
convention. Let B = (v1,...,Vn) be an n-tuple of points in A, where some
v; might coincide. Let B = {v,...,v:} = {vj,...,v;,}, where all v
are different. Set D = (vj,,1)%_,. Abusing notation, we will write g(z, B)
instead of g(z, D).

Note that if v € §, we have
0> g(z,v) > g(z, B),
for all z € Q\ {v}. Hence
9(z,v;) > ng(z, B),
j=1

for all z € @\ A. Corollary 5.4 gives

/ ddig(z,v1) A ... ANddg(z,vn)
Q

n

< /ﬂ (ddzgg(z,w) < /Q (ddSng(z, B))" = p(2nm)™ < n(2nn)".
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We conclude that the total mass of the measures ddSg(z,v1) A ... A

Z

dd3g(z,vy) is bounded, uniformly in (v1,...,vn) € Q™. Let u be a finite
measure on ). Using this fact, we can make the following definition.

DEFINITION 6.1. — For each 1 < k < n, we define a new positive measure

/Q ddSg(z,m) A AddSg(z,vn) dps(vy) - - du(w)

in the following way:

Jxta) ([ dasotesv n... A dazote, o) dutwn duo) )

= /nk (/en x(2)ddg(z,v1) A ... /\ddgg(z,vn)) dp(vi) - - - du(vg),
where x € C§°(Q2).

Note that the measure is a function in the variables Vk+1y+ -y Un-

Now, let Q2 be any bounded domain in C". Let K (2, w) be defined as in
Theorem 1.2, and suppose that K is bounded on Q x T. In an analogous
manner to the above definition, we also define the following measures:

/ x(2) (/ ddiloglz —vi| A ... Addlog|z — vi| du(vy)- --du(vk))
Q Q*

= f (/ x(z)ddg log |z — v1| A ... AddSlog |z — 'uk|) du(vy) - - - du(vy),
QF Z2EQ

and
/Qx(z) </Tk dd; K (z,v1) A ... NddSK (z,v,) du(vy) - - -du(vk))

= /Tk </zea x(2)ddSK (z,v1) A .../\ddgK(z,vn)) du(v1) - - - dp(vr),

where x € C§°(Q).

7. A formula for the Monge-Ampére measures of potentials

The goal of this section is to prove representation formulas for the
Monge- Ampére measure of potentials. In fact the following is true.
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PROPOSITION 7.1.— Let Q be a bounded domain in C*, and u a finite
measure. Let K(z,w) and q{f be defined as in Theorem 1.2, and suppose
that K is bounded on Q2 x T. Then we have

(dd°qf (2))™ = / ddSK(z,v1) A ... NddSK (2, v,)dp(v1) -+ - dp(vn). (4)
Tn
Further assume that p is such that lp, is bounded. Then the formula

(dd®lp,(2))" = /Q ddSlog|z — vi| A ... AddSlog |z — vn|du(vr) -+ - du(vn)
()

holds. Finally, if Q is hyperconvez, and p is such that p, is bounded, we
have

(dd°pu(2))" = /Q dd3g(z,v1) A... Ndd3g(z,vn)du(v1) ---dp(vs).  (6)
The three formulas are equalities between positive measures in the variable z.

To prove these formulas we need the following lemmas.

LEMMA 7.2 (Chern-Levine-Nirenberg’s inequality). — Let (2 be an open
neighbourhood of a compact set K C C™. There exist a constant C > 0 and
a compact set L C Q\ K, which depend on K and Q, such that for all
ui,...,uy € PSH N L®(Q),

/ ddus A ... Add®un < Clully - lunll, -
K

Proof.— We refer to [Kl], Proposition 3.4.2 and Corollary 3.4.8. O

Remark. — For later reference, we would like to point out two facts about
the proof of Lemma 7.2. Firstly, the inequality is proved by a recursive
procedure, and if this is stopped after, say, n — k steps we obtain

n
/ddcul/\.../\ddcun<0 11 ||u,-||L/ ddui A ... Addug AB™F, (7)
K j=k+1 K
where

ﬂ:

DN | .

n
Zde A dEj
j=1

is the standard K&hler form. Note that dd° (|z|2 /4) = f3. Secondly, the set

L can be chosen “far from” K, i.e. for any compact subset K’ of Q such
that K C K’, the set L can be chosen in the complement of K’. However
the constant C may change if L changes.
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LEMMA 7.3.— For all C? functions u,,. .., ux and all smooth (n—k,n—
k) test forms ¢ we have

/ dduy A -« Add®u A ¢ = / ug dd®uy A --- A dd®ug_1 A dd¢. (8)
Q Q

Proof. — See [K]], Prop. 3.4.1. ' a

Proof of Proposition 7.1.— We first prove Formula (6). Since p, is
plurisubharmonic and locally bounded, (dd°p,(z))" is defined. For each
u € (), let ge(-,u) be the usual regularization of g(,u), defined on

Qe :={z € Q: dist(z,00) > ¢} .

Then {ge(z,u)} is a family of negative, C* functions defined on Q. x Q,
plurisubharmonic in 2, decreasing to g(z,u) when € \ 0. Define, for z € Q.,

Puue(2) = /Q 0 (2 w)dpu(u).

Let x > 0 be a C* function with compact support in Q . Let € >
0 be so small that supp x C Q.. For brevity, we introduce the notation
MA(uy, ..., u,) for dduy A ... A ddSu,, where u,,... , un, are C? functions
in z. Then we have, using (8) and Fubini’s theorem repeatedly:

/ x(2) / MA(ge(z01), . ge(z, va))dps(n) - - ()
2€QN Qn
= [ ([ XM o)) o) da)
/ (/ 9e(2,v1) M A(x(2), ge(2,v2), - - -, ge(2, vn))) du(vy) - - - dp(vy)
/ ) ( / ac(z, vl)du(vl))
X(Z ) 9e(2, U2) "’ge(z’vn))d“("&)"'dll'(vn)
/ / MA(x(2), 9¢(2,v2), - . ., ge(2, vn))dp(v2) - - - dps(vy)
- / ( / p,,,e<z)MA(x(z),ge(z,v2>,...,ge<z,vn))) dp(va) -+ - dps(vn)
n-1 ZEQN

- [ ( [, 5o MAKE), Puel),0e(z,09), . 0L vn»)
dpu(vg) - - da(om)
otc. = /Q X(2)(dd°p,s o (2))" — /ﬂ X(2)(dd D, ()",
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when € \, 0 . In this computation all expressions of the types

MA(QOI,. . .,(pn)

or
/ﬂ MA(p1, ... ¢n) dps(vg) -+ dps(vn)

should be interpreted as measures in the variable z.

To complete the proof of (6) we must assure that the sequence of mea-
sures

/Q ddSge(z,01) A ... A ddSge(z,vn) da(vr) -+ dpu(vn)

tends to
/ ddSg(z,00) A ... A ddSg(z, va)du(vy) -~ dp(vn)
Q‘n

weakly when € \, 0. We need to justify an application of Lebesgue’s domi-
nated convergence theorem in the integral

/n (/Q x(2)ddgge(z,v1) A ... A ddgge(z,vn)) dp(vy) ---du(vn),

where x € C§°(2). Since y is assumed to be finite, it is sufficient to prove
that the measures ddSge(z,v1) A ... A ddSge(z,vn) have locally uniformly
bounded mass for small ¢, independent of (vy,...,v,) € Q". This is done in
the technical Lemma 7.4 below.

We have proved Equation (6). To prove Equation (5), simply repeat the
computation with g(z,u) replaced with log|z — u|. Then use Lemma 7.4.

Finally to show that Equation (4) holds, we repeat the same computation
again. This time the counterpart to Lemma 7.4 is obvious.

LEMMA 7.4.— Let Q be a bounded, hyperconvex domain in C"*. For each
v € Q, assume that ge(-,v) is the usual regularization of g(-,v) and that
log,(-,v) is the regularization of log| - ~v|. The for each compact set K in
Q, there exists a constant C = C(K) > 0 and an € = €o(K) > 0 such that

/ ddSge(z,v1) A ... Add3ge(2z,vn) < C,
K

and
/ dde log, (z,v1) A ... AddS log,(z,vn) < C,
K

for all vy,...,vp € Q and all € < €.
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Proof.— Let Q2 = {z € Q : dist(z,0Q) > €}. Take an open set ' such
that K C Q' ccC Q. For an n-tuple (vy,...,v,) € Q" let us assume that
exactly k of the v; are contained in @, and that these are vy, ...,v;. We
apply Inequality (7) on €’ to deduce that, for some compact set L C '\ K,
we have

ddSg(z,m) A ... ANddige(z,vp)

K
< Cl “ge(za ’Uk+1)“L ttT ”96(27 'vn)”L
X / ddige(z,v1) A ... Addige(z,vi) A gk,
K

for all € such that €' C Q.. We then apply Lemma 7.2 on Q, with &’
as K' (see the remark following Lemma 7.2). This gives us a compact set
L' ¢ @\, such that

/ ddSge(z, v) A ... AddSge(z,vk) A gk
K

n—k
ot

< 02 “gE(Zvvl)”L’.””g€(z$vk)“L’ 4

L’

Hence
/ ddige(z,v1) A ... AddSge(z,vp)
K

k n
< CaH”ge(zavj)“L' H ”ge(zvvj)”L

j=1 j=k+1
k n

< G [ lez vl [1 letzvplly -
j=1 j=k+1

Recall that g(z,w) > log |z — w| — log R, where R > 0 is chosen such that
Q C B(w,R) for all w € Q. This implies that ||g(z,v;)|l;, < logR — log
dist(L/,0), j = 1,...k, and ||g(2,v;)||, < log R — log dist(L,d%’), j =
k+1,...,n. Hence

/ ddSge(z,v1) A ... Addige(z,v,) < C(k),
K

where C(k) is a constant which depends only on the number of poles inside
V. Define C = maxggk<n C(k). Then

/ ddige(z,v1) A ... ANddSge(z,vn) < C,
K

and we are done. For the logarithm, the proof is similar. O
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For the logarithmic potential, it is possible to get an explicit expression
for the Monge-Ampere measure. We will use the notation det(a,b) = a1b2 —
agby, where a and b € C2.

PROPOSITION 7.5.— If v # w € C2, we have

|det (z — v,z — w)l2

|z —v[*]z ~ wl*

dd;log|z —v| Addilog|z —w| =4 dr(z), (9)
and this measure is absolutely continuous with respect to the Lebesgue mea-
sure. Moreover, if i is a finite positive measure with compact support in C2,
and lp, is locally bounded, then

2
(ddClp,(2))% = 4 ( /C o ‘d: (_ZJ‘*z];;z-—:q)“) L duw) du(w)) dA(z). (10)

Proof. — We compute the first measure using the formula
dd°f(2) AN dd°g(z)
?f 3% ’f
=1
6 <8z1621 322075 | 97307 821621) dA(z)

?f 3% ’f 9%
~16 (leaig 22071 | 92207, 321832) dX(z)

and the fact that

?loglz| 1 [-ziz; 6
TR _ ([ TEA L )
8zi67j 2 Iz' lzl

We omit the details. To prove the claim about absolute continuity, note that

|det (z — v,z — 'w)|2

Z—v Z—Ww
|2 —vf* |z — w|®

is uniformly bounded from above. Since |z|™% € L},.(C?), the claim is
proved. Finally, inserting Equation (9) into Equation (5) gives Equation (10).

O

8. Is there any relation between p and (dd°p,)" ?

In classical potential theory we have AU* = cu, where U* denotes the
classical potential of the measure u and c is a positive constant. It is natural
to ask whether there is any relation between the measures (dd°p,)" and g,
such as an inequality. The following results partially answer this question.
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THEOREM 8.1.— Let 2 be a bounded, hyperconver domain in C"*, n > 2.
Let pu be a finite measure, such that the logarithmic potential of u is bounded.
Then (dd®lp,(2))" is an absolutely continuous measure with respect to the
Lebesgue measure. If i1 is such that the pluricomplex potential is bounded
and g(-,v) € C3(Q\ {v}) for all v € Q, then (dd°p,)" is an absolutely
continuous measure with respect to the Lebesque measure.

Proof. — We prove the theorem for p,, the proof for lp,, being essentially

the same. Let K be a set of Lebesgue measure zero. Then using Equation
(6) and Fubini’s theorem we get

[ oo
= / ddSg(z,v1) A ... ANddig(z,vy)du(vy) - - - dp(vs)
KJonr
= / (/ dd;g(z,v1) A... A ddﬁg(z,vn)) dp(vy) -+ du(vy).
n z€EK

Call the bracketed integral f(vi,...,vn). If v; # v;, for some indices ¢
and j, we have f(vy,...,v,) = 0, according to Proposition 4.4. If all the

variables have the same value v, then f(v,...,v) = (27)" if v € K, with
f(v,...,v) = 0 otherwise. Let D = {(v,...,v) : v € Q} C Q™. Then we have
[ @@= [ g ) duon) - duton)

N

—~
™o
)

% /D dps(vn) - dp(vn)

ey [ ( /{ R du(v)) " )

Since p is bounded, p can not have any mass at points. Hence the inner inte-
gral is zero for all w, which implies [}, (dd°p,(2))" = 0, and the proposition
is proved. O

EXAMPLE 8.2.— Let Q = B(0,1) C C?, and let u be the normalized
Lebesgue measure on the disc D(0,1) x {0}. Then the pluricomplex potential

is bounded. Hence it cannot have any mass on the 1-dimensional complex
variety D(0,1) x {0}.

Proof. — From Proposition 3.1 we know that
(I21* = 1) (1= 122l + |22l log |221%)

2 (1 - |z2|2)2
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It is easy to see by using routine calculus that —1/2 = p,(0) < pu(2) < 0.
The second statement then follows from general properties of plurisubhar-
monic functions (see [KI]). |

The moral here is that, when n > 2, the procedure p — p, — (dd°p,)"
is “smoothing”. The fact that u is singular is not visible at the end, as long
as the singularity is not too strong. This breaks down in dimension 1. We
will generalize the result in Section 9.

Also note that Theorem 8.1 says that a necessary condition for a bounded
plurisubharmonic function to be a pluricomplex potential is that its Monge-
Ampere measure is absolutely continuous with respect to the Lebesgue mea-
sure. Since there are many such functions whose Monge-Ampeére measure is
not absolutely continuous, this indicates that the Green functions (with one
pole) form a very small subset of all extremal plurisubharmonic functions
(see the discussion in Section 1).

THEOREM 8.3. — Let Q be a bounded domain in C™. Let q > 1, f €
L) with f > 0, du = fd\. Then the pluricomplex and the logarithmic
potentials of i are continuous on . Moreover, if n = 2, and f is not iden-
tically zero, then (dd¢lp(z))? = ¢(2) dA(2), where p(z) > 0 throughout 1.

Proof. — Since for each z € Q and 1 < r < 00, we have log|z —-| €
L™(A,Q), it is clear that Ip,(z) > —oo for each 2. Let 1/g +1/r = 1. We
first prove that the logarithmic potential is continuous at every z € Q.
Without loss of generality, we may assume that z = 0. Let z; — 0. Then

llpy (25) — lpu(0)]
- | [ gtz —ul ~tog ) fwIarw)

1/r 1/q
< (f oeles —ui = togtur xw) ([ rwrarw)
by Hoélder’s inequality. Hence it suffices to show that
/ [log |z; — u| — log |u||” dA(u) — 0. (11)
Q

This, however, follows immediately from Theorem 2.4.2 in [Ku-J-F}, and
the first statement is proved for lp,,.

We now turn to p,. Again, it is enough to show continuity at z = 0. If
B(w, Ry) C Q C B(w, Ry), then —log R < g(z,w) —log |z — w| < —log Ry,
for all z,w € Q. Hence, if § > 0 is small enough, there is a constant A such
that |g(z,w) —log|z — w|| < A, for all z,w € B(0,4). Let ¢ > 0 be given.
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Choose > 0, such that A"-vol(B(0,6)) < €. We have by Minkowski’s

inequality:
1/r
( [ latz.u - 90, u)rdx(u)>
B(0,5)

1/r
< (/ l9(zj,u) — log|z; — UIlrd)\(U)>
B(0,6)

(U
( B(0,5)

)

1/r
+ ( [ 19(0, %)  log |ul|'dx<u>)
B(0,8)

1/r
<e+ (/ [log |z; — u| — log |u||” dA(u)) +e.
B(0,6)

1/r
|log |z — u| — log |u||" dA(U))

Using the proof for Ip,, we conclude that [ B(0,5) 19(25,v) — (0, u)|"dA(u) <
3¢, if j is large enough. Outside B(0, §), all functions are uniformly bounded
if j is large enough. Hence we can use Lebesgue’s dominated convergence
theorem there, and the first statement is proved for p,,.

Finally, to prove the statement about ¢, we use Equation (10):

2
o(z) = 4 /Q B [det (= — 0.2 =W 1) £ w) dA(v) dA(u).

2 — ol ]2 — wf*

There is an € > 0 and a set with positive Lebesgue measure where f > e.
Since the determinant vanishes only in a set in Q x Q with Lebesgue measure
zero, the integral is greater than zero for all 2. (]

THEOREM 8.4. — Let Q be a domain in C2. Let f >0, du = f d\. Then
there is a constant C > 0 (depending only on ), such that

(dd°Ipu(2))” < C I £llze (2—7)"7dA(2)
forallg>2, fe LQ) and 1/g+1/r = 1.
Proof.— 1t is clear that for all z,v,w € Q,

|det (z — v,z — w)|2

|z~ vf* |z - w|?
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is uniformly bounded. Hence, using Equation (10), we have

2
4 ( | ldet (2 — v,z W) ) du(w)) ()

|z =" |z — vl

o) ( /ﬂ _S0I®) gy d/\(w)) dA(2)

x|z —vf? |z — w)

2
f(v)
i ( /Q lz_v(zd)\('u)> dA(2).

Since ¢ > 2 we have < 2. Hence |z —v| ™2 € L" and the last integral can
be estimated by Holder’s inequality:

[ a0 <5l ( [l=o de))l/r.

|z = v

I

(dd°lp,(2))?

N

I

Take R > 0 large enough to ensure that @ C B(z, R) for all z € Q. Then
we have

/ lz =" dA(v) < / |z — v| 7" dA(v) = {spherical coordinates}
Q z

’

= Cz/ P>~ ¥dp = C,
0

421
4-2r

=C3(2 - 'r)_l.

Putting everything together we obtain the theorem. O

We close this section with a characterization of smooth potentials.

THEOREM 8.5.— Let Q be a domain in C". Let pu be a measure (not
necessarily bounded) in Q. Then the logarithmic potential is smooth (i.e.
C®) in Q if and only if p is given by a C™ function times the Lebesgue
measure. If Q is such that g(z,y) — log |z — y| € C°(t x Q) then the same
characterization holds for the pluricomplex potential. In particular, this is
true for the unit ball.

Proof.— We begin with the logarithmic case. As mentioned in Section
2, the logarithm is a fundamental solution of A™ in R??, and the potential
is the convolution of the logarithm and the measure. The first statement of
the theorem now follows from distribution theory, see [Ho], Theorem 4.4.1.
The second statement is a trivial consequence of the first. For the ball, set
g9(z,y) = log|z — y| + h(z,y). We must prove that h(x,y) € C®°(B x B).
We omit the easy computation. O
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9. Measures whose potentials have finite energy

Recently, Cegrell [Cel] introduced the concept pluricomplex energy, and
defined the Monge-Ampére operator on functions of finite energy.

DEFINITION 9.1 [Cel]. — Let 2 be a hyperconvez, bounded domain in
C". We define a function u to be in the class Eq if it is bounded, plurisub-
harmonic, tends to zero at the boundary, and [, (ddu)™ < co. We define a
function u to be in the class E,, if there is a sequence {u;} C E,, such that
u; "\, u, and

sup/(—uj)p (dd°u;)" < oo.
J

It is shown that E, is a convex cone. We remark that functions with
logarithmic poles, for instance the logarithm or the pluricomplex Green
function, are not contained in E, for any p. We may say that functions in
the class E, have finite p-energy.

THEOREM 9.2 [Cel]. — The Monge-Ampére operator is well-defined on
E,.

The definition of the Monge-Ampére operator is done by means of the
defining sequence, and it is shown that this gives a unique measure.

We begin with investigating what happens if we take a function u € Fj,
and perform the procedure

u+— (ddcu)" = D(ddeu)n-

PROPOSITION 9.3.— Let Q be a hyperconvexr domain in C*, such that
the pluricomplex Green function is symmetric, for example, a convez do-
main. Let u € Ey and set p = (dd°u)™. Then p, € E,.

Proof.— We need to show that p, is bounded. Fix z € Q, and set
vV (w) = max {g(w, 2), N}.
Set K = —inf¢eq u({). We have by Holder’s inequality
[ ~max{o(z, ), N} dusw)

= [ ") (@) )
Q

<([ (dd°u)")1_1/" ([ vt @y ) "
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for N < —1. We now apply Corollary 2.2 in [B11] to obtain
/ —max {g(z,w), N}dp(w) < (fy (ddcu)")l—l/" (n!tK™ [, (dd°v™)™) n
Q

< 21K (n)'/™ ( /Q (ddcu)")l_l/n.

Since
~pule) = lim_ [ —max{o(zu), N} dw),
Q

N——00

it follows that p, is bounded. We also need to check that (dd°p,)™ is finite.
We use Equation (6):

/Q(ddcp,,)" = /m ( o ddSg(z,m) A ... A ddﬁg(z,vn)> du(vy) - - - dpvn)-

Recall that the inner integral is uniformly bounded in vy,...,v,. Hence
n
[aanr<c([a)
Q
and [du = [(dd°u)™ < oo by assumption. The proof is complete. a

In the rest of this section we will work in the unit ball in C? and prove
that E; contains the potential of a measure p, if p satisfies a kind of “loga-
rithmic finite energy” condition.

THEOREM 9.4. — Let Q = B, the unit ball in C2. If

__—loglz—y| g
LxB (1- |:L‘D(1 — |y|)d”(x)d/‘(y) < 00, (12)

then p, € Ey, and
(@ap)(2) = [ ddzo(e.v) Addgle, wid()dutu).  (13)
BxB

Furthermore, (dd°p,)? is an absolutely continuous measure with respect to
the Lebesgue measure.

Proof. — Let
gN(Z,'lU) = max{g(sz)7N} ’
and define, for N < —1,

pN(Z, ’LU) = L gn (Z, w)d“(w)
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Then py is a bounded function on € x €, plurisubharmonic in z, so we can
apply Equation (4) to obtain

(dd°pn)%(2) = /B deggN(z, v) Addgn(z, w)dp(v)du(w).
X
Since, by Corollary 5.4, the total mass of the measures

ddgn(z,v) Addign(z,w)

is bounded (uniformly in v,w and N ), we have

faeonr= [ ([ dazonte,o) nddsonc w)) duo)du(w) < oo

It follows that that each py is in Ey. Since also py \, Py when N — —oo0, it
is sufficient to show that if Inequality (12) holds, then supy [ 5 —Pn(ddp N)2
0o. We have
/ — pn(ddpn)?
B
= [ ([ —owtdazontz o) ndizon, w)) du(Oao)duw).
BxBxB z€EB

Let I(t,v,w) be the inner integral here. We can estimate it using Theorem
5.5 in the following way.

I(t,v,w) = /GB 9(z,t)ddgn(z,v) A ddSgn (2, w)

= [ —gn(z,v)ddg(z,t) A ddgn(z, w)

N

\\\\\

—9(z,v)ddzg(z,t) A ddign (2, w)
= [ —gn(z,w)ddg(z,t) A ddig(z,v)
—9(z,w)dd;g(z,t) A ddg(z,v)

~9(2,t)dd3g(z,v) A ddSg(z,w).
We claim that if v # w, then

4 1“|<1?~—vr’1?-—r>|

ddig(z,v) AddSg(z,w) < (1 - )@ = Jw]) |z — v| |z — wI

d\(z).
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This estimate is contained in Lemma 9.6 below, and combining it with a
trivial estimate of g, we conclude that

2
; gzt o)
R e ] A e e e

Since we know that
/ A — Blog |z — y|
Bxp (1= |z[)(1~[y])

for every A,B > 0 by assumption, it suffices to prove that there exists
A, B > 0 such that

du(z)du(y) < oo

- z— 2
/ —log =4, - ‘<|z—3|’ Iz—$l>‘ d\(z) < A— Blog|v—w|.
B

4 |z = v]? |z — w|
This is done in the technical Lemma 9.8 below.

Next we prove Formula (13). By Theorem 9.2 and its proof, (dd°p,)?
is well-defined and equals the weak limit of (dd°pn)2. Hence it suffices to
show that if 0 < x(z) € C§°(B), then

7i= [ xte) [ ddcon(z,) A ddson(z w)du(u)dutu
. / x(2) / ddSg(z, v) A ddSg(z, w)du(v)du(w).
But
7= [ ([ x@idantzi0) nddzan(ew) ) dut)duto)

and the inner integral here is bounded by

Il e /B ddS g (z,v) A ddSgn (2, w),

which, again, is uniformly bounded in v,w and N. Hence we can apply
Lebesgue’s dominated convergence theorem, and Formula (13) is proved.

Finally, to prove the claim about absolute continuity, repeat the proof
of Theorem 8.1. This is possible since a measure satisfying Condition (12)
can not have any mass at points. 0

It remains to show a number of technical lemmas, used in the preceding
proof. The first one is a straight-forward but tedious computation, and we
omit the details.
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LEMMA 9.5. — We have if u # v,

dd3g(z,u) A ddSg(z,v)

_ )= ) et —wz =)

(Iz —uf’ - |det(z — u, u)lz)2 (lz - |det(z — v, v)|2)
- (e )|
|z —ul* )z — vf?

401 - I7~t|2)(1 ~ v[*)

X > 3dA(2).
1o+ ) [1- o+ )]
LEMMA 9.6. — We have if u # v,
2
1—|<1——[;z,1—7z-z>| 4
ddig(z,u) AddSg(z,v) X dA\(z).
=0(%,) A ddzgl P PR T M2
Proof. — Immediate from the previous lemma. O

LEMMA 9.7. — Let B; = B(0,2) C C2. Then the function ® : C2xC2 —
R, defined by

Zi|zZ—w

lo
B(t,w) = / B gz
B w|

2 'Zl IZ_

is bounded from above.

Proof.— Define f.(x) = log(z/c)/x? for > ¢ > 0. By differentiation
we see that f.(z) < 1/(2ec?). Hence

[2]|z—w]|

log —
o(t,w) < / — ezt Ithd)\(z)
Bm{lzllz—«ul?ﬂz—tl} |2|% |z — w]|
2
o — < C’
86 fBz IZ - t|2
which proves the lemma. O

LEMMA 9.8. — Let B, = B(0,7) C C?, and define a function ¥ : B; x
Bl X Bl —R by

W(t,u,v) =
B, |z — u]
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Then there are constants A and B > 0, such that

¥(t,u,v) < A—Blog|u—v|.

Proof.— Let w = v — u, and make the change of variables 2’ = z — u,
to obtain

~os 2L (1 =n))

U(t,u,v =/ d\(2).
( ) B(-u,1) |2/ |2/ — w|® =)

Since B(—wu,1) C B(0,2) and the integrand is non-negative for |2'| < 2, we
get

- lwl( — (&, A= 2)
U(t,u,v) < / outi - (1 [ =) dA(2).

B, |21* |z — w/®

‘We split this into three integrals I, I and I3, where

os izt - (1~ (e pzan))
11=/B dA(z),

2 2
|2|" |2 — wl

o2l (1 -/ 2z 2w 2)
12_/ o8 (1 (=) D,
B2

|2* |z — w|®

dA(z).

—tog =21 (1 (. =g )
B/,

2 2
21" |z — w]

Note that
2

0<1- |<i 1:1>
2| |z —w
Using this and Lemma 9.7 we conclude that I is bounded from above by

A;, say. To estimate I3, note that it is a rotation invariant function of w.
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Hence we may assume that w = (w,0) where w € Rt . We obtain

—log '—;l z)? (Iz|2 +w? — 2wRez1)
/ dA(2)
B;

2
|2[* [|z|2 +w? — 2wRezl]

—logl2l. (]z|4 +w?|n)? - 2|z wRezl)
- / dA\(2)
B

2
|2|* [|z|2 +w? - 2wRez1]
I

log 121
= w? / S SdA(2).
B 2 |

|22 + w2 — 2wRez1]

We now change to spherical coordinates in R%. This gives

™ 2 T i 4
I = 2mw? / sin fdf - / —rlog & / sin” 616y 5 | dr.
0 0 2\Jo (r2+w?-2rwcosb)

Call the bracketed integral I4. To estimate Iy, we make the substitution
t = tan6,/2, and get

4
2t
I /°° (1+t?) 2dt
4 = 2’ 2
0 (1‘2+w2 2rw}+§2) 1+t

0 tidt
32/0 ((r— ng + (r+w)2t2)* (1 +¢2)°

< 32(T+'W)_4 (1—+t2—)-3- = C(T+1U)_4
Thus )
—rlog §
I, <C ———d < Az — Byl ,
2 w? , r+w) 2 208w

by direct integration. We conclude that I < As — Bz log|v — u| .

For I3, just note that since |w| < 2,

. ol (- [(pmm))
B(~w,2)

[z’+w| |z’|
~tos - (1- (81,7 )dA
Ba 2+ wl? |2 ()
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and we can estimate it exactly as I,. We obtain I3 < As — Bslog|v —ul.
Putting everything together, we obtain ¥ (t,u,v) < A1+Az—Balog|v — u|+
A3z — Bzlog|v—u| = A— Blog|v — ul, as desired. O

We remark that for measures p with compact support, Condition (12)
reduces to

[ ~logle —yldu@)auty) < oo (14)
BxB
It would be interesting to see whether this condition is also necessary.

EXAMPLE 9.9. — In the unit ball in C? we construct a measure whose
potential is unbounded, but still in Ej.

Proof. — We adopt the convention that C,Cy,C; etc. are positive con-
stants but they may have different values in different expressions. For ex-
ample, we might write C |f(z)| < C, if we know that |f(z)| is bounded
by some other constant (not necessarily 1). Let {a;},{b;} C (0,1) be se-
quences which decrease to zero. Further assume that ) a;/b; < oo, and
> a;/b% = co. We will use radial measures of the type du = F(z|)dA(x),
where f(r) = S a;r%* if r < 1/2, and zero if 7 > 1/2. We first note that
u is finite, since

1/2
/du:CZaj/ rbj’4r3dr=CZaj/bj < oo.
0

Further, p, is unbounded, since

1/2
Pu(0) /log lz| dp(z) = C’Z a; /0 (log r)r®—4r3dr

_CZ a]-IQ);—bj 3 CZ ajz;b:' - o

J

It remains to show that u satisfies Condition (14). First note that since
u is rotation invariant, then so is lp,. Let z = (t,0),t € (0,1/2), and change
to spherical coordinates. We get

1/2 T
—lpu(z) =C Z a; /0 ( /0 —log(t? + 7 — 2rt cos §) sin? 0d9> o140 gy

Let I be the inner integral here. We use the substitution = = tan 8/2. This
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gives
00 2 2
_ 2 T 2z 2dx
I = /0 ~ log(t* + 7 2”tl+ 2)<1+x2) 1+ 22
il =72+ (t+7)%z? z?
= -8 ! d
/0 og( 1+ x2 (14 z2)3 ¥

{o 9] 9 m2 00 T
= 8/0. 10g(1+.’13 )mdﬁl)—lﬁlog,t—ﬂ/o m——g

) 2,.2 2
_8 / log(1 + EX0°2 2
0

(t-r)2 "1+ 11?2)3 )2
72 (t+r
= 8f(1) — 16log |t — |/O mz—)_s ((t r)?

where f is defined by

2

/ log(1 + az? )(1+ 2)3

We have f(0) =0 and

)= [ zt (3 + va)
fa) ‘/O I+ a1+ 272 = 1601 + va)®'

by elementary methods from calculus. Hence

f(a) =f(0)+/af (@)da= = [ 3+vE

16 Jo (1+a)?
<l°g(”‘f) )

We also have

g2 T
/0 (+2p® =15

We conclude that

2

=) dz

I 1 rtt r+t)/|t—r|

p log2—z—log|t—r| 10g(1+]t

2 —¢2
(IE—rl+7+1¢)
-
4max {r?,t2}’

1
logQ—Z—log(|t—r|+7‘+t)+

—% — logmax {r,t} +
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Thus

1 1/2 w
p / ( / —log(t? + r? — 2rt cos §) sin’ 0d9> r ity
0 0
tr 2 —r2
= —— —logt + ) ritbgy
/2/2( ! 422 2
1 re—1 —1+b
+/t ( 1 logr + 2 >r dr

_27h2 4 b2 b N 2-tlog 2 N 2-b ¢t
B 4-—b? b b2
— b

Cy 2-b
Cl+—b—+03'—b——

It follows that

2=t _ tbs
_lpll Za, Cl + Cs——bi—— .
J
Note that the last sum is convergent for all 0 < ¢ < 1/2, since 0 < 27°— b <
—blogt, by the Mean Value Theorem applied to the function brs 270~ tb
Now we integrate again, and obtain
[ ~1oglz — sl du(@anty)
= f "lpu(x)dl‘(x)

1/2 C 9-bj _ tbj
< C'Zajak/ (Cl + -b—2 + C3———b2——') t_1+b"dt
0 4] '

(o G 1
_Z“’“"(b T (bk bj+bk))

= Z a;a Cl C2 —+ ___ES_.__
1%\ 5 ¥ bibe T bybelb; +0k) )
If we now choose, for instance, a; = j7°, 3,b;=3 —1 the last series converges,
and the corresponding measure has finite energy. O

Remark. — For the suggested choice of a; and bj, the last series becomes
C1¢(2)¢(3) + C2¢(2)? + 2C3((3). Here we used the curious fact that

[ee]

1
3'%::1 G R = 2((3),

which can be proved using an integral representation of the Riemann zeta
function.
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