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Le genre faible (ou genre canonnique), c.a.d., Ie genre mini-
mal de toutes les surfaces de Seifert obtenues par l’algorithme de Seifert
a partir d’un diagramme du noeud quelconque, est etudie dans le travail
de Morton [MPCPS 99 (86), 107-109]. Il montre (en utilisant le polynome
de HOMFLY-PT) que ce genre est parfois strictement superieur au genre
de Seifert classique.
Dans cet article on montre que les doubles des sommes connexes iterees

d’un noeud K ont un genre faible qui croit infiniment, si le polynome de
Jones du double de K vérifie une certaine condition. (Le genre de ces
doubles des sommes connexes itérées est pourtant toujours egal a 1.) On
donne des exemples.

ABSTRACT. - The weak (or canonical) genus, i.e., the minimal genus of
all Seifert surfaces obtained by the Seifert algorithm applied on any dia-

gram of the knot, appears implicitly in the work of Morton [MPCPS 99
(86), 101-104], where he shows (using the HOMFLY-PT polynomial) that
this genus is sometimes strictly greater than the classical Seifert genus.
In this paper, it is shown that for any knot K, fow which the Jones polyno-
mial of a double satisfies a certain condition (almost to be the polynomial
of a twist knot), the weak genus of the (genus one) doubles of the iterated
connected sums of K grows unboundedly. Examples are given.
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1. Introduction

In his book [Ad, p. 105 bottom], C. Adams mentions a result of Morton
that there exist knots, whose genus g is strictly less than their weak genus g,
the minimal genus of (the surface of Seifert’s algorithm applied on) all their
diagrams. This observation appears just as a remark in [Mo], but was very
striking to the author. Motivated by Morton’s example, the author started
in a series of papers [St2, St, St3] the study of the invariant g. A key role in
what we can say so far about 9 plays [St2, theorem 3.1], saying that knots
of given 9 decompose into finitely many sequences of the kind introduced in
[St4], and called there "braiding sequences" , that is, can be obtained from
finitely many diagrams by successive applications of antiparallel twists at a
crossing

This theorem has several direct consequences, inter alia, to the enumeration
of such knots or the properties of their knot polynomials.

In this paper, we extend the series of boundedness and stability crite-
ria for the Jones polynomial V [J], presented in [St] for positive knots, to
alternating knots. We make more precise our observation of [St3], that any
coefficient of V of an alternating knot has an upper bound, which is poly-
nomial in the crossing number for fixed genus, by writing down an explicite
estimate. Furthermore, we show that the value range of any sequence of
fixed length of leading or trailing coefficients of V of an alternating knot of
given genus stabilizes as its crossing number goes to infinity.

Both properties are generalized in slightly weaker forms to non-alternating
knots. Finally, we use these extensions to generalize Morton’s example to
a series of knots with fixed genus, but arbitrarily high weak genus. Thus,
unfortunately, no control from below can be expected on g from g.

It is to be expected that a proof for specific series of examples is possible
by skein module calculations also using Morton’s inequality [Mo]
max degv P/2  g involving the maximal degree of the v variable in the
HOMFLY polynomial P [H]. We decide here, however, to present a crite-
rion using the Jones polynomial (and more exactly the Kauffman bracket),
whose derivation is more analytical.

2. Preliminaries

The Jones polynomial [J] is a Laurent polynomial in one variable t (more
precisely in its square root) associated to an oriented knot or link in S3 and



can be defined by being 1 on the unknot and the (skein) relation

with V+, V_ , V)( denoting diagrams equal except near one crossing, which is
resp. positive, negative and smoothed out.

Briefly after Jones’s discovery, Kauffman [Ka] found another definition
of this invariant called "Kauffman’s state model" or "Kauffman bracket"

(see also [Ad, §6.2]).

Recall, that the Kuaffman bracket (D) of a diagram D is a Laurent
polynomial in a variable A, obtained by summing over all states the terms

where a state is a choice of splittings of type A or B for any single crossing
(see figure 1), #A and #B denote the number of type A (resp. type B)
splittings and ISI the number of (disjoint) circles obtained after all splittings
in a state.

Fig. 1 The A- and B-corners of a crossing, and its both splittings. The corner A

(resp. B) is the one passed by the overcrossing strand when rotated counterclockwise
(resp. clockwise) towards the undercrossing strand. A type A (resp. B) splitting is

obtained by connecting the A (resp. B) corners of the crossing.

The Jones polynomial of a link L is related to the Kauffman bracket of
some diagram of it D by

The Kauffman bracket skein module of a room (a disc with a distin-
guished number of points on its boundary) is the module, say, over Z, gen-
erated by isotopy classes of inhabitants of this room (tangle diagrams in this
disc, intersecting its boundary exactly in the distinguished points), and with
relations corresponding to resolving the crossings according to the Kauffman
bracket relation.



See, e. g., [BFK].

The concept of a braiding sequence was introduced in [St4] in the context
of Vassiliev invariants, but subsequently turned out to be more useful in a
special case when considering knot diagrams, on which the Seifert algorithm
[Ad, §4.3~ gives a surface of given genus. (We subsequently call this genus
the genus of the diagram.)

DEFINITION 2.1. - A t2-move is the move in a diagram D is a replace-
ment of (a neighborhood of) some distinguished crossing in D by the tangle
of 3 antiparallely twisted crossings, as shown in (1). .

A braiding sequence associated to a diagram is a family of diagrams;
parametrized by c(D) odd numbers xl, ... (where c(D) henceforth de-
notes the number of crossings of D), each one indicating the number of t2
moves performed at each crossing. We adopt the convention that for xi  0

we switch the crossing numbered by i and apply (-xi - 1) t2 moves on the
switched crossing.

We consider crossings as equivalent, if they form a revsere clusp, so that

t2 on either of them have the same effect on the diagram. The maximal
number of (such equivalence classes of) crossings over diagrams of genus g
we call dg .

THEOREM 2.1 (theorem 3.1 of Knot diagrams of given genus
decompose into finitely many equivalence classes modulo t2 moves and their
inverses. That is, they all can be obtained from finitely many (called "gen-
erating") diagrams by repeated t2 moves.

3. The Jones polynomial of alternating knots of given genus

Directly from [St2, theorem 3.1~, in the proof of theorem 9.3 of [St] we
mentioned a way how to compute V on a whole braiding sequence from the
Jones polynomials of the generating diagram (as defined in [St2]) and all
its crossing-changed versions. From this principle, the following observation
is relatively straightforward, but in view of the results of [St3, §6~ maybe
should be recorded in its own right.



THEOREM 3.1. - There exists a constant C, such that for any alter-
nating knot K and any k E Z it holds

where c(K) denotes the crossing number of K and g(K) its genus, (V~tk is

the coefficient of t~ in V, and dg~K~ can be defined by

Remark 3.1. - For fixed c(K) the maximal value on the right of (3.5) is
attained at k = c(K)/e, which is exponential in c(K). Therefore, the essence
of this theorem is the claim that the coefficients of V for K alternating grow
polynomially in c(K) for fixed g(K). This was already noted in ~St3~, but
here we give this more explicite estimate.

Proof. - This is basically a repetition of the proof of theorem 9.3 in [St].
If Vn denote the Jones polynomials of Ln , where Ln are links with diagrams
Dn equal except in one room, where n antiparallel half-twist crossings are
inserted, then from the skein relation for the Jones polynomial we have

with Voo denoting the Jones polynomial of Loo , which is the link obtained
by smoothing out a(ny) crossing in the room.

We consider now a diagram D in a braiding sequence of diagrams of
genus g(D) = 9 and some number of parameters d  dg, where dg can be
defined by (3.6). We have d > 2g + 1 because of the (2, 2g + 1)-torus knot
diagram.

Then expand the relation (3.8) with respect to any of the d crossings,
at which t2 moves can be applied, obtaining 2d terms to the right. So their
number in exponentially bounded in g, and hence it suffices to prove the
inequality for each term separately.

Each term is of the form



with k  d, k’ E Z and 03A3ai = O(c(D)), where c(D) denotes the crossing
number of D, and L being a link obtained by smoothing out (according to
the usual skein rule) some set of crossings in the generating diagram. But
the crossing number of L is linearly bounded in d, hence all its coefficients
are exponentially bounded in d. Then, the coefficient sum of the product
term is at most 

_ 

From this the theorem follows, as by [Ka2, Mu, Th] for an alternating
diagram D of an alternating knot K, we have c(D) = c(K), and by ~Ga~,
g(D) = g(K). . 0

Remark 3.2. C can be in principle written down explicitly. However,
the resulting number so far has an unattractive magnitude. By [St], d9 
97 . 8-2 - 6 7 for  > 2 but here it is possibly as well fertile to think about

sharper bounds.

Another straightforward consequence was already noted in [St] and is
repeated here, because it will be related to the extension of Morton’s exam-

ple.

PROPOSITION 3.1. - Let t E sl :_ ~ z E C : ’z) = 1 ~. . Then ~ VK(t) :

g(K) = g ~ C C is bounded for any 

Proof. Repeat the previous formulas, noting that the partial sums of
the Neumann series of t2 and t-2 are both bounded if t ~ = 1. D

Finally, we come to the announced stability result for the "edges" of the
Jones polynomial.

DEFINITION 3.1. For some polynomial V E 7L~t, t-1~ define the min-
imal and maximal degree and the span (elsewhere called "breadth", not to
the author’s taste) of V by

min deg V: = min{a ~ Z : [V]ta ~ 0}, max deg V
:= max~ a E Z : : [V]ta ~ 0 ~ , and span V : := max deg V - min deg V .

Then the list 03BBlV of V ’s leading coefficients of length l is the l-tuple

([V,tmindeg V+-k ~~ O E Analogously define the list Tl V of the trailing coef-
ficients of V of length l.

THEOREM 3.2. - Fix g, l and n mod 2. Then the sets := :

K E and Tl,g := ~ TIVK : K E (with An,g as in (3. 7)) stabilize
as n -~ oo, that is, are all the same when n > no for some no . .



Pmof. - The proof of this property is closely related to its analoga for
positive knots from [St3, §6]. We show it just for AI V (because 03BBlVK = lV!K,

so in fact = T~).

By recalling carefully the proof of theorem 6.2 of [St3] for the case t = 0,
we see that if for i mod 2 fixed are links as in (3.8) (that is, a one-
parameter antiparallel twist sequence), then and more generally
the + 1 )-tuple any ~ Z, stabilize as z ~ oo,
with the property, that a (not necessarily minimal) point of stabilization
mo, that is, a number, such that = resp.

for all mo , is dependent on k resp. ll,2, but (very crucially) indepen-
dent on the link diagram outside of the twist box, assuming min degV is
uniformly bounded from below (see remark 3.3 below).

We now have the following

LEMMA 3.1. - Let D be an alternating diagmm and D’ be obtained

from D by applying a (antiparallel) twist at any of its positive resp. nega-
tive crossings. Then mindegV(D) = min deg V (D’) resp. maxdegV(D) =
max deg V ( D’ ) . .

Proof. - First forget about D’s orientation and consider its unoriented
version. It can be seen from the expression of min deg V and max deg V in
terms of the checkerboard shading (see [Ad, pp. 160-162] or [Ka3]) that
under a twist (in the unoriented version) min deg V changes only locally,
i. e., by something independent on the rest of the diagram.

Now, considering again D with orientation, min deg V has a lower [St3,
lemma 6.1] and upper [St6, theorem 4.2] bounds in terms of the diagram
genus (which is fixed by an antiparallel twist) and the number of negative
crossings (which is preserved as well, if the twist is at a positive crossing),
hence min deg V (D) ranges within some finite interval under antiparallel
positive twists. But if the local change of min deg V were non-zero, by ap-
plying successive further twists, we would be able to push mindegV(D)
arbitrarily high or low, contradicting one of the bounds.

Applying the argument on the mirror images, we get the statement for
max deg V and negative twists. D

Remark 3.3. - Therefore, twisting at positive crossings, min deg V stays
always the same. But then we see, that the dependence of mo on k resp.



ll,2 is in fact just a dependence on k - min deg V resp. ll,2 - min deg V,
because of the freedom to rescale V by a power of t (this is not very clear
from the generating series representation of [St3, §6]). This is the second
crucial point.

Prepared with lemma 3.1 and this observation, fix g, and consider sep-
arately any of the finitely many braiding sequences of alternating (knot)
diagrams of genus g, and also consider therein all the twist boxes separately.
First consider the twist boxes with positive crossings.

From lemma 3.1 and remark we see that al V stabilizes after mo twists
for some mo at any positive crossing (under further twists at that crossing),
independently on how many twists have been done at the negative crossings.
Therefore, to capture all contributions of knots in this braiding sequence to
al V it suffices to consider separately the finitely many cases, where at each
positive crossing at most mo twists are performed. Therefore, we fix for the
rest of the proof the number of twists at each positive crossing.

We now show that the same argument can be made to apply for (twists
at) the negative crossings.

Recall that (3.8) is the explicit form of the recursive relation

with the subscripts of V denoting the number of positive (half )twists. Now
consider for a diagram D in the sequence

with c(D) being the crossing number of D. Then because of =

+ 2m, V’ again satisfies (3.10), but this time with subscripts of V
denoting the number of negative twists. As D is alternating, by [Ka2, Mu,
Th], min deg V’ ( D ) = - mindegV(!D), where ! D is the mirror image of D,
and applying negative twists at D is the same as applying positive at !D,
which by lemma 3.1 fixes mindegV( !D), hence also mindegV~(D). .

Therefore, having fixed the number of twists at the positive crossings
in D, we are interested in the leading l coefficients (that now have fixed
positions) of the polynomials V’ of the diagrams D, which again satisfy
(3.10) in every twist box, the subscripts counting the number of negative
twists. But because of (3.10), and its iterated version (3.8), these coefficients
stabilize by the positive twist case argument. D

Remark 3.4. - Note that the use of [Ka2, Mu, Th] is crucial - we need
upper control on min deg V’(D), hence a lower control on the span of V (D)



from c(D). The only (in fact, larger) class of knots, for which such con-
trol exists are the adequate knots of Lickorish and Thistlethwaite [LT] . It
would be interesting, whether any of the results generalize to these knots.
However, much trouble is expected because of the need of existence of an
adequate diagram of minimal weak genus. On the other hand, from (3.8) it
can be hoped, that a more careful analysis can prove the theorem 3.2 in full
generality.

We conclude by another property of the Jones polynomials which is not
expected to hold always, but at least "generically" with growing crossing
number - the 2-periodicity almost everywhere of their coefficients. We just
draw attention to the problem, leaving it open.

DEFINITION 3.2.2014 Call [m, n] C ~min deg V, max deg V] for some V E
t-1 ~ and m, n E Z with n > m + 2 a 2-periodic interval of V if =

[V]tk+2 for each k E [m, n - 2~. Denote this by [m, n] E 2p(V).

CONJECTURE 3.1

for any fixed g.

4. Inequalities for non-alternating knots

We show now a version of theorem 3.1 for non-alternating knots. An
analogon to theorem 3.2 is a consequence of it.

THEOREM 4.1. - There is some constant C > 0 such that for any knot
K and any k E Z it holds

Proof. - If K has a diagram D in a d-parameter antiparallel braiding
sequence of diagrams of genus g(K) (so d ~ as before, from (3.8)
you have that VK is the sum of 2d terms of the form (3.9), with k’ E Z,
k ~ d and c(L) ~ 2d. Therefore, VK(t) . (t + is the sum of terms as in

(3.9), but this time with the product of 1 - and so the coefficients of
are bounded independently on c(D) by something exponential

in d. Now, w.l.o.g., multiply VK(t) := VK(t) . (t + 1)d by a power of t, so
that it to have minimal degree 0 (i. e., to be an honest polynomial it t with



absolute term). The Taylor expansion of around t = 0 has an n-th

coefficient, which is in n, with O( . ) independent on d. Therefore,
~ (t + in k with O( . ) depending exponentially in d.

But clearly [VK(t) . - ~t + = 0 for k > span U~, so the first assertion

follows. The second inequality follows from [Ka2, Mu, Th]. D

COROLLARY 4.1. - {~l VK : g(K) = g ~ is finite for any I and g.

Proof. - Use the bijection between ~i VK and ~~ VK, and prove the as-
sertion for Àl if K . . D

A more detailed study may also show a stabiliy property of some kind,
for example, when span VK --> oo.

COROLLARY 4.2

for some constant C independent on k, K and g, that is, VK (t) . has
bounded coefficients over all K with g(K) = g, and moreover the number of
non-zero coefficients of VK(t) . (t + is also bounded for fixed g. D

COROLLARY 4.3. - For K positive we have

for some constant C depending on g(K). . In particular, the are only finitely
many positive knots with Jones polynomial of given minimal and maximal,
or just maximal, degree.

Proof. Use the inequality [St7, theorem 6.1~ for v2 = -1/6V"(1). . 0

Remark 4.1. In (4.11), span VK -I-1 may stronger be replaced by the
number of non-zero coefficients of VK, and c(K) by the maximal crossing
number of a positive reduced diagram of K.

COROLLARY 4.4 (see conjecture 9.1 of - Among the Jones poly-
nomials of knots of given g, only finitely many polynomials of given span
occur.

Proof. By theorem 4.1, Jones polynomials of knots of given g with
given span have only finitely many coefficient lists between minimal and
maximal degree. But (for knots, unlike for links) the coefficient list recovers
the minimal degree (amd hence the polynomial), because V(I) = 1 and
V’(1) = 0. D



5. Genus and weak genus

DEFINITION 5.1. - The untwisted double tangle of a knot is obtained
by cutting the knot diagram

replacing each strand by two

and adding a number of half-twists, which are doubly as many as the writhe
of the knot diagmm (5.13), and are positive when orienting the strands
antipamllelly

(with the usual convention that -1 half-twist is a half-twist with the crossing
changed). A tangle obtained by any other number of half-twists is called
twisted double tangle of the knot. The difference of the number of its half-
twists and the number of half-twists of the untwisted double tangle is called
the twist of the twisted double tangle.

Let wt be the tangles ::IT. and ~~.



DEFINITION 5.2. - The sum of two tangles Tl and T2 is defined
by

The closure T of a tangle T is defined by

THEOREM 5.1. - If T is a double tangle and some of the knots 
has a Jones polynomial, in which there are (at least) two coefficients with
absolute value 3 or (at least) one coefficient with absolute value at least 4, or
(at least) six coefficients with absolute value 1, then ~ o0

n-o

(while clearly all are doubled knots and hence have genus one).

Proof. Assume that Kn := have bounded g. By theorem
4.1, our strategy will be to find some kn E Z, for which (t)]tkn
grows exponentially in n, unless the assertion is satisfied. First, we use the
Kauffman [Ka] definition for V and replace V by the Kauffman bracket ( . )
(as all the normalization does not affect the norm of an evaluation on any
point on S1 and changes the coefficients just by a sign).

Then consider T in the Kauffman bracket skein module of

We have therein

for some P{,2 E Then by straightforward calculation



and hence

Therefore, using + A8) for some k E Z and (0) = 1,
we get, normalizing Bn by a power of A,

with P1 := Pi and P2 = P2(-A2 - A-2) + Pi.
The shape of Bn is exponential, and we attack it using the following

elementary function theoretic lemmas.

LEMMA 5.1. - Let f E A-1 ~ . If f , regarded as a function f :

C B ~0~ -~ C, has the property max I  1 and f ~ 0, then f = for
si

some k E 7~.

Proof. Use the relation

LEMMA 5.2. - Let f : ~ be a holomorphic function for some
finite set S ~ 0, with f(x) = f(x) (where bar denotes conjugation). If then
f maps some infinite subset of Sl c ~ to Sl, then f (x) f (1/x) = 1 wherever
defined.

Proof. - Use that f (x) f (1/x) is a holomorphic function wherever de-
fined and is equal to 1 on a set with a convergence point. O

The rest is basically applying appropriately these lemmas.

LEMMA 5.3. - For any two polynomials Pl and P2 in Z[A, with
or P2 ~ tAk2 for any k1,2 E Z, there are infinitely many A E Sl

with ~ 1+A" i~i and > 1.



Proof. Assume that or that P~ 7~ i!=~L~~. As the assertion
is symmetric w.r.t. Pi and P2, assume w.l.o.g., that ~A~1. Then by
lemma 5.1, there is some x E ?~ and e > 0 such that

with B(x, e) being the ball around x with radius e. Set Xl(A) := Ak 
and X2(A) := 1 + A4 - A~‘ - A~+8. If now, for infinitely many A E Sl we
have IXI(A)I = then applying lemma 5.2 on X1/X2 outside of the
zeros of X2 and 1 + A4, we see that Xl(A)Xl(1/A) = X2(A)X2(1/A), in
particular every zero 0 of Xi must be either a zero of X2 or the inverse
of such. However, e~’~i~8 are zeros of Xi , but not of X2.

Therefore, all but finitely many A E Sl satisfy in

particular almost all A in Sl n B(x, e). D

But now, continuing the proof of theorem 5.1, if ~PZ(A)~) >
1 and I for some A not zero of X1,2
then for

with exponential growth. But from (5.14), comparing the orders of zeros or
poles of Bn as A -~ 0 and A - oo (or from [Ka2, Mu, Th] using the evident
fact that = O(n)), we see that span Bn is linearly bounded in
n, which means that some coefficients of Bn grow exponentially in n, and
we would be done by contradiction to theorem 4.1.

Therefore, Pi and P2 are monomials with coefficients (as happens
when T is an unknot double, i. e., are twist knots). But then the
only possibility for them, so as Bn E Z[A, ~ for any n, is to differ by a
power of A4, so that

for some Z, from which the claim is evident. D

We chose to use the new property of §4 in a part of our proof, although
it can also be done in alternative ways. We invite the reader to think about

them.



EXERCISE 5.1. Use (5.14) to show that if Pl,2 ~ ±Ak1,2 , then 03BBlBn
or TiBn are infinitely many for some value of l, without using the lemmas,
so that the conclusion P1,2 = is also possible using corollary .~.1. In
a much easier (and less interesting) way, deduce the same conclusion also
from proposition ~.1.

We give some hints to the reader, giving a rough sketch of the argument.

As al is mapped bijectively under multiplication by a fixed polynomial,
eliminate the denominators in {5.14), and consider

LEMMA 5.4. - Let the minimal order of V be defined by min ord V :=
min~ m > 0 : : ~ 0 ~, is not a monomial. Then

An analogous definition and statement hold for the maximal order
max ord V of V.

From (5.14) clearly not both Pi and P2 are zero, and if just one is zero,
the other cannot be a single monomial, so we would be done by the above
lemma. Therefore, assume that both PI and P2 are non-zero.

Now, if min deg P2  mindegPi and P2 7~ , then for any l for

sufficiently large n we have 03BBlPn = 03BBl (X2 P2 ) , which by the lemma for
l sufficiently large has an unboundedly growing coefficient. An analogous
argument with Pi and the maximal degree shows that we are done unless
min deg P1 = min deg P2 and max deg P1 = max deg P2. Then the lemma
shows that min ord PI = min ord P2 and max ord PI = maxord P2 by a
similar argument. For example, if min ord Pl  min ord P2, consider the
coefficient of for l sufficiently large, and compare
in (5.15) the growth rates of this coefficient as n - oo for X 1 P1 and XZPZ .
But now a contradiction follows, considering the above mentioned coefficient
for l = 1, because at least one of min deg X 1 ~ min deg X 2 or max deg X 1 ~
max deg X2 holds, no matter what k is. Therefore, Pi,2 must be monomials,
and then clearly they must have coefficient :1::1.



Example 5.1. - The two 14 crossing (twisted) doubles of the left-hand
trefoil with positive and negative clusp, in Thistlethwaite’s tables (see [HTW])
included as 1435575 and 1441716, have the Jones polynomials (in the notation
of [St5])

and hence theorem 5.1 can be applied to the tangle in (5.13) with both w+
and w_ . .

6. Problems

In fact, the motivation for this note was to develop the results of §3 so
far as to do the construction of §5 without use of proposition 3.1. Using this
proposition, the proof is somewhat simpler, but it appeared nicer to link
both parts of the paper in the chosen way.

Nevertheless, I prefer to conclude stressing again some problems that

suggest to be of some significance within the framework of this note.

Problem 6.1. - Is there an upper bound for for K alternating
in terms of g(K) and possibly k, but not c(K) (as there is for positive K)?
Is there a similar inequality also for non-alternating knots?

Problem 6.2. Can one generalize theorem 3.2 to a stability property
for arbitrary knots (and weak genus) by more refined study of (3.8)?

Problem 6.3. Are the only finitely many positive knots with Jones

polynomial of given span? If we had an infinite series of such knots, then

by corollary 4.3 we know that their genera must grow unboundedly, but yet
we cannot exclude such a case.
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