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Nous etudions des versions du modele de Sherrington-
Kirkpatrick ou les spins sont a valeurs dans la sphere de Rd de rayon d.
Nous montrons qu’à haute temperature la solution "replique-symetrique"
est correcte. Nous en deduisons, toujours a haute temperature, des prin-
cipes de grandes deviations pour le recouvrement de deux configura-
tions dans la version usuelle du modele SK. Dans le cas ou les spins
sont uniformes sur la sphere de rayon Vd, nous montrons que la solu-
tion replique-symetrique est valable au-dessus d’une temperature bornee
independamment de d.

ABSTRACT. - We show how to prove large deviation principles for the
overlaps of the usual Sherrington-Kirkpatrick model (at high enough tem-
perature) by proving that some higher dimensional versions of this model
are "solved by the replica-symmetric solution". In the version where the
spins are uniform over the sphere of radius J2 of Rd we prove that the
critical temperature is bounded independently of d.

1. Introduction

The Sherrington Kirkpatrick (SK) model for spin glasses associates to a
sequence u = = ~ -1,1 ~ N the Hamiltonian

~ Equipe d’analyse, E.S.A. au C.N.R.S. n° 7064, Boite 186, Universite Paris VI, 4,
place Jussieu, 75252 Paris cedex 05.
Homepage www.proba.jussieu.fr
and Department of Mathematics, The Ohio State University, 231 W. 18th Ave., Colum-
bus, OH 43210-1174.



where 9ij is an i.i.d. standard normal sequence, and h a parameter (that
represents an external field). The object of study is, for a typical realization
of the sequence (that will be called the disorder) to understand the
structure of the Gibbs measure at inverse temperature /3 given by

where Z is the normalization factor. While the physi-

cists believe they understand the structure of the SK model for all values
of {3, rigorous results are currently known essentially only for "small ~3" . In
the case h = 0, precise results are obtained for (3  1 in [C-N] (following
[A-L-R]). These results include central limit theorems for the overlaps. The
overlap of two configurations is defined as N~ 1 ~ and it is best

iN
viewed as a function on EN x EN. Overlaps are of fundamental importance,
as discovered in physics. The central limits theorems on the overlaps of
[C-N] are extended to the case h > 0, ~3  ~30 (~30 > 0) in [T2], a case that
is apparently much more difficult. The starting point of the present investi-
gation is the following natural question: what are large deviation principles
for the overlaps? In the study of the SK model (as well as in the study
of disordered systems) there are two rather distinct questions about large
derivations, that one can roughly state as follows.

Question ~. Understand how rare are the exceptional realizations of
the disorder for which Gibbs’ measure is rather different from its typical
realization.

Question 2. For the typical realization of the disorder, understand
how rare are, for Gibbs’ measure, the exceptional configurations for which
the overlaps are rather different from their typical (= average) value.

It is question 2 that will be addressed here. (The author is not aware of
any result in the direction of question 1.) Let us denote by ( . ) averages
on ~N (or its products) with respect to Gibb’s measure. Then question 2
essentially amounts, given t > 0, to estimate

This is a quantity of order N. It is explained that the fluctuations due

to the disorder of this quantity are of order N, so that all the information



we need about the left-hand side of (1.2) is in fact contained in the number

where E denotes expectation in the variables 9ij.

How can one compute this quantity? For example, its derivative with
respect to t is

where (.)t denotes average with respect to Gibbs’ measure, at inverse tem-
perature /? on E~ x EN, relative to the Hamiltonian 

’

There seems to be no other way to compute the quantity (1.4) than to gain
understanding of this Gibbs’ measure. Consider now the Hamiltonian

on "EN x "EN = (~-1,1~2)N. A simple, but crucial observation is that the
study of the Hamiltonian (1.5), when ~N is provided with uniform measure,
is the same as the study of the Hamiltonian (1.6), when EN x ~N is provided
with the probability vN, where v is the probability on ~ -1,1 ~ 2 given by

where a is the normalization factor. Indeed, for a function f on ~N x EN,

where (o’,o~) is identified with an element of ({-1,1}2)N.



Besides the overlaps, there are other quantities for which one might want
to establish large deviation principles, such as the "symmetrized overlaps"
considered in [Tl]. For these, the analysis performed above carries out, but
one has to study a certain Gibbs measure on To treat this different

cases in one stroke, we will introduce a general setting, the generalized SK
model. In this model, the individual spins take values in the ball B of R~

(where d is an integer)

The choice of the normalization is to ensure as seems

natural from the previous motivating examples. A configuration 0’ is then
a point of EN = BN. Denoting by (., .) the dot product in jRN, we consider
the Hamiltonian 

,

Given a probability J-t on B, we define Gibbs’ measure on B~ as the prob-
ability that has density proportional to with respect to 

The parameters of the system are then {3 and the probability A par-

ticularly natural example is when ~ is uniform on the boundary of B, an

example physically interesting if d = 3.

THEOREM 1.1 (Informal version). - There is a number L such that if
L~3d  1, , the replica symmetric (RS) solution holds for the generalized SK
model.

What is meant by the RS solution will be explained in detail in Section

2; but this means in particular that we can compute the limit as N - oo of
the quantity (1.4) (and of many others). Thus, as a consequence of Theorem
1.1, there is a number /?o such that if /3  we understand (at least in
principle, since the solutions are given in terms of implicit functions) the
large deviations of the overlaps for the usual SK model.

If no hypothesis is made upon the requirement 1 is reasonable.

For example, if for a certain x in with IIxll = Jd, we have ~c ( ~ x ~ ) =
~u(~-x~) = 1/2, then the corresponding generalized SK model is isomorphic
to the SK model for h = 0, at inverse temperature {3d, so that the RS
solution will not hold unless 1. Thus, if we define the critical value
of /3 as the supremum of the values for which the RS solution holds, we
can reformulate Theorem 1.1 by saying that the critical temperature is of
order at most d. In this example that showed that this order is optimal,
the measure  was actually "one dimensional". We feel that if  is really
d-dimensional (in a sense yet to be discovered) then the critical ~3 should be



of order 1 independently of the value of d. Here is a result in this direction,
concerning the natural example.

THEOREM 1.2. - There exists a number /?o > 0 such that /?o? 
and ~c is uniform over the boundary of B, the RS solution holds for the
corresponding generalized SK model, whatever the value of d.

In contrast with the case d = 1, it should be pointed out that for large d
the free energy density is much smaller that the anealed free energy density
(by a factor d), so that Theorem 1.2 is not as easy as one might have hoped.

We will generalize Theorem 1.2 as follows.

THEOREM 1.3. - There exists numbers 03B20 > 0, L > 0 with the following
property. If we assume that ~u has a density 1-f-m with respect to the uniform
measure on S, where 1 /L, then the RS solution holds for the
corresponding generalized SK model, whenever ,Q  ~30, whatever the value
of d.

We would like now to explain why the interest of the generalized SK
model possibly goes well beyond the application we gave to large devia-
tion principles. We were brought to that model by our attempts to prove
the validity of the RS solution for the usual SK model in the entire "high
temperature region" predicted by the physicists. This problem appears very
much harder than expected. At present it appears very difficult to get even
close to the critical value of ~3, unless h is small, where one can take advan-
tage of special features. The generalized SK model makes our shortcomings
more obvious. When d is large we are currently very far from being able
to get the proper order of the critical ~3. We can prove only that /3 is at
least of order 1/d, in cases where it is likely to be of order 1, unless we
can take advantage of special features, as in the case of Theorem 1.2. Of
course the reader might think that it is weird to attempt to solve a hard
problem (proving the validity of the RS solution in the entire high temper-
ature region) by working on a much harder one (studying the generalized
SK model). This is not necessarily the case. The attack of [T2], that seems
to follow the most natural approach, requires to estimate for each n,
where f is a certain function on It does not appear possible, when n is
of order N, to make these estimates by understanding Gibbs’ measure only.
Rather, it seems necessary to understand the measure of density exp t f with
respect to Gibbs’ measure. The form of f (that resembles an overlap) is such
that this amounts to understanding a generalized SK model for d = 4. It
is most likely that in the previous sentence the work "understand" must
mean "prove that the RS solution holds". So, to prove that the RS solution
holds for the ordinary SK model, at a given value of the parameters, one is



naturally lead to study a generalized SK model for d = 4. The hope is that
for this new model, one is a little bit further from the critical temperature
so that the problem is a bit easier. One could then iterate the procedure
until one reaches a problem easy enough to solve it directly. But the main
obstacle in this program is that the dimension d doubles at each iteration,
and the project has a chance to succeed only if one can develop estimates to
study the generalized SK models that are independent of the value of d (at
least for a sufficiently rich class of measures ~c). This, by itself, appears to
be a very difficult program, of which Theorems 1.2 and 1.3 are small steps.

We now describe the organization of the paper. In Section 2, we set
our notation, we explain the cavity method, and describe the RS solution.
In Section 3 we prove the key step toward Theorem 1.1, that is, we show
that "the system is in a pure state". This follows the basic ideas of [Tl],
but, since the situation is more complicated, some explicit computations
are no longer possible, and have to be replaced by general principles (which
of course results in great simplification). We have tried to give the simplest
proof we could, even though this means that some arguments will have to be
repeated later in a more elaborate form to prove Theorem 1.3. Proceeding
otherwise could have shortened the paper by a few pages; it would also have
guaranteed that the proofs would forever be impenetrable to others. The
proof of Theorem 1.1 is then completed in Section 4. In Section 5, we prove
Theorem 1.2. In Section 6, using the fact that ~ is close to uniform, we

prove a priori estimates on Gibbs’ measure. Using these, we then revisit the
methods of Section 3 and 4 to prove Theorem 1.3.

2. Description of the RS solution and preliminaries

The fundamental property of the RS solution will be that "the system
is in a pure state" ; we refer the reader to [T4] for a detailed discussion of
this idea. In the present case, the way we will define this notion is by the
fact, that, given any x, y in the function

of the two configurations cr, u’ is essentially a constant function on (~N, G2).
It is convenient to symmetrize, and to say instead that the function

of the three configurations ~1, y~, u3 is essentially zero.



To simplify notation, we will write fr = cr 2 we will denote 
the sequence (x, and we will denote by . the dot product in so

that (2.2) will be written as

To quantify the fact that is function is nearly zero, we will consider the
number 

_

In this notation, ( . ) means that ,~1, ~2, ~3 are integrated for Gibbs’
measure; E denotes expectation in the r.v. (gij)ij (the disorder) ; and 
is the norm of x in 

In Section 3 we will prove that 0 under the conditions of Theo-
rem 1.1.

The structure of the RS solution of the standard SK model is determined

by a number q. This number q has the property that for essentially all
realizations of the randomness, and essentially all choices of a, 0-’ according
to Gibbs’ measure, we have

The value of q is given by

where g is standard normal.

The situation is more complicated for the generalized SK model. We have
to consider two quadratic forms R, Q on These will have the property
that for x, y in JRd, essentially all realizations of randomness, and essentially
all choices of cr, u’ in ~N (according to Gibbs’ measure) we have

Given a positive semi definite form Q on ]Rd, there exists a jointly Gaus-
sian family such that = Q(x, y) for all x, y in



Then in the limit the quadratic forms Q, R will by determined by the
relations

In line with our previous work, we denote above by Av integration of 8, 8’
with respect to The reader is reminded that while certain authors use

the notation Av to mean average over the disorder, we denote average over
the disorder by E. Of course in (2.9), (2.10) E stands for integration in the
Gaussian variables 

In Section 4 we will prove these statements under the conditions of

Theorem 1.1. These already contain the information we need to evaluate

quantities such as (1.4) (that is asymptotically ER(el, e2) where el,e2 are
the unit vectors of R~). In fact it will be clear at that point that we can
compute many other quantities. It seems almost certain that in the range
of values of ~3 considered in Theorem 1.1, the generalized SK model can
be understood with the accuracy that is achieved in [T2] for the standard
SK model; but we did not see motivations to undertake such a large scale

project.

The fundamental tool for the present paper is the cavity method, and
we explain it now. Consider an independent sequence of i.i. d. N (0,1 )
variables, that is independent of the variables (gij)ijN. If we write g2, N+ 1 =

gi, the collection is independent i.i.d. We will denote by ( . )’
Gibbs’ measure for the (N + 1) spins system, where ~3 is replaced by ~3’ =

Consider a function f on E~+1. We make the convention to
write a configuration in EN+1 as (~, 9), where ~ E E B. We then

have the algebraic identity

where Z = Av(£(B, Q)) and

In (2.12), Av means that B is integrated with respect to u (and of course a
is integrated for Gibbs measure). Once one understands the notation, (2.12)



is obvious. Its purpose is to relate ( . ) and ( . )’ so that the information
on ( . ) can be transferred to ( . )’, allowing induction upon N. In the
previous papers where we have used formulas such as (2.12), after stating
the formula, we say "the reader will check extensions of this formulas to the
case where one replaces EN by a power and G N by its power (replicas)".
In the present case, there is no need to appeal to the reader’s good will,
because replicas of a generalized SK model are themselves generalized SK
models with a larger d, replacing the space and  by a power of itself.

3. System in a pure state

The aim of this section is to prove that if L~3d  1, then lim CN = 0.

It is possible that this could be proved by the method af [F-Z], Theorem A
(2), but since not all the details are provided there, it is not immediately
clear whether these authors obtain the correct dependence ~3d  1. In the
different normalization they use this is equvalent to the fact that in their
Theorem A (2) "{3 small enough" means small enough independently of d.
In any case, it should be useful to the reader to see an argument in the
spirit of the rest of our approach, argument that we present now.

What makes the problem challenging is that before we start we do not
know anything about Gibbs’ measure. Yet we will be able to make (with
foresight) a estimate of the left hand side of (2.12). We set

There of course = 0(r) . ~ B(~) = ~ (9, o~i)2. Even though, as
iN

mentioned at the end of the previous section, replicas of a generalized
SK model can themselves be viewed as generalized SK models, it will be
convenient to consider them directly. We will consider a function f =
f (~1, a.2, ~s, 8i, 92, 831, where cr~ E EN,Oi E B, and of course a quantity
such as

Av(f)
means that we integrate ~2, cr3 for Gibbs’ measure and 81, 82, 93 for p.

PROPOSITION 3.1.2014 1 we have



There, as well as in the rest of the paper, L denotes a number, not

necessarily the same at each occurrence. The meaning of this result is that
modulo a reasonable error term, we can replace in the numerator ~(8, ~)
by that has a much simpler dependence upon g.

Proof. - For 0  u  1, we consider

It is good to observe that E9£(u) does not depend upon u, where Eg denotes
integration in g only. Also, the left-hand side of (3.3) is so that

to prove (3.3) it suffices to prove that for each 0  u  1 we have

we will integrate by parts. If g is N(0,1) and h is a smooth function, then

Thus, if are i.Ld. N(0,1) and F is a smooth function on then



where aF/ag2 denotes the partial derivative of F with respect to the ith
variable and where g = We will use the functions

When computing

one sees that the contributions of the terms I cancel out with the contri-
butions of W2. This is because is independent of u. Using
replicas to write the contributions of the terms II, we then get that

We recall that, by Jensen’s inequality, we have Z > exp where
a is the barycenter of ~c. Thus

We first take expectation in g, using that (~B(~) ~~2  dN for 0 E S, a E ~5~,
to get



We now use Cauchy-Schwarz,

and we observe that

where the factor d arises from the fact that 0~ ~ are of norm B/d. D

To prove that lim C~ = 0, it seems necessary to consider another

quantity

This quantity is of a different nature than CN. Saying that DN is small
implies is essentially independent of r, a very precious infor-
mation in itself, since it allows to go one step beyond Proposition 3.1, as
the following shows.

PROPOSITION 3.2. - 1, we have

Proof. - Using Proposition 3.1, it suffices to bound

We consider the function



so that (3.20) is and to prove (3.19) we bound cp’(u) for each
u. We have

This is then bound by simple estimates, such as those previously used to
bound the right-hand side of (3.14). . D

Comment. Of course one can merge the proofs of Propositions 3.1 and
3.2, but we found it more clear not to do so.

PROPOSITION 3.3. - If (3d fi l, we have

In that statement, CN+1 and DN+1 are computed for the (N + 1) spin
system at inverse temperature /3~ = + I/TV. Iteration of the relations
(3.21) to (3.22) yields that if  i, then lim CN = 0 = lim D (which

N-.oo 

was the main objective of this section).

Proof.- Setting CN (r, y) = E((~,x(6~) ~ y(Q3))2), and using symmetry
between coordinates, we see that

Using this for N + 1 rather than N, and appealing to (2.13) we get

There, 6~ = 81 - 82, and Av means integration over B1, 82, 83. Consider



We observe that

Using (3.19) and the essential fact that ( f ) = 0 we get (using Cauchy-
Schwarz) that

Taking the supremum over x, y yields (3.21).

The proof of (3.22) is similar; the function corresponding to (3.25) is

4. Replica-Symmetric solution

In this section we complete the proof of Theorem 1.1. To simplify nota-
tion we will denote by o( 1 ) quantities that go to zero as N - oo, and we
will not attempt to prove rates of convergence.

Assuming that remain bounded as N --~ oo, we see from (3.3)
that 

_ ,

and of course the right hand side is more manageable than the left-hand
side. Still, it involves Z in the denominator. We first show that we can

simplify (4.1) into

Using the relation

for Z = and the bounds Z,Z > exp a(b) of last section, it
suffices to show that



a straight computation based upon the fact that CN, DN - 0, and using
replicas to transform products of brackets into single brackets. Of course in
(4.1 ) we can replace 3 by any other number.

We will now show that for x, y in JRd, the quantities

are essentially independent of the disorder. In a second stage we will prove
the relations (2.9), (2.10), and this will complete the proof of Theorem 1.1.

We will consider the two quantities

Of course Var refers to the variance relative to the variables We
will prove that AN, BN - 0 by arguments of the same spirit than those of
Section 3. We will prove the following.

PROPOSITION 4.1.2014 1, then

This will prove that AN, BN - 0 if 1. We write



so that using this for N + 1 rather than N and using symmetry between
the spins and (2.12), (4.2)

because Av means integration of (8e).~~4 with respect to ~c®4. In a similar
(but easier) manner we have

where Eg denotes integration in g only.

Thus, from (4.10) we get

VarUVarV + 0(1) ~ + 0(1). (4.12)

To prove (4.5) we are reduced to prove that

To prove this, we will show that



where V is an independent copy of V, that is corresponding to an inde-
pendent choice (9’Z j of the disorder. Objects related to the disorder
(Oij) will be denoted with a N. For 0 ~ u x 1, we consider

and we consider

so that the left hand side (4.14) is

and it suffices to prove that

The proof of (4.16) is a bit tedious; the computation of p’ requires inte-
gration by parts. Only crude bounds are needed, such as

The proof of (4.6) is similar. D

Combining (4.2) and Proposition 4.1, we see that we can improve (4.2)
into



We will now prove that

To prove (4.18), we compare (4.10) and (4.9), in which using (4.17) rather
than (4.2), we can now replace £1 by The proof of (4.19) is similar.

To prove that (QN, RN) converges to the solution (Q, R) of (2.9), (2.10)
it suffices to show that for  1, these equations have a unique solu-
tion. To do this, if we define a distance on the quadratic forms on Rd by

sup y) -Q~(x, y)~ one shows that if T(Q, R), U(Q, R)
M,M=i

denote the left hand sides of (2.9), (2.10) respectively, we have

The proof of (4.20), that can be done "moving along a path from (Q, R)
to (Q’, R’)" as in the previous arguments require no new ideas so is better
left to the reader.

5. Uniform measure on S

We set p = We will prove the following.

THEOREM 5.1. - There exists L  oo such that, 1 then for any
value of d, -

where Z is the partition function given by



Moreover, if 0  u  1, there is a number K(d) independent of N such
that, if N is large enough

where are the components of 03C3i in = 1 if s = t, bs,t = 0 if
s ~ t, and

It is a simple matter to deduce (5.1) from (5.3), (5.4) (by integration by
parts of ~ ~03B2 E log ZN) but it is useful to state (5.1) right away, because this
makes apparent the main difficulty: The quantity (5.1) is very much smaller
than 

,

that is of order {32d2 (rather than {32d) for ~3d » 1. This difficulty does not
exist in the case of d = 1. It will be a highly non trivial task to find the
correct upper bound for E log ZN. The first step of the proof will consist in
finding lower bounds for ZN, which is much easier.

LEMME 5.2. Consider numbers (ri)i,N . If 03A3iN r4i  N/2, then for5 . 2. - Consider numbers (rj )jj N . If 03A3iN r/ x N/2, then for

where 03A3 means summation over all choices of e = (ej) ~i = ±1.
E

Comment. - 1) In this lemma, the condition 03A3 r4  N/2 can be re-
iN

placed by r4  qN for any 03B3  1 (with a different L in (5.6)).

2) The lemma does not say that with high probability we have



for every choice of ri with E N/2. If this property was true (I suspect
in

this is not the case) (5.1) would be much easier to prove.

Proof. - The proof follows from a straightforward adaptation of the case
where all ri are equal, that is done in [Tl], (1.8). The key point is that

remains bounded (by as E N/2, an elementary fact shown e.g.
i~N

in [T2].

PROPOSITION 5.3. - 1 and t > 0 we have for all u > 0 that

Comment. It could in fact be shown that the factor 1 /d2 can be re-
moved in the exponent, but we will not need this.

Proof. - Throughout the rest of the paper, we denote by the

components of (1i E ]Rd. Using the symmetries of p, we have

There, the summations are over e ranging over ~ -1,1 ~ ~ . The reason
why lower bounds on ZN are much easier than upper bounds is that to get
a lower bound, it suffices to show that for enough choices of cr, is not

too small. (On the other hand, showing that for many values of ~, 
is not too large does not provide an upper bound for ZN.) Given a, we
know, with probability close to one, how to estimate the product in (5.9),
so that by Fubini theorem, with probability close to one, we know how to
estimate this product for most (but not all) values of 03C3 (see the comment



after Lemma 5.1). More specifically, using Jensen’s inequality, and since
(also by Jensen’s inequality) we have 1, we get from (5.8) that

The law of large numbers shows (since 03C34(s)d (03C3) x L) that for 03B2 
~30, we have ~,(A) ~ 1/2. By (5.9) we have

Consider the event Q(a, t) given by

Then by Lemma 5.2 we have P(S2(~,u)) ~ 1 - whenever

By Fubini Theorem the event ({03C3 E A; S2(Q, u) occurs}) 1 4 has prob-
ability  1 - 2dexp(-u2/2). Now, ifO(u,u) occurs, by (5.12),

using the inequality x2 > 2Nx - N2 for x = x( s) ~i ( s ) and since
E x(s) = Nd. The result follows. D 

’

sxd

We now turn to the hard part of the proof, the search of upper bounds
for log ZN. . The main idea is that the discrepancy between E log ZN and
log EZN come from the big influence of a few configurations ~ on EZN. .
Once these are removed (and bounded by other means) we can control ZN
by EZN . .

Even though this cannot be apparent at this stage, the central fact seems
to be the following.



PROPOSITION 5.4. - If M is large enough the following occurs. Con-
sider for i  N a number r2, 0  ri  d, the set ,S‘Z = rjs, and denote by 
the uniform probability measure on S2. Assume that 1. . Consider the
set

Then for any subset B of A,

where [L = pi Q9 ... Q9 .

Comment. This statement is better understood when ri = d for each

i x N, in which case the last term of (5.14) is (This situation
is the only one where we will use a subset B ~ ~4). .

At some point in the proof of Proposition 5.4, we will have to use the
fact that the uniform measure  on S has some special properties. These
will be used crucially in several occasions, so we spell out and prove them
first.

PROPOSITION 5.5. - There exists a number L (independent of d), with
the following properties.

If the numbers (a8)8d satisf y 1 /8, then

If the numbers (as,t)s,td satisfy ~  1/4 and as,t = at,s, then



If moreover ~ as,s = 0 then
sd

Proof. - We first observe that (5.17) follows from (5.16) by diagonaliza-
tion of the symmetric matrix (as,t) in an orthonormal basis; and (5.18) fol-
lows from (5.15), observing that E a9(a2(s)-1) = E if E as = 0.

sd s~d s~d

To prove (5.15), we will prove as an intermediate step that

provided 1/4. We show first that this implies (5.15), that is, that the
first factor L on the right of (5.19) can be removed. If as  1/8 for each
s  d, then X = E 1) satisfies

sd

s~a

Since 24X4/4!  exp2X, this implies  X4d   L exp L 03A3 a;. This holds
sd

under the condition 1 /8; so homogeneity shows that 
by reducing this to the case = 1 /64. Finally, since f X d  = 0,

sd sxd
and - 1 - ~ ~ we have

provided 1/64. Thus (5.21) proves (5.15) in that case, while if
sd

1/64, (5.15) follows from (5.19).
sd

To prove (5.19), we will proceed by comparison with Gaussian r.v. If
(h(s) )sd are i.i.d. N(o,1), we have



since (1 - 2x)-1/2  expx + Lx2 for x  1/4. To relate this to (5.19), we
recall that (h(1), ~ - ~ , h(d)) is distributed like (d-1 E h2(s))1/2a, where 7 is

sSd

uniform over S and independent of ~(1),’ " , , h(d); moreover,

increases with r by Holder’s inequality; and thus

which, together with (5.22) and the fact P(~; h2(s) ~ d) ~ 1/L finish the
sd

proof of (5.19) and hence of (5.15). The proof of (5.16) is entirely similar.

D

Proof of Proposition 5.4. - We have to bound

where to lighten notation we write a(t) = ~ Thus it
2N

suffices to bound the quantity

We use the identity x2 = 2ax - a2 + (x - a)2 for a = rf, r =
~"~N



rs = -~!!~(~!~ = ~ E to obtain, since = da that
sxd

Thus we have to bound

Using Cauchy-Schwarz, we have

and to finish the proof we have to show that

Considering i.i.d N(0, 1) r.v we have

An essential point is that we will not need to take expectation over all
the values of gs,t, but only those that realize the following event

We are going to show that



The key fact is that the definition (5.13) of A implies that over the
domain of integration in (5.28) we have

The tool to prove (5.29) is the following elementary fact. If are

i.i.d. N(o,1), then, for

([T1], Lemma 7.3). We apply this lemma for m = 1 to each gs,s, and then
to the family (gs,t ) s t with y = 

The contributions to the right-hand side of (5.28) of the event C~ are
then bounded by (d + from which (5.29) follows.

Consider

(Note that the integral is now over the whole space.) We will show that

so that /?o

which proves (5.27). Since in (5.31) the integral is over all the values of a,
we have



Going back to S with the change of variable ~ ---~ we see that we
have to bound

where the coefficients as, as,t satisfy

so it suffices to use Cauchy-Schwarz and Proposition 5.5 to conclude. D

LEMME 5.6. - If ri = d for each i, A is given by (5.1 ~), and

Proof. - Inspection of the proof of Proposition 5.4 shows that we have
proved that for a certain /?o? we have

from which (5.36) follows by Chebishev inequality. Q

Comparison of (5.36), (5.14) shows that we have succeeded in controlling
the configurations in A. It remains to control the others.

LEMME 5.7. - If 1, , consider

Then, with probability ~ 1 - exp(-N/L) we have



Proof. - It suffices to prove (5.39) when one replaces A’ by

We observe that

where u is the largest eigenvalue of the matrix and where we define

gj, = gji if i > j. Moreover there is a set C with P(C) > 1- exp -N/L and
w  L0N on C. Thus

We can now apply (5.14) (with d - k rather than d and r; = d - E cr?(5))
sk

to obtain

For a in Ak, we have £ ~03C3(s)~2  kN. Now, if r > kN, we have Nd - r x
sxk

N(d - k) so that

Thus, all we have to prove is that, for L,Q  1 we have



To do this, we observe that by (5.15) we have (for ~t~ ~ 1/8)

so that by Chebishev inequality,

by optimization over t; from which (5.40) follows by Holder’s inequality
using (5.41 ) again. D

Proof of Theorem 5.1. 2014 We consider the set

and, for 0 ~ u ~ 1, the set B(u) given by (5.35).

It follows from Proposition 5.4 that

We use Lemma 5.6 to control fL(B(u)), and Lemma 5.7 to show that ~ =
A1BA can be added to the domain of integration; we then see that by Chebi-
shev inequality we have

A crucial ingredient of the proof is that we can improve (5.43) by replac-
ing ~4i n B(u) by B(u). To see this, given an orthonormal basis W let
us consider the sets Bw(u) obtained as Al and B(u) when the com-
ponents of ~ri in the canonical basis are replaced by their components
in the basis W. . Then (5.43) holds when one replaces A 1 by 
by Bw(u). The matrices = ( N E = ( N~(s) 

i~N
relate by the same change of basis, so that Bw (u) = B(u). Moreover, for
any u we can find a basis that diagonalizes the symmetric matrix D(a). .
It follows that we can find a finite set of orthonormal bases of (with a



cardinality independent of N) such that for each a, we can find one basis
W in this collection with a E Thus we have proved that

the improvement of (5.43) that was promised earlier.

Now, by (5.7),

and comparing with (5.44) we get

from which (5.3) follows.

Using (5.42), (5.43), we see that for u  1 we have

from which (5.1) follows easily.

It remains to prove (5.4). The proof is rather similar to that of (5.3).
Using a suitable coordinate system in we reduce the proof of (5.4) to
the case where a, Q’ moreover satisfy

Use of Lemma 5.8 shows that we can moreover assume

Following the pattern of Proposition 3.5, we have to show that if 1 /L
for s x d, then

which is proved in Proposition 5.6.



6. Perturbation of uniform measure on 5i

The proof of Theorem 1.3 faces serious obstacles. When using the cavity
method, we face quantities such as ,Q2 ~ ~ 9 (~ ) ( ~ 2 /N in exponents, that can
be as large as {32d2 » 1, and these are very difficult to control. Also, Z
will now be of order exp ~32d2, and this is very large. The lower bounds on
Z obtained using Jensen’s inequality are now ineffective, and much more
work will be required to control Z from below. The proof of Theorem 1.3 is
much easier if, rather than asking only that 1 /L, where L does not
depend upon d, we require, 1/Ld2. On the other hand, as the
prime objective of the present paper is to gain a better understanding of the
cavity method, we have made the effort to reach the strongest statement we
could.

We consider a large constant M, that will be determined later, and is
currently better considered as a parameter. We consider a function m on S,
and the measure v on S of density 1 + m with respect to J.t. We now denote
by G Gibbs’ measure with Hamiltonian (1.8), when SN is provided with the
measure v = while Go denotes Gibbs’ measure when SN is provided
with Ji (so it corresponds to m = 0).

PROPOSITION 6. I. - If M is large enough and 1 /M, then

Comment. - The point is that a quantity such as ~ (a~(s) ~ Q’(t)/N)2
s,txd

can be as large as d2; The content of (6.2) is that it is in practice not larger
than 1.

Proof. - If f is any function on SN, we have

and thus for any set A in 

so that (6.1) follows from (5.3) for u = 1 if M is large enough. Similarly,
(6.2) follows from (5.4). D



We fix M such that (6.1), (6.2) hold, and we now turn towards the
problem of finding lower bounds for

where now average means integration of 0 with respect to v.

We will think to Z as a function of g, the disorder relative to (’) (that
is the r.v. N) being fixed. As should be obvious later, events of
exponentially small probability are irrelevant, so using Proposition 6.1 we
will assume in our estimates that

PROPOSITION 6.2. - Under (6.3), (6.4) we have

Proo f. We will prove that, if u > 0, then

of which (6.5) is an immediate consequence. The proof of (6.6) builds upon
the ideas of Section 2], and the reader might like to read first this
simpler version of the same argument.

We view Z as a function Z(g) of g = JRN, where is endowed

with the canonical gaussian measure ~yN . The key to (6.6) is the following.

LEMME 6.3. - There exists a subset A of RN with 03B3N(A) > 1/ L satis-
fying the following properties

where in (6.8) (~~’ is the Gibbs measure on as in (2.12), and where
((9, ~2))’ is the integral for this measure of the map (~1, ~ ~ ~ aN, 9) - (8, ,

the dot product of o and ai in RN.



We will prove Lemma 6.3 later, and we prove (6.6) now. For g in A, u
in JRN, we write

by definition of (’/. Now, by Jensen’s inequality

where we use Cauchy-Schwarz and (6.8) in the last inequality. Thus, using
(6.7), (6.9) we get, for g E A that

It follows that

where B is the euclidean unit ball of]RN. Thus (6.6) follows from the Gaus-
sian isoperimetric inequality (as in [T1]). .

Proof of Lemma 6. 3. - We compute first

First,

because ~ 82 (s) = d on the support of v.
sxd



Thus

where = ~ -~,i. We note that = 0; whenever 

1, it is proved in Proposition 5.6 that .A~o(Z~(~)~)~)~ ~ ~~ where ~o
~,t

refers to integration in /~. This implies ~(~~)~)~,~ ~ L, because for
~

any positive function on 9 we have 2Av0f if M  1/4. We thus have
shown that (provided /? ~ 1)

The next step is to find an upper bound for EgZ2. We have, using
replicas

where Av means integration of 0, ()’ for v and ( . ) means integration of
cr, for G. As in (6.9), we see that the exponent is

Thus, by Holder’s inequality applied to Av,



We appeal to (5.15), (5.16) (that remains true when averaging for v rather
than for and we get, using (6.3) and (6.4),

Now, combining (6.11) and (6.13), we obtain

This means that we have found a subset A1 of RN such that (6.7) holds
for and 71‘’(A1) ~ 1/L. The set A of Lemma 6.3 will be a subset of Al.

We observe that, using replicas, we have

To complete the proof of Lemma 6.3 it suffices to prove that

Indeed, the set

satisfies ~(~2) ~ 1- L/L’ by Chebychev inequality, so -yN {A1 n A2 ) > 1 /L
for L’ large enough; and, on A = ~4i n A2, we bound U from above and Z
from below, so that (6.15) implies (6.8). To prove (6.16), we compute Eg U
as 

_

where as,t, as,t, as,t are given by (6.12). To obtain (6.16), we simply use
Holder’s inequality on Av as in the proof (6.13). This proves
Lemma 6.3. D

We now start a series of lemmas that will culminate in the proof "that the
system is in a pure state" . These lemmas perform the necessary adaptation
of the methods of Section 3.



The central quantity will be

where &#x26;(8) = cr~(~) - u2(s). The vanishing of this quantity will express
that the system is in a pure state.

Our next result is an adaptation of Proposition 3.1, of which we keep
the notation (except for CN).

PROPOSITION 6.4.- 1/ L, then we have

Comment. - 1) We have gained a crucial factor d compared to (3.3).

2) It is essential to have ((Avf4)i/2) rather than in the

bounds.

Proof. - We consider the function p(u) as in the proof of Proposition
3.1, and we will show that for 0 ~ u  1, ~cp’(u)~ I is bounded by the right-
hand side of (6.18); cp’(u) is given by (3.14). Thus, using Cauchy-Schwarz
in Eg

To prove (6.18), using Proposition 6.2, it is enough to prove that if

We will use replicas to write Te as a single average. Since in Tl we have
an order 4 replica, we need an order 8 replica. To simplify notation, we use



the symbol A to mean that replicas of order .~  4 are replaced by replicas
of order f + 4. Thus

To prove (6.20) we will prove the following

Using (6.21), (6.22) and Holder’s inequality for Av, we get that

Thus, by (6.23) and independence

using Cauchy Schwarz. To prove (6.20), it suflices that E~U2~ 1~2  CN 2;
but in fact using Jensen’s inequality we have CN . .

We now prove (6.21 ) . We have

We use as before that



To prove (6.21), we simply use Holder’s inequality for Av, and we use
Proposition 5.5, and (6.3), (6.4) to control quantities such as .

s,t

ul(t))2, etc. It remains only to prove (6.22); but this is weaker than Proposi-
tion 5.5. 0

We now consider the quantity

PROPOSITION 6.5. - 1~L, we have

Proof. - The method to gain a factor d comparing to (3.19) is similar

(but simpler) to what we did in Proposition 6.4, so we will simply explain
the new feature, the occurrence of DN. It occurs through the following
inequality (that corresponds to (6.22))

and the fact that

PROPOSITION 6.6. - 1/L, we have

Proof. We will prove that



To prove (6.29), the formula that corresponds to (3.24) is now

Since ( f) = 0, (6.26) shows that

so that (6.29) follows from the fact that

(of the same nature than (6.22)). To prove (6.30), one proceeds similarly,
except that now

As in Section 4, one shows that (4.2) holds.

We consider the parameters

and we will prove the following.

PROPOSITION 6.7. - 1 ~L, then we have



Proof. - We will prove that

To prove (6.35), we write

The argument is a bit more delicate than the one of Proposition 4.1. We
write

so that, by symmetry among the sites,

using (4.2). Next, we write

and where the " indicates an independent realization of the disorder. Thus



(we use here that = 0). Thus from (6.37) we have

To prove (6.35), we show that

To prove (6.38) we write

and we use the fact that  L ~ .

s,t s,t 
’

To prove (6.39), we consider ~o(u, B) as in (4.15), and

To prove (6.39), one has to show that for 0 ~ u x 1,

that requires a few lines of computation, but no imagination. The proof of
(6.36) is entirely similar.

To prove that the equations (2.9), (2.10) have a unique solution, we prove
a result similar to (4.20) without the factor d2, using now the distance

where (es ) s~d is an orthonormal basis of 
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