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Singular foliations and differential p-forms(*)

AIRTON S. DE MEDEIROS (1)

e-mail: airton@impa.br

RÉSUMÉ. 2014 Nous introduisons la notion de p-formes différentielles inte-
grables afin d’etudier la scructure des feuilletages singuliers de codimen-
sion p. Nous commengons cette etude dans ce papier en presentant quelques
resultats nouveaux.

ABSTRACT. - We introduce the integrable differential p-forms in order
to present an adequate analytic object to study the structure of the codi-
mension p singular foliations, and we do start this study throughout the
results established in the paper.

0. Introduction

The ideas developed in this article were originally motivated by the study
of the structural stability of integrable differential I-forms (see [1] and [5]). It
was very surprising to us to find out that the structural stability of integrable
systems of p 1-forms, for p > 1, seemed to be a problem of a completely
different nature: The singular foliations associated to the structurally stable
systems followed an entirely unusual pattern compared to those associated
to a single integrable 1-form. Indeed, take for instance p = n -1 > 1. Then,
locally, the singular set of such a system (the points where the forms are
linearly dependent) is generically a submanifold of codimension two (see
Lemma 1. 2 .1 ) . In particular, the singular foliation determined by the orbits
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of a vector field possessing a simple singularity never appears in association
with a stable integrable system, contrasting drastically with the case p = 1.

This apparent pathology, seen from another point of view, does actually
tell us that integrable systems of 1-forms are not the adequate objects to
describe the "natural" singular foliations at large. For that reason we were
led to introduce the concept of an integrable p-form (Definition 1.2.1 ) . The
first convincing evidence that the integrable p-forms were in fact the natural
universe from where the integrable 1-forms were taken, was the confirma-
tion that the "Fundamental Lemma for Integrable I-forms" did actually
generalize for integrable p-forms (Proposition 1.3.1 ) . Some other evidences
appear along this article (e.g. Remark 1.3.1 and Proposition 4.1).

For conceptual reasons we have introduced the LDS p-forms (Defini-
tion 1.2.1 ) . This makes more transparent the algebraic, and the analytic,
characters inherent to the various problems under consideration.

It is worth mentioning that there exist singular codimension p plane
fields (Remark 3.2.2) which cannot be defined, locally, neither by a system
of p 1-forms nor by a set of n - p vector fields.

The uniform singular foliations (Definition 1.3.1) arise by following the
natural course of the subject. The relation between the local structure of
such foliations and the intrinsic properties of their defining p-forms turns
out to be our main concern in the sequel.

In Theorem A we describe completely the foliations .~’ induced by linear
integrable p-forms on JI{n (K = R,C): Roughly speaking, either ,~’ is the

product of the orbits of a linear vector field on by a complementary
~’ admits a very simple set of p first integrals, and in this case

the foliation is obtained by slicing the level surfaces of a quadratic function
in (one of the p first integrals) by parallel (the leaves of
the regular foliation defined by the remaining first integrals). In Corollary
3.2.1 we show that a completely analogous description holds locally, for
foliations defined by a holomorphic p-form, around a singularity where the
linear part of the form has a singular set of codimension greater than two.
This corollary is basically a consequence of a more general result (Theorem
C) that characterizes locally, among the holomorphic uniform foliations with
singular set of codimension greater than two, those possessing the simple
structures described above, around a singularity.

Finally, in §4 we discuss the extension to the real field of the results
we have established before concerning holomorphic LDS, and integrable,
p-forms.



1. Preliminaries

1.1. Settling the notation

Let M be a differentiable manifold (real or complex). We shall denote
by (resp. X(M)) the set of differential p-forms (resp. vector fields)
on M. If N C M is a submanifold and i: N -~ M is the inclusion map we
shall refer to i*w (the pullback of w E A~(M) under i) as the restriction of
w to N, normally denoted by w N. If X E X(M) and N is X-invariant
then, N has obviously an analogous meaning.

The class of differentiability of these objects (deliberately omitted in the
notation) will be supposed to be in accordance with the context where they
appear, which will be made precise in the text in that very occasion.

When M is a real manifold we shall denote by C’’ ( M ) ; r E Z+ 
(resp. A(M)) the ring of Cr real functions (resp. real analytic functions)
in M. In the case M is complex we shall denote by O(M) the ring of
holomorphic functions in M.

If M turns out to be an open subset U C K = R, C then, X(U) is
a free module generated by the canonical basis {ei,..., , en ~ of Given
Xi,..., Xm E X(U) we shall denote by Z(X 1, ... Xm) the submodule of
X(U) generated by the ; i = 1,..., m.

Similarly, is a free module generated by the dual basis ~dxl, ... ,

dxn} of and for any p > l, AP(U) is generated by the exterior prod-
ucts dxi1 ^...^dxip , 1  i1  ...  ip  n. Now, if al, ... am E AI (U) we
shall denote by , ... am) the submodule of generated by these
elements. More generally, ... , am) will denote the submodule of 
generated by the exterior products aZl A ... A aip; ; 
When it is clear from the context that w is a p-form we write simply
w E ~(al, ... am) to mean that w E am).

In order to simplify the reading we shall adopt the following multi-index
notation:

Given the ordered set Sn = {1,2,..., , n ~, a multi-index I of length I ~ _
m is any ordered subset of Sn withm elements. The ordered complementary
set of I in Sn will be denoted by I.

If we are given differential forms ai; i E Sn and a multi-index I we set
aI = ail A ... A 



Similarly we introduce the following notation for the interior product of
the vector fields Xi; i ~ I and the differential form w, i(Xi1)i(Xi2) ...

- 
... , 

-_- Z(XI )W.

When ~ ( == ~ - 1 then, I = for some n. This justifies the
following very useful notation aI = a 1 n ... n a~ = a~ specifying the
index that is deleted in the product. Analogously, for the interior product,
we write = i(Xl, ... , , X~, ... , Xn)w = 

Finally, we recall that a singularity of a differential form w (resp. a vector
field X) is any point x E M where it vanishes. The set of all singular points
will be denoted by Sing(w) (resp. Sing(X)).

When 03C9 (resp. X) is analytic we shall write codim(w) (resp. codim(X))
to refer to the codimension of the analytic subset (resp. Sing(X)). .

1.2. The basic definitions and some elementary results

Accordingly as pointed out in the introduction, the integrable systems of p
1-forms, p > 1, have shown to be insufhcient to generalize adequately some

phenomena concerning the single integrable I-forms, in the sense specified
there. The main argument presented to justify this assertion, is an immedi-
ate consequence of the following

LEMMA 1.2.1.2014 Let al, ... ap E A1(M) and xo E Sing(03B11 n ... n ap) .
Then, there exist a neighborhood U(xo) C M and ixl, ... , ap E l~l (U), arbi-

trarily close to a1, ... , ap on U, such that xo E S = Sing( Õ1 n ... n ar) and
S is a submanifold of codimension n - p -f-1 in some neighborhood of xo.

Proof. By taking into account its local character we may assume that
the ai are restricted to some compact neighborhood U of Xo E 

By reordering the indexes we may suppose that = n ... n

03B1q(x0) ~ 0 (0  q  p) and that n = 0 for j = q + 1, ... , p.
For q = 0 we set r~ = 1. Now let a~q+ 1, ... E be such that

n n ... n ~p_1 ~ 0. Given £ > 0, define a2 for i = 1, ... , p - 1,
by: a2 = cxZ if i  q and i = Gi + otherwise. It follows that (x0) =

~x 1 (xo) n ... n (xo) ~ 0 and that l~ ap(xo) = 0. Consequently,
0 in some neighborhood V(xo) C U and therefore the ai define a

subbundle ~ of the cotangent bundle T * (V ) c T * ( U) On the other hand,
the set V n Sing(~ A which contains xo , is nothing but the projection
on V of the intersection of £ with the section F of T * U corresponding to
An evident argument on transversality, produces the perturbation ap

of ap on U, with the desired property. 0



Henceforth, throughout this paper, we shall be concerned with differen-
tial p-forms w E whose associate spaces of w(x) (see ~3~)
define a distribution (resp. an integrable distribution) of planes of codimen-
sion p (also referred to as a plane field of codimension p). These forms are
characterized in the following

DEFINITION 1.2.1.- A differential p-form w E AP(M) is said to be lo-
cally decomposable off the singular set (LDS) (resp. integrable) if for ev-
ery ~ E there exist a neighborhood V(x) C M and a sys-
tem (resp. an integrable system) of 1-forms 03B11,...,03B1p E such that

w V=aln...naP.

We shall give below (Propositions 1.2.1 and 1.2.2) some other charac-
terizations of the LDS and the integrable p-forms. A very useful one is given
in terms of the associate system ofw(x) (see and the space
~*(03C9(x)), defined more generally as follows: If ~ is an exterior p-form on a
vector space E then, E*(~) = {a E E* ~ a n r~ = 0}.

PROPOSITION 1.2.1. - The following statements about a p-form w E
are equivalent

(i) w is LDS.

(ii) is either of rank p or zero at each x E M.

(iii) = 0 for any local frame {vl, ... on M and ~I~ = p-1. .

(iv) C £*(c~(x)) for all ~ E M.

(v) T: x ~--~ T~ = Ker(w(x)) is a distribution of planes of codimension p
on MBSing(W).

PROPOSITION 1.2.2. - The statements below about a p-form w E 
are equivalent

(i) w is integrable.

(ii) w is LDS and C (or, equivalently, C

for all x E 

(iii) The distribution T referred to in (v) of Proposition 1.2.1 is inte-

grable.

Remark 1.2.1. - These propositions are in fact elementary exercises in
exterior algebra. Some immediate, but very useful, consequences are:



(i) The interior product of vector fields by LDS forms, is still an LDS
form.

(ii) A closed differential p-form on M is integrable if, and only if, it is
LDS.

(iii) If w is integrable so is dw.

1.3. Singular Foliations and Plane Fields

The more general definition of singular plane fields and foliations would
be the following:

"Let S be a closed subset of the differentiable manifold M. A singular
codimension p plane field T (resp. foliation .~) on M, with singular set S, is
a pair T = (S,T’) (5,.~’’)) where T’ is a codimension

p plane field (resp. foliation) on 

Of course this general definition is doubtlessly too general. Some reg-
ularity around the singular points should be required. For that reason we
shall introduce the

DEFINITION 1.3.1. - A codimension p (singular) plane field T (resp. fo-
liation .~’) on the differentiable manifold M is said to be uniform if there
exists a collection {(Ua, wa)} such that:

(i) U = {!7B} is an open covering of M.

(ii) E is LDS (resp. integrable).

(iii) Whenever V = Ux n there exists a nonvanishing function g
in V such that = g wa ~ V.

(iv) The restriction of the plane field T (resp. the foliation .~’) to each !7~
coincides with the plane field (resp. foliation .~’(c.~a)), induced by 

Remark 1.3.1. - In the holomorphic case this regularity condition is

"ensured" by the sole assumption that Sing(T) is an analytic subset of codi-
mension greater than one. More precisely: Let T be a holomorphic singular
plane field on the manifold M. If codim(Sing(T)) ~ 2 then, there exists a
unique uniform plane field f on M such that T~ = fx for all x E MBSing(T).
The proof of this result is entirely analogous to that of singular foliations
by curves (see [4], Proposition 1.7).



Henceforward we shall be chiefly concerned with the analysis of the lo-
cal structure of singular plane fields and foliations around a singular point.
This leads naturally to the search of normal forms of the LDS and inte-
grable p-forms around a singularity. The first result in this direction is the
Proposition A of [1]. We finish this section with a very simple proof of this
result restated here as

PROPOSITION 1.3.1. Let w E be integrable. Then, for every
x E there exists a local system of coordinates around x such
that w reduces to p -f-1 variables.

Proof Clearly we are done if we can show that w is of constant class
p + 1 on M = MBSing(dw) (see [3], Proposition 3.2).

Now, since dw 7~ 0 on M, it follows from Proposition 1.2.2 (iv) that the
characteristic system of w at any point x E M is precisely 
which has, according to Remark 1.2.1 (iii), the constant dimension p+1. In
other words w has constant class p + 1 on M as desired. D

2. Normal forms of LDS, and integrable, linear p-forms

2.1. A little more notation

Given a vector space E and a subset X C E we shall denote by (X )
the subspace of E spanned by X. . If X = ~vl , ... , vr,.t ~ we write simply
(vl,...,v~~.

When we refer to C it is to be understood that some multi-index
I of length m does exist such that = (e~,..., We shall indicate
this by writing ... , xim) or 

Any p-form w on C may be thought of as a p-form on by
simply considering the form ~r* (w), where ~r: -~ is the projection
associated with the well-defined decomposition = ® We shall
make no distinction between the forms w and 7r*w as far as w has to be
treated as a form on 

Finally, given a multi-index I, we define w ( (dxI ) = w 
by: (w ~ [ (dxI ) ) (x) = i * (w (x) ) where i denotes the inclusion map

Remark. It happens very often, especially along the proofs, that the
signal preceding some terms present in the formulae, does not indeed affect
the conclusions. When this is the case we simply neglect the signal and write
~ before each one of those terms.



2.2. The main result for linear forms

We shall consider LDS (resp. integrable) p-forms in whose coef-
ficients are K-linear functions. Our purpose is to describe completely these
sets of forms, accordingly as precisely stated in

THEOREM A. - Let w be a linear LDS (resp. integrable) p-form on .

Then, there exists a linear change of coordinates such that w reduces to one
of the following normal forms:

(i) 03C9 = a ̂  dX1 A ... A dxp-1 for some linear 1 form a on (resp.
w = df A dX1 A ... A dxp-1 for some quadratic function f in 

(ii) w | (dxl, ... , dxp+1) i.e. w reduces to p + 1 differentials (resp.
w ~ II~P+1 (xl, ... , xr+1 ) i. e. w reduces to p + 1 variables).

Proo f. We shall consider first the case where w is only LD S .

Let and let a1, ... , cxp be as in Definition 1.2.1. Since
w is linear we must have w = where is the derivative of 03C9 at

xo . By computing this derivative we find w = wxo = (ai A ... A =

p

E 03B11 (xo ) n ... n n ... n .

i=i

Now we set ( -1 ) Z -1 _ ~Z , which are linear 1-forms, and observe
that the constant 1-forms are linearly independent once w(zo) ~ 0.

Then, there exist a linear change of coordinates such that w = E 03C0i A dxi.

i=i

On the other hand, we notice that the ~r2 may be chosen to have the
particular form 03C0i = fi dxi + 03C0i , where 7ri E Z(dxp+1, ... and conse-

quently w may be written in the form

where I = {1,... p) and £ is some linear function in 

In particular, for any j ~ I we have = ±7Tj . The condition
p _ 

-

= 0 of Proposition 1.2.1 (iii), implies that 7rj A 03C0i A dxi = 0
~=i

and then, 7rj = 0 Vi, j e I.

If all the TT~ = 0, w is clearly decomposable. For that reason we may
suppose that TTi ~ 0. It follows then, from the equations TTi A 7r~ = 0 and



the lemma of division for 1-forms [2], that we have exactly the following
possibilities:

(a) There exist a constant 1-form 03C3 and linear functions li such that
?CZ = li Q .

(b) There exist constants ci E K such that 03C0i = ci03C01 V i E I. Clearly
cl=l.

In the first case w reduces to p + 1 differentials. In fact 03C9 = f dxI +

cr A dXi and since 03C3 E ... there exists a linear change of
i=1

coordinates such that w E Z’(dxl, ... , dxp+1).

Finally, in case (b), c,~ decomposes for we have

and since the second factor is a constant ( p - I)-form on ,xp), ,
it decomposes. The linear change of coordinates reducing w to the normal
form (i) is evident. This of course finishes the proof of the theorem for LDS
p-forms.

The integrable case actually reduces to closed forms only. In fact, Propo-
sition 1.3.1 furnishes a linear change of coordinates reducing w to p + 1
variables.

Now suppose c,~ = w , dx p+ 1 ) is closed and let p + 1  j  n be

arbitrary. By computing the Lie derivative Le j w we find Le j w = 
= 0. Hence, w is independent of x~ and it follows that w is a form

on ... , xp+1 ) as desired.

Finally, if w = a A dxI is closed, there exist constant 1-forms 03C3i such
p-i

that da A dx2 . This shows that da = d,Q for some linear 1-form
2=1

~3 E Z(dxl, ... , , dxp_ 1 ), consequently a = ~3 + df for some quadratic function
f, and clearly a A dxI = df A dxI. D

An interesting consequence of Theorem A is the following

COROLLARY 2.2.1. - A linear LDS p- form w is decomposable if,
and only if, codimE(w [ E)  2 for every (p + I)-dimensional subspace



Proof - The necessity of the above condition is well known in a much
more general situation (see Lemma 3.1.2).

Conversely, suppose v nondecomposable be such that codimE(03C9 | E)  2
for all (p + I)-dimensional subspace E C ]Kn. It follows from the theorem
that c.~ reduces to a form in Z(dxl, ... Hence, c~ = i(A)dxl ; I =

f i, ... , p + 1}, where the linear vector field A E Z(el, ... , eP+i) and may,
therefore, be regarded as a linear transformation -~ 

On the other hand, cv ~ E = i(A ~ E)da;7 for all (p + I)-dimensional
subspaces E C JI{n that turn out to be the graph of some linear transforma-
tion - and then, by the hypothesis, rank(A ! E) x 2 for
all those subspaces. But this implies that rank(A) x 2 for, by elementary
arguments, there always exists such a subspace E with the property that

A(E) = Im(A). Thus, in a suitable coordinate system, not shufRing 
and E 2’(ei, e2) and (J = c(i(A)dxl n dx2) A dx3 A ... A ,

for some constant c E K. A contradiction. D

3. Holomorphic plane fields and foliations

3.1. Some auxiliary results

The results we present below, yet of a very elementary nature, are fun-
damental tools and will be referred to very often in the sequel.

LEMMA 3.1.1 (B-lemma).- Let U be an open subset ofcn and E

AP(U). . Suppose that

(i) 03C9 is LDS and codim(v) ) 2.

(ii) E*(w) C E*(w), where £*(cv) = {a E A1(U) = 0}. .

Then, there exists g E O(U) such that w = gc~.

Proof - Let x E and write w(x) = al n ... n aP . Then,

by hypothesis (ii), ai A w(x) = 0, once ai E (i(el)cv(x); ~I~ = p - 1) and
E £*(w) (Proposition 1.2.1 (iii)). The division property of the ai

implies the existence of E C such that w(x) = Since g(x) is
unique the result follows from (i) and the Hartogs’ extension theorem. D

Remark 3.1. l. - The condition ~* (c~) C ~* (w) has the following useful
characterization: Let 0 ~ ~ E be LDS and w E Aq(U) be arbitrary.
Then, £*(w) C E*(w) if, and only if, A c~ = 0 for all I such that

~I~ = p - 1 (i.e. C E*(c:~(~)) d~ E U).



LEMMA 3.1.2. - Let w = al n... nap E 11p(U) be such that ~.
Then, n - p + 1. .

Proof - Accordingly as explicitly stated in [6] this result is a conse-

quence of a classical lemma on "bordering determinants" but, unfortunately,
no precise reference to that lemma is pointed out by the author. Anyway,
the result follows immediately from the very proof of Lemma 1.2.1 and the
semicontinuity of the codimension of an analytic subset.

It is worth noticing that the last step carried out in the proof of Lemma
1.2.1 (the perturbation of ap), for this specific purpose, is actually unnec-
essary.

Another proof of this result may be found in [8], Theorem 2. D

3.2. The main result on the local structure of plane fields

It follows from Corollary 2.3.1 that a nondecomposable linear p-form
restricted to a suitable (p + 1 )-dimensional subspace has a singular set of
codimension greater than two. This motivates the investigation of the local
structure of holomorphic LDS p-forms around a singularity where the linear
part satisfies this condition. In Theorem B we treat this problem in a more
general context.

Since we are in fact interested in the local properties of p-forms around
a singularity, it is more adequate to consider henceforth, germs of functions,
p-forms, and vector fields, at the origin of en. These sets of germs will be
respectively denoted by C~(n), and X(n) .

THEOREM B. Let w E Ap(n), p > 2, be LDS and let I = ~l, ... 
and I’ = ~1, ... , p + 1~. . Then,

(i) If codim(i{eI)w) > 3, the plane field T(w) is given by a system
of p 1 forms. More precisely, there exist al, ... , ap_ 1 E 111 (n) such that
w = ao A ai A ... A ap-l, where ao = a2 = dxi + ai for all i E I
and a2 E Z{dx p, ... .

(ii) If codim(w i (dx~~ )) > 3, the plane field T(w) is given by a set
of n - p vector fields. More precisely, there E X(n)
such that w = i(Xo, Xl, ... , Xn_p_1)dxl n ... n dzn, where Xo satisfies
w ~ = 

, Xi = er+i+1 + Xi for i = 1, ... , n - p - 1, , and
X2 E Z(e1, ... , ep+1 ) .



Proof. At the first place we observe that the star of Hodge establishes
a "dual" relation connecting parts (i) and (ii) of the theorem. Namely, w
satisfies the hypothesis in (i) if, and only if, *w satisfies the hypothesis in

(ii). Thus, part (ii) of the theorem reduces trivially to part (i).

Before we proceed to the proof of part (i) we point out that the form ao
referred to in the theorem turns out to be the only 1-form in ... 

such that w = ao A dxI + r~, where = 0.

The proof will be carried out by induction on p > 2.

For p = 2 we have w = ao A dx1 + ?y, as remarked above, and ao = 0

according to Proposition 1.2.1 (iii). Since codim(ao ) > 3 it follows from
the division lemma [2] that ’1] = ao A ~x1 for some 0:1 E and then

w = ao A (dxl + al) as desired.

Now let w E satisfy the hypothesis of the theorem and write

w = w’ A dxp + (D, where w’, w E I(d;p). Clearly w’ _ and therefore

it is LDS (Remark 1.2.1 (i)). Furthermore, w’ satisfies the hypothesis in (i),
for i{eI)w’ = i(e1, ... , ep)w.

Then, by the induction hypothesis, there exist ai = dx2 + ai , i E I, ,
such that w’ = ao A al A ... A 03B1p-1 and ai E ... , dxn ) . Since w’ is
independent of dxp, the a2 do actually lie in Z(dxp+1, ... , dxn).

On the other hand, since = it follows from Propo-
sition 1.2.1 (iii) that n c~ = 0 for all J with J ~ = p - 1. Then,
by Remark 3.1.1, we conclude that ak A w = 0, k = 0,1, ... ,p - 1. Since

... dx p, ... is a local coframe and c~ is independent of dxp, ,
we find that w = 0 A a 1 A... A a?-i for some 2-form 0 E ... , dxn ) .

Finally, the condition 03B10^ = 0 says that 03B10^03B8 = 0, once i (eI =

~ao A 0. The division property of ao assures that 0 = ao A ~3 for some

(3 E Z{dxr+1, ... , dxn) and then, w = ao n al ^ ... n 03B1p-1 n {dxp + ap),
where ap = ~,~, which finishes the proof. 0

Remark 3.2.1. The hypothesis in Theorem B are normalized, in the
sense that any previous change of coordinates is allowed. In particular if
for some germ of a (p + I)-dimensional submanifold i: S’ -> (cn, 0) one
has 3 then, w reduces to normal form (ii). In particular the
existence of transversal embedded planes, which holds for any 1-form ([7],
Theorem 2), is in general false for LDS p-forms if p > 2.

Finally, we close this section with the following



COROLLARY 3.2.1. - Let w E Ap(n) be LDS and cv(0) = 0. Suppose that
the linear part of w at 0 is nondecomposable (resp. codim (Jo (W)) ~
3). Then, w reduces to the normal form (ii) (resp. (i) or (ii)) of Theorem B.

Proof - It is easily seen from Proposition 1.2.1 (iii) that the first nonzero
jet at the origin of an LDS w E AP(n) is as well LDS. Then, in the first
case, it follows from Corollary 2.2.1 that for some (p+ I )-dimensional sub-
space E C en we must have ] E) % 3 and consequently
codimE(03C9 | E)  3. Now the first assertion follows from Remark 3.2.1
above.

By taking into account the "duality" induced by the star of Hodge,
referred to in the beginning of the proof of Theorem B, and by following
the above reasoning we obtain immediately the second assertion. D

Remark 3.2.2. - The normal forms furnished by Theorem B are far from
describing the general local structure of LDS p-forms. In fact, the plane field
induced on C4 by the LDS 2-form w = x3 dx1 ^ dX2 + xi dxl n dx3 + +

x3x4)dx2 n dx3 + x24 dx3 n dx4 + x2 dx2 n dx4 + x3x4)dx1 n dx4 has
an isolated singularity at 0 and, therefore, cannot be of the type described
in the theorem, in virtue of Lemma 3.1.2.

3.3. The main result on the local structure of foliations

In this section we shall basically improve the normal forms furnished by
Theorem B, under the additional hypothesis that w is integrable.

A very important role is played, in the establishment of these normal
forms, by the following elementary results related to the reduction of vari-
ables :

LEMMA 3.3.1. - Let w E Ap(n,) be integrable and codim(w) ~ 2. If X E
is such that i(X)03C9 = 0 then, LX03C9 = hw for some h E O(n). In

particular if X = ek then, w = g(w ~ where g E O(n) and
g(0) = 1.

Proof - Since w is integrable A cL; = 0 V I; ~I~ = p - 1. Conse-
quently, it follows from the hypothesis that n = 0 and then,
by the B-lemma, there exists h E O(n) such that = hw or equiv-
alently Lxw as desired. Clearly the differential equation Lekw = hw
means exactly that w = as stated. O

LEMMA 3.3.2. - Let w E be integrable and ,-~ 0. If X E 
is such that i(X)dcv = 0 then, LX03C9 = 0. In particular if X = ek then,

l.J I 



Proof. - In view of the hypothesis, we deduce from the relations i(el)wn
dcv = 0, that = 0 and then i(el)(i(X)w) = 0 V I, ~I~ = p-I.
In other words = 0. Hence Lxw = 0 and the proof is finished. D

THEOREM C.- Let w E AP(n), p ~ 2, be integrable and let I = {1, ... ,
p-1} andl’={1,...,p+1}. . Then,

(i) 3, there exists a holomorphic change of coordi-
nates such that w = g df n dxi n ... n where f, g E O(n) and g(O) = 1 .

(ii) If codim(03C9 | (dxI’))  3, there exists a holomorphic change of
coordinates such that w = gw ~ ~~+1(~1, ... , where g E O(n) and
g(0) = 1.

Proof. - The hypothesis (i) and (ii) above are exactly the same of The-
orem B. We may therefore assume that w is either of the form (i) or (ii) of
that theorem.

In the case (i) the result is a straightforward consequence of the Theorem
of Frobenius with Singularities [6]. As a matter of fact, w = ao A a1 A ... A

the system {ao, ... , , ap_1} is integrable and 3.

Then, there exists a set { fo, ... , fp_1} of first integrals, such that =

P-i

0, ai =  aij dfj and 0. Hence, w = ao n ... n aP_1 =

det(aij)df0 ̂ ...^ dfP_1. On the other hand, 03B1p-1 E I(dfo ̂ ...^

df~ n ... n = 0, ... , p - 1) and since i(el)al n ... n = tl it

follows that some of the dfo A ... A dfj n ... A does not vanish at the

origin. This makes clear the desired change of coordinates reducing w to the
form w = gdf A dx1 ^ ... A .

In the case (ii) we consider initially the holomorphic change of coordi-
satisfying:

(a) fl o i = i, where i: - ~" is the inclusion map.

(b) fi = e~..

This is attained by conjugating the flows of en and starting from

the common cross section .

Clearly E because of (b), and then by Lemma
3.3.1, there exists gi E O(n) with gl(O) = 1 such that = gl(/i ~

On the other hand we conclude from (a) that (Ii w) ~ en-l = w ~
and since is Xi-invariant for i = 0, ... n - p - 2, the result

follows by an obvious recurrence procedure. D



In order to get further information about the local structure of an inte-
grable p-form it is very useful to look at its exterior derivative. A concrete
example of this situation is furnished by the integrable I-forms which, as
one can see, are completely absent in the results established before. In this
direction we have the following direct consequence of Theorem C (ii) and
Lemma 3.3.2:

COROLLARY 3.3.1.2014 Let w E p > 1, be integrable and suppose
that codim(d03C9 | (dx1,...,dxp+2))  3. Then, 03C9 reduces to the form 03C9 |

Cp+2(x1,... ,xp+2) by means of a holomorphic change of coordinates.

4. Final comments

Firstly, we shall discuss briefly the validity of the results established in
the foregoing sections, in the context of real analytic, and class C~’, p-forms.

At the first place we notice that Theorem B holds, if the hypothesis on
codim(z(e7)o;) in part (i) (resp. codim(w ~ in part (ii)) is replaced by
the requirement that the 1-form i (eI )w (resp. * (w ~ on has
the property of division with respect to 2-forms.

As a matter of fact, the only doubtful point in the proof of Theorem B
would be the reference to Remark 3.1.1. However, it is easily seen that this
remark holds under the sole assumption that w is not a torsion element of

which is readily verified if i(eI)w satisfies the above requirement.

On the other hand, the existence of an R-sequence ( R = .~4, ( U ) 
of length three (see [9] p.234), among the coefficients of i(eI)w, is sufficient
to guarantee the required division property. (This follows at once from the
same arguments utilized in [2]). In particular, a real version of Corollary
3.2.1 is promptly available.

The part (ii) of Theorem C holds, as well, under the same assumptions
described above. In fact, the only suspicious point in its proof would be
the veracity of Lemma 3.3.1, which is, by its turn, a direct consequence of
the B-lemma. And, it is not difficult to show that the B-lemma holds if cv
satisfies the hypothesis under consideration.

Part (i) of Theorem C involves a more delicate question concerning the
existence of first integrals and, as far as we know, there is no general result,
in the real field, analogous to the Theorem of Frobenius with Singularities
of [6]. Clearly, in the analytic case, we may eventually apply Theorem C (i),
by looking at the complexification of w. For example, the integrable version
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of the second assertion in Corollary 3.2.1, for real analytic forms, may be
established by following this procedure.

Finally, we would like to mention that, for holomorphic foliations of the

complex projective space CP(n) , we have the following general result, whose
proof is completely analogous to the classical codimension one case:

PROPOSITION 4.1. Let ,~’ be a singular foliation of CP(n) such that
2, and CP(n) be the canonical projec-

tion. Then, the singular foliation J’ = ~r* (.~) of is given by a single
homogeneous integrable form on 
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