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RÉSUMÉ. 2014 Dans [14], [15], une classe de problemes inverses a ete in-
troduite et etudiee pour des conditions de flux rent rant nul. Le probleme
consiste a determiner explicitement des termes de sources a partir de mo-
ments (en vitesses) de la solution a l’aide de mesures signees adequates.
Nous etendons ces resultats au tore et montrons leur optimalite.

ABSTRACT. - In [14], [15] a class of inverse problems has been introduced
and studied for nonincoming boundary conditions. The problem consists
in determining explicitly the internal source from (velocity) moments of
the solution by means of appropriate signed measures. We extend these
results to the torus and show their optimality.

1. Introduction

There is an important literature devoted to inverse problems in transport
theory. The reader is referred to the reviews [9], [10] by McCormick for a
great deal of references up to 1986 and to [14] Chap. 11 for more recent
works (see also the bibliography of the present paper).
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A new class of inverse problems was considered in [14] Chap. 11 and
the results were partially announced in [15], [16]. The problems consist in
the explicit determination of the "spatial parts" of internal sources from
suitable (velocity) moments of the solution of integro-differential transport
equations for the classical vacuum boundary conditions. Typically, for col-
lisionless transport equations and velocity-independent sources S, results of
the following type are given in [14], [15] :

There exists a class C of bounded Radon measures on the velocity
space V such that for each E C, there exists a measure d~,’ (given ex-
plicitly in terms of d~,) such that the knowledge of the (velocity) moments
of the solution f

determines explicitly the internal source S by the formula

where cN is a constant depending on the dimension N and A denotes the
Laplacian operator. In general, cpl is related to the source S by a compact
operator (of convolution type)

The determination of S amounts to some "deconvolution" procedure. The
kernel of T~ is, in general, weakly singular, i.e. of order

A basic idea is that if the measure dJ..L is chosen appropriatel y, then the
singularity of the kernel of T~ is weakened to

for N > 2 and to

for N = 2. Hence a connection with the fundamental solution of the Lapla-
cian is derived and lies behind this kind of inverse results.
The present paper extends the results above to the N-dimensional torus
by taking full advantage of Fourier Analysis. Moreover, sources with M-
degenerate dependence on velocities can be recovered at the cost of 2M



velocity moments of the solution. We also show how this tool applies to
the determination of the "spatial part" of scattering kernels. Finally, the
various assumptions on the class C (of Radon measures on V) are shown
to be necessary and sufficient for the validity of our inverse results. Useful
remarks on time dependent problems are also given at the end of the article.

We would like to thank the referee for his helpful remarks and sugges-
tions.

2. Inverse problems in one dimension

We first consider the following periodic transport equation in a purely
absorbing medium

where x E (0, 2~r), ~c E (-1, 1).

Let da be a (not necessarily positive) bounded measure on (-l,1) sat-
isfying the following properties

da is invariant by symmetry with respect to zero (Hl)

where dial is the absolute value of the measure da. Let

where dx is the Lebesgue measure on (0,27r) and let

In view of Eq (2.1) and the inverse problem, we assume that

o- E Loo ((-1, i); dial) and dial ess inf a = a* > 0 (H3)

(7 and S(x,.) are even in  d|03B1| a.e. (H4)
S E X. (H5)



It is easy to see that under Assumptions (H3) and (H5), Eq (2.1) has a
unique solution ~ E Wper where

We state now the main result of this section

THEOREM 2.1.- Let (Hl) - (H4) be satisfied and assume that

Then

and satisfies

Before giving the proof, we derive several practical consequences.

COROLLARY 2.1. - Let the source S be of the form S(x, = .

Then the knowledge of 1 and of the two moments of the
i M

solution 03C8 of Eq (2.1) with respect to da and yields the spatial part

of the source : 

Remark 2.1. If the source S is M-degenerate with respect to velocities,
i.e.



then Theorem 2.1 provides us with a linear combination of SJ (1  j  M)

Clearly, if ~ S’~ ( . ) ; ; 1  j  M ~ are known, the determination of ~,5’~ (. ) ; 1 
~  M~ requires more measures da. Thus, we easily obtain the following
result. D

COROLLARY 2.2. Let {d03B1i ; 1  i  M} be a set of M signed
measures satisfying Assumptions (H1), (H2) and let S be a M-degenerate
source, i. e.

satisfying (H,~) and (H2) for each dai (1  i ~ M). Define the moments

Then cpi E H2 ( (0, 2~r~ ) and

where

In particular, if ~,5’~ (. ) ; M~ are known, then ~,S’~ (. ) ; M~
are recovered from the moments ; 1  i  M~ and ; 1  i  M~
provided the matrix is invertible. 0

Remark 2.2. Note that, after recovering ~,S’~ (. ) ; ; M~, the
solution ~ itself is recovered from Eq (2.1 ). Thus, for known ~,5~ (. ) ; 1 ~
j  M~, the solution ~ to Eq (2.1 ) is recovered from 2M (velocity) moments

D

Proof of Theorem 2.1. Note that (i) is a consequence of the existence

theory for Eq (2.1) when we replace by To deal with the second



part of Theorem 2.1., we expand ~ and S into (spatial) Fourier series of
periodic distributions

where (x, ~) E (0,27r) x (-1,1) and where fk, gk E L2 C(-1,1); d~al ).
Observe that Eq (2.1) yields

Let

Then

and by differentiating in the sense of periodic distributions

In view of (Hl) and the eveness of o-(.) and gk(.), it follows that

By noting that (Parseval formula)



it follows that

Hence cp" E L2(0, 2~) by Parseval formula. By the eveness assumptions
(H4)

According to (2.4)

Thus

which finishes the proof. D

Remark 2.3. - We can also deal with inverse problems for transport
equations involving (partially known) collission operators with scattering
kernels of the form

Indeed, consider the transport equation



where dA is a positive measure on [-1, +1]. We assume that ~S~ (. ) ; 1 ~
j ~ M’~ and ~k2 (. ) ; 1 ~ i  M~ are known. One sees that we fail withing
the frame of Corollary 2.2 where the right hand side R(x, ~c) of the equation
is (M + M’)-degenerate with respect to velocities. By introducing suitable
( M + M’ ) signed measures d03B1i (1  i M + M’ ) the knowledge of 2 ( M +
M’) velocity moments of the solution allows the recontruction of the "spatial
part" of the right hand side term, i.e.

We leave the formal statement of this result to the interested reader. Ob-
serve that the right hand side R(x, ~c) being recovered, the solution itself is
recovered (Remark 2.2) so that, if k2 (x, is separable, i.e.

and if {~(.) ; 1 ~ z ~ M} are known, then we recover the terms

and then the "spatial part" of the scattering kernel 1~2 ( . ) ; 1  i  M
satisfies the linear equation

We note that, in the case M = 1, we can recover the cross-section . D

3. Inverse problems in N-dimensions (N ~ 2)

The first part of this section is devoted to isotropic sources. More pre-
cisely, we consider the multidimensional transport equation with periodic
boundary conditions in a purely absorbing medium, where the source is

independent of the velocity

where D is the cube (0, 2~)~’ and V = {v E  1}.



Let = da(p)~dS(w) be a measure on V, where dS is the Lebesgue
measure on (the unit sphere of and where da is a bounded
measure on [0,1) satisfying the following properties

Let S E L2(D; d~) and

Note that if

then Eq (3.1) has a unique solution ’Ø E Wper where

In the sequel, we use the following hypotheses

In view of the statement of our results we define the following function

and the following bounded measure

where dp is the Lebesgue measure on ~0,1) .
Now we state a basic result of this section

THEOREM 3.1. - We assume that (H7) - (H11 ) are satisfied. Let ~ be
the solution of (3.1 ) . Let



Then

where CN = (N - J and where d03B2 is the measure

defined by (3.3). . D

Remark 3.1. - Note that we can recover the source term only for N ~

2 (and 10 03C3(03C1) 03C12 da(p) ~ 0). The same curious phenomenon occurs for

non-incoming boundary conditions (see [14]) and also in the problem of
recovering the collision kernel from the albedo operator on the boundary

(see ~7~). . D

Remark 3.2.- We recall the useful formula (see ~17~) for f E C((-1,1))

Integrating by parts / (1 - rearranging terms and using (i) we

obtain the identity

which will be used in the sequel. D

Proof of Theorem 3.1 for N > 2. As in the proof of Theorem 2.1, we

use (spatial) Fourier series of the periodic distributions ~ and S



where (x, v) E D x V. Eq (3.1) yields

where v = pw, p E [0,1) and w E SN-1. Note that

expands as

According to remark 3.2 we can write

Let

We write pi in the form

We will assume that N > 3 (the proof for N = 3 is easier and is omitted).
An integration by parts yields



Using the identity arctan s + arctan 9 = 2 (s > 0) we get

In view of (H7)

Integrating by parts

in the sense of Stieljes measures gives

Note that, in view of (H7), the last term vanishes.

Let

then

Clearly cpl(x) may be decomposed as follows



Let us consider the first term of (3.11). Since

and, in view of remark 3.2, then

We consider now the second term of (3.11). We note that

Let

Then

Comparing to (3.8) and using remark 3.2



On the other hand

An integration by parts yields

because P(1) = 0 and lim = 0 (in view of (H7)). Thus
p-o p

Comparing to the expression of cpl given just before (3.9) shows that

Finally, one easily checks that

which finishes the proof for N ~ 3.



Proof of Theorem 3.1 for N = 2. 2014 We recall that

which may be decomposed as follows

We have seen, in the proof for ~V > 3, that

Consider now the second term in (3.17)

Consequently, in view of (3.16),

which finishes the proof of Theorem 3.1 for N = 2. D



Remark 3.3. - According to (3.9)

In the proof of Theorem 3.1, we disregarded the second term thanks to
the basic assumption (H7), i.e.

and we showed that the distributional Laplacian of the first term belongs to

j~2 "~~ ~ 0 then, by Parseval identity, the Laplacian of the second~/o P
term does not belong to L~, unless ~, i.e. unless S ~ Thus,
both the J?~ regularity of pi and the possibility to recover S by means of
the Laplacian operator are definitely connected to (H7). Q

We end this section with the treatment of some velocity dependent
sources. More precisely we extend the previous results to a class of de-

generate sources. We start with the following (basic) example

where S(x, v) = S E L2(D), and T E .

Let da be a bounded measure such that T(p)da(p) satisfies the proper-
ties (H7) and (H8). We assume that

T is not identically equal to zero (H12)

and define the following function of bounded variation



and the bounded measure

where A(T) = support (T).

As a consequence of Theorem 3.1 we deduce the following

COROLLARY 3.1. - Let (H9), (H11) and (H12) be satisfied. Let ~ be
the solution of (3.20) and cpl(x) _ 10 da(p) J sN-1 pw)dS(w).

Then

where C7v = (N - 2)~S~’-1~ and where
o P

Proof. - First, it is easy to see that ~(x, v) = 0 when = 0. Let

Then § satisfies the following equation on D x A(T)

Thus



Since the measure T(p)da(p) satisfies (H7) and (H8), then by Theorem 3.1

We discuss now the more general case

where Si E L2(D) and Ti E L2 ((0,1); d~a~) (1 ~ i ~ r). We need the
important technical hypothesis

where A(Ti) = support (Ti). .

Let da be a bounded measure such that Ti(p)da(p) satisfies the prop-
erties (H7) and (H8) for 1 ~ i ~ r. We assume that Ti satisfies (H12). We
define the following functions of bounded variation

and the measure d~3

where is the measure

Then, we have the following

COROLLARY 3.2. - Let (H9), (Hll) and (H12) be satisfied. Let 03C8 be

the solution of (3.20) / da(p) / . Then



where cN,i = ~N - ~1 , ao P

Proof. - Let ~i (1 ~ i ~ r) be the solution of the equation

r

Then = ~ (by uniqueness). Thanks to (H13)
i=1

Thus, by Corollary 3.1,

Thanks to (H13), the last term is nothing else but

Remark 3.4. - Corollary 3.2 shows that, if ~V ~ 2, then the knowledge
of the moments of the solution with respect to the measures da(p) (g) dS(w)
and ~ dS(w) yields a linear combination of Si. Thus, to recover all
Si (1 ~ i ~ r), it is necessary to use more measures. More precisely we have
the following 0

COROLLARY 3.3.- Let be a familly of bounded measures
such that verifies (H7) and (H8). Suppose that (H9), (Hll) -
(H13) are satisfied and that

Then {Si ; 1 ~ i x r} are recovered explicitly, if we know the moments of the
solution with respect to the measures and (1 ~
j ~ r) , where is the measure defined by (3.25). D



Proo f Let

According to Corollary 3.2

where CjN,i = (N - 2)|SN-1| 10 03C3(03C1)Ti(03C1)d03B1j(03C1) 03C12. Thanks to (F14), the

matrix 
i*i, ;r 

is invertible and this ends the proof. D

Remark 3.5. - As in the previous section, it is easy to extend the results
to certain transport equations with collision operators. We do not elaborate
on this point. D

Concluding remark.- The treatment of time dependent problems
is possible by converting them into stationnary ones by means of

Laplace transform. Thus, recovering internal sources or even initial
datum from suitable time-velocity moments follows the ideas developped
here (see [23]). D
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