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Solution with finite energy to a BGK system
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RESUME. - On considere une equation BGK cinetique vectorielle don-
nant la dynamique des gaz isentropique dans la limite de relaxation.
Nous montrons l’existence d’une solution faible satisfaisant une inégalité
d’entropie cinétique, pour toute donnée initiale d’énergie finie.

ABSTRACT. - We consider a vector kinetic BGK equation leading to
isentropic gas dynamics in the relaxation limit. We prove the existence of
a weak solution satisfying a kinetic entropy inequality for any initial data
with finite energy.
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1. Introduction and main results

Relaxation models such as proposed in [6] have proved their efhciency in
building numerical methods for conservation laws that are very easy to code
and have nice properties. General strategies have been proposed in [9], [13],
[1], [3] to build BGK approaches for systems of conservation laws. However,
analysis of such models has mainly be achieved until now only when the
relaxed equation is scalar (see [14]). Here we consider a BGK model for the
one-dimensional system of isentropic gas dynamics

with 0, u(t, x) E R and K > 0, 1  ~y  3. The kinetic model has

been introduced in [3] and can be written

where f = 

and

The kinetic equilibrium x in (1.8) has been introduced in [7] as a generating
function for entropies, and has also been used in the stability analysis of [10].
This function is also involved in [12] for the so called kinetic formulation,
which is different from the BGK equation considered here. Previous results



for scalar equations can be found in [4], 11~ , ~ [17] (see also [5]). The first
existence result for a BGK equation was given in [15] (see also [16]).

The main result of this paper is the existence of a global solution to the
systein (1.2) with initial data

satisfying energy bounds. We recall that the energy for (1.1) is given by

and is a mathematical entropy for (1.1). The corresponding kinetic entropy
for (1.2) is given, for f = ( f o, f 1 ) E D, by

We have the following theorems.

THEOREM 1.1. Assume that f ° E L1(Rx x Ri) satisfies

and

Then there exists a solution f to (1.~)-(1.11) satisfying



THEOREM 1.2. - If (1.17) is not satisfied, we have the same result
except (1.,~4).

To obtain this result, we have to work with the Tychonoff-Schauder
theorem instead of the usual Schauder theorem. The only significant change
is for compactness and will be explain in the corresponding section.

THEOREM 1.3. - The solution f obtained in Theorems 1.1 or 1.2 sat-
isfies

with

as well as each term from the decomposition ~.~7~. Besides, z, ~),~) ~
x R) for any T > 0, R > 0,



and the integrand in the right-hand sides of (1 . 29) and (1. 30) is nonpositive.

Let us finally mention that we can study kinetic invariant domains and
establish the relaxation limit to ( 1.1 ), this is done in ~2~ . .

2. Properties of the kinetic entropy

We recall the value of the mornents of M,

and

for every p > 0 and u E R. We have the following identities which link the
energy and the kinetic entropy. They can be obtained easily.

PROPOSITION 2 .1. - The energy r~ of (1.12) and the kinetic entropy H
of (1.13) satisfy

- - w i

for every p > 0, u E R and 03BE E R such that Mo ( p, u, 03BE) > 0.

The function H has the following properties.

PROPOSITION 2.2. - i) H is convex with respect to f in D,

ii) H is continuous with respect to f in rA = {(f0, f l ) E D ; |f1|  A fo)
for any A > o.



Proof. - i) In ]0, it is easy to compute the hessian and to check
its nonnegativity. Then, on a straight line from the origin, is linear,
thus H is convex in D.

ii) The only difficulty is at 0. Let be a sequence in TAB~0~ which
converges to 0. Then

thus H is continuous at 0 in TA . D

LEMMA 2.3 (COERCIVENESS).2014 There exist > 0 such that for
any E R, we have

with

Proof. - Let f E D, 0. From identity (1.13), we deduce that

pi pl

We have | fl Ipl - (|f1| f0 (f0) , and using Young’s inequality,fo

Taking 0  6-  1 such that c  and setting ~o = (~/c~ - ~~ / (2 +
2/A) and ~1 = ~/pl, we get

The key result of this section is the following.



PROPOSITION 2.4 (KEY CONVEXITY INEQUALITY). - For any fED,
p > 0 and u, ~ E we have

Proof. - Let us consider $ : D - R defined by

which is possible because M(/), u, ç) E D. We have to prove that ~ > 0.

- At infinity,
by Lemma 2.3, 03C8(f)  ~0f0p0 + + af o + bfl + e with a, b, e E R,
and since p0,p1 > 1, 03C8(f) - oo when fo + | f1| tends to infinity. Moreover,
03C8(f)  a fo + bf1 + e, and we deduce that $ is lower bounded in D.

- At the frontier {f0 = 0, f 1 ~ 0) ,
If / f o - oo and ~~ ( f ) also.

- At 0,
If Mo ( p, u, ~ ) > 0, then by Proposition 2 . 2 ( i ) and ( 2 . 5 ) , (2.8) holds true for
any f E D, thus lim ~ ( f ) > 0. On the contrary, if Alo(p, u, ç) = 0, then

f-o

Since H( f, ~) > 0, this yields lim 0, in any case.
f-o

- Inside D
It only remains to study possible minima of $ in int(D). But $ is smooth
there, and if fo > 0,

and

If there is a minimum of 1/J in int(D), at this point, its partial derivatives
must vanish, thus 

’"



and

We deduce that Mo(p, u, ~ ) > 0 and f = M(p, u, ~). The value of $ at this
point is 0.

Putting all the steps together, we conclude that ~ > 0 in D. D

An important consequence of this result is the entropy minimization

principle.

PROPOSITION 2.5. - Consider f E such that f E D a.e. and

Then

Then M ~ f ~ (~) = the terms of the right-hand side are integrable
with respect to ç, and ~ f ~ (~) d~ - f (~) d~. Thus the result is ob-

tained by integration in £. 0

We can also deduce that the entropy dissipation in (1.29) has a sign.

PROPOSITION 2.6. - For any f E D, p > 0, u, ~ E R;

Proof. - Since H is convex in D, continuous in the cones of Proposition
2.2 and smooth in int(D), we have if f ~ 0



Letting f - 0 on the axis f 1 == 0, we obtain using (1.27) that (2.10) is
indeed true for any f E D with the convention

The case f = 0 can also be seen directly by the definition of H. Finally, by
adding (2.10) to (2.8), we get (2.9). D

Let us end this part by estimates deduced from the boundedness of the
kinetic entropy.

PROPOSITION 2.7. - Consider f E L1(Rx x Ri) such that f E D a.e.,
and

Then

Proof. We recall that po, pl are defined by (2.7). First, using (1.13),
we have

Then, since fl vanishes where f o = 0,



Thus, from the Cauchy-Schwarz inequality we obtain (2.12). Next, with
(1.13) again,

and (2.13) follows. Then, we write

and obtain (2.14). Finally, (2.15) follows obviously from Lemma 2.3. 0

3. Stability

In this section, we extend the analysis of [15] and prove the stability of an
approximate solution. We shall denote by ~) - ~) in L1 x R)
the convergence in x R) for any w C C and we shall use several

similar conventions.

Let us first recall the classical characteristics formula for (1.2).

LEMMA 3.1.2014 Let h C L1 (~0, T[, Ll (1~ x and f ° E L1 (R x R) . Then
there exists a unique solution

to the problem

Furthermore,



We now prove a stability result for this problem.

PROPOSITION 3 . 2. - Consider g, gn E x such that

g, gn E D a.e.,

Set

and

If pn - p and 03C1nun - pu in then there exists a sub-
n-o n-cxJ

sequence such that F(gn) - F(g) in x R)), where F(g)
n-o

is the solution to (3. 1 )-(3.2) with h = A,I[g] = A4(p, u, £) and f° e x

R) is fixed. Moreover, if pn - p in then F(gn) -F(g) in

C( [0, T] (R x R) ) .

Proof. - At first, let us check that F(g) is well defined. Using Proposi-
tion 2.5, we have

Besides,

Estimate (2.12) applied to Nf[g] gives then that

Therefore, we deduce that M[g] E T ~, x II~)), and we have the
same result for gn with uniform bounds.



We turn now to the stability. We can find a subsequence such that pn ~ p
and pnun - pu a.e. t, x. Set E = ~(t, x) E ~0, T~ x R; p(t, x) - 0~. In E~,
pn - p and un - u a.e. t, x, thus a.e. (t, x) E E~, ~ E R. But
since

we deduce with (2.17) and Cauchy-Schwarz inequality that - 0 in

x R) n {x E B~ ~ ) . Therefore, after extraction of a subsequence, we
finally obtain

Besides, the estimates of Proposition 2.7 applied to M~gn~ (t, ., .) give
that is weakly compact in L 1 (~ 0, x R). Therefore, we are
able to apply the Vitali theorem, which gives that

Now

and

Since the latter norm is bounded, we deduce easily that F(gn) - F(g)
in C(~0, T~, x II~)).



Finally, if we assume moreover that in then

and since M ~gn~ o > 0, we deduce that

uniformly in n. With (2.17) and Cauchy-Schwarz inequality, we get also

uniformly in n, and we conclude that ~ - M ~g~ in x R) ,
and therefore F(gn) -~ F(g) in C([O,T],Ll( x ?)). . D

4. Existence of a solution

This section is devoted to the proof of Theorem 1.1. Let f ° 
satisfy the assumptions of Theorem 1.1, namely

and set

We take CH and CA as



Define C to be the set of all g E x R)) satisfying (Cl ) -
(C4) for a.e. t E [0, T], where

Let us also introduce

with

The initial data f ° being fixed, for any g E C, we denote by F(g) the
solution to (3.1)-(3.2) with h = 

Proo f. Let g E C. As in the proof of Proposition 3.2, M ~g~ E T ~,
L1 (R x and we get easily that M~g~ E C. Next, according to Lemma 3.1,
F(g) E x IL~)), and in order to prove that F(g) E C, we need
to prove (Cl) - (C5). Condition (C5) is satisfied since E C. Then, for

z = 0; 1, we have

Obviously, F(g)o > 0. Furthermore, if F(g)o(t, x, 03BE) = 0 then ( f °)°(x -
t03BE, 03BE) - 0 and fo e-s/~M[g]0(t - s, x - s03BE, 03BE) ds = 0, thus - s, x -

s03BE, 03BE) = 0 a.e. s t[. But f ° E D and E D, thus ( f ° ) 1 (x - t03BE, 03BE) = 0
and (t - s, x - s~, ~) = 0 a.e. s t~, and therefore F(g)1 (t, x, ~) = 0.



Hence F ~g~ e D Vt E ~0, T ~ , a. e. x, ~, and (C1) is satisfied. Next, if t > 0,
we can write

and using Jensen’s inequality with the convex function H, we get

and thus

and (C2) is satisfied. Similarly, integrating (4.8) with i = 0 with respect to
(x, ~) gives (C3). It only remains now to prove (C4). We have by (2.13)

Then, since E C, relation (C4) gives



hence

Therefore, with (4.5),

This ends the proof of the lemma. D

Since C c C, we are now able to define F : C -~ C and we shall use the
Schauder theorem to prove Theorem 1.1.

LEMMA 4.2. - The sets C and C are convex and not empty; C is

compact for the weak topology of x R), and C is closed in

C([o,T], x 

Proo f. Since H is convex, it is obvious that C and C are convex. Then,
the constant f ° belongs to C, and by Lemma 4.1, C. Thus C and C
are not empty. Next, from Proposition 2.7, (C4), (2.17) and Dunford-Pettis’



theorem, C is relatively weakly compact in T[  R x R) . Let us prove
now that C is closed in weak L1 (]0, T[ R R). Since C is convex, it is enough
to prove that C is closed in strong x R). Thus let (gn)n be a
sequence in C which converges to g in x R) . After extraction of
a subsequence, gn (t, . ) - g(t, .) in x and a.e. for a.e. t E J o, T[. First,
(gn)O  0 thus go > 0. Then, since by (2.17) ~(gn)1)  we

get for a fixed time t and any Borel set V by Fatou’s lemma and Cauchy-
Schwarz inequality

Taking V = ~x, ~ ; - 0~, we obtain that vanishes a.e.
in V, thus g(t, x, ~) E D a.e. Then, we apply Fatou’s lemma again, and get

Similar applications of Fatou’s lemma finally give that g E T ~,
L1 (R x lI~)), and g E C. The closedness of C in C( ~0, T~, L1 (R x is
treated in a similar way, and (C5) follows from the compactness of C. D

LEMMA 4.3.- F is continuous in C for the topology C((0,T),
x 

Proof- Let gn, g E C with gn - g in C([O,T],Ll(JR x R)). Then, with
the notations of Proposition 3.2, pn - p and pn un - pu in C ( ~0, T ~ 
Thus Proposition 3.2 gives the existence of a subsequence such that

F (gn ) -~ F (g ) in x II~) ) , which is enough to prove the con-
tinuity of F. D

LEMMA 4.4. - is relatively compact in C(~O, T~, x 



Proof. - Let f n = F(gn), gn E C be a sequence in F (C) Since C C C,
by Lemma 4.2 there exist g E C and a subsequence such that gn - g in
weak L1 (~0, T[ x R) . Then with the notations of Proposition 3.2, pn - p,
pnun - pu in weak But by (C5), 8tgn + + -

with hn E C. By the compactness averaging lemma of [8] and by
(2.13)-(2.14), we deduce that f~ gn (t, x, ~) d~ is compact in 
We conclude that pn - p and in Proposition 3.2
gives thus the existence of a subsequence such that f n = F(gn) - F(g) in
C([o, T~, x II~)). . D

Proof of Theorem l.1. . - We apply Schauder’s theorem in C( ~0, T~, 
R)) to the operator F : C - C. Using all the results of this section, C is
convex, closed and non empty, F is continuous C - C and is rel-

atively compact. Thus we conclude the existence of a fixed point f E C
verifying F ( f ) = f. This gives a solution in [0, T] for any T > 0, and by ex-
traction of a diagonal subsequence, we obtain a solution in [0, oo[. Relation
(1.21) comes clearly from (1.2) because ~ f (t, x, ~) E x 

by Proposition 2.7, and (1.22) is obtained by integration of (4.8). . D

Proof of Theorem 1.2. - If the assumption (1.17) is not satisfied, we
have to use the Tychonoff-Schauder fixed point theorem in the locally con-
vex topological vector space x 1~~)). Let us mention the
changes that need to be performed to the results of Section 4. First, we have
to remove condition (C4) in the definitions of C and C. Then, in Lemma
4.2, C is compact for the weak topology of x R) , and C is
closed in x R). In Lemma 4.3, F is continuous in C for
the topology x II~)), and in Lemma 4.4, F(C) is relatively
compact in x R)) . D

5. Entropy equation

In this section we prove that the entropy H( f (t, x, ~), ~) satisfies a renor-
malized equation, as stated in Theorem 1.3. The difhculty is that H is not
smooth at the origin, and we have to build a monotone approximation of it
that is convex, smooth and that has slow growth at infinity.

5.1. . Approximation of H

The most singular term in H in (1.13) is obviously



We begin by translating the singularity f o = 0 to f o = -~, by defining for
~>0

which is convex and smooth in D, hence

In order to obtain a linear growth at infinity, we set

One can check that with this choice of c~ ,

We have obviously ~s ( f )  .

LEMMA 5.1.2014 i) The value of ~s is

ii) the function cp~ is convex in D. nonnegative, = 0.

iii) we have cps ( f )  ~ for f E D,

iv) if 0  b’  b then  ( f ) for fED, and T as

~~o.

v) the function cps is C1 in D and cp~ is bounded in D.

Preuve. i) If f E Dd , obviously cps ( f ) _ If fED B Ds,

hence



If 0, the supremum is reached at x = cs because cs  f 1 / ( f o + ~), and
if 0, it is reached at -c~, and this gives the result.

ii) The convexity is obvious from the definition, the nonnegativity also
since 0 E D5 , and cps (o) is computed by (5.6).

iii) If f e D5 then ~~ ( f =  and if f E D B Ds, then
~Ps(.f) _ -ca(.fo + s) + 2c~I.fl~  2c~~.fl~. .

Finally, if f E D is fixed, for small enough b we have f E D8, cps ( f ) -
.

v) Formula (5.6) gives obviously two smooth functions. We have to check
the continuity of the functions and their derivatives at the frontier where

( f 1 = ~(~-p~). The continuity of 4’8 is straightforward. For the derivatives,
we have

and we see that the two formula match when |f1| - + 03B4). We finally
notice that ~ cps ~  c~ + 2cj. . D

5.2. Sketch of the proof

In order to prove the equation on H( f (t, x, ~), ~), we decompose H as

and we are going to consider each term successively. A crucial argument is
the following lemma.

LEMMA 5.2. - Assume that g E C(~0, T~, x I~~)) verifies



Then

Proof- Define g(t, x, ~) = g(t,x + t~, ~). Then g E C(~0, T~, x

R)), and g verifies g(o) - g(0) E x R), = h(t, x + t~, ~) E

L1 (]0, T  R x R) . Therefore,

and we deduce (5.12) and (5.10). Then, (5.11) comes from the higher mo-
ment lemma of [15], and (5.13) follows by integration of (5.9). Finally, inte-
grating (5.12) with respect to (x, ~), we get for any t E [0, T~

which is the integral form of (5.14). D

5.3. Linear terms

We are now able to treat the first two terms in (5.8). From now on,
f denotes the solution obtained in Theorems 1.1 or 1.2. We recall that
the estimates of Proposition 2.7 apply to f (t, . ) and to M ~ f ~ (t, . ) for any
t > 0. Thus we can apply Lemma 5.2 to 03BE2 fo (t, x, 03BE) and 03BEf1 (t, x, 03BE), and we
conclude that

and all the conclusions of Lemma 5.2 are valid.



5.4. Nonlinear terms

Let us first consider the last term in (5.8), corresponding to  (f) =
We use the approximation c~s ( f ) defined in Section 5.1. Since cps

is Cl and globally Lipschitz continuous, a vector adaptation of the classical
renormalization property allows to multiply (1.2) by ~p~ ( f ), which yields

Since cpa ( f ) E x I~) ) , we can apply Lemma 5.2 to cp~ ( f ) We
wish now to let ð - 0 in (5.17). We notice that ~ in (5.1) is smooth outside
the origin, and we define ~’ (o) = 0 by convention. Thus

LEMMA 5.3.- The terms ay(f)
lie in x 1~8). . The right-hand side of (5.17) is bounded in

x R) uniformly in b. and tends to in

x R) as b - 0.

Then, = -~(.~) E x 

- 1f0>02f21/f0 - 2V( f) E x R)). Next, since
0  ~( f ), ~p~ ( f ) is bounded in x independently
of ~. Therefore, by (5.17) and by applying the identity (5.15) to cp~ ( f ), we
obtain that

Then, since yJ5 is convex in D,

According to (5.20), this function is bounded in L1 (~0, T x R) indepen-
dently of S. Observing that with (5.7), c~~ ( f ) - ~’ ( f ) as b - 0, by applying
Fatou’s lemma, we deduce that



and therefore

From the inequality

we deduce

and thus

We conclude that

Finally, we observe with (5.7) that

and we conclude with Lebesgue’s theorem the convergence of each term of
the right-hand side of (5.17) in L1 (]0, T [  R x R) as 03B4 - 0. D

Now, we are able to conclude. For any t > 0, .)) - (f(t, .)) in
x R) as 03B4 - 0 by Lebesgue’s theorem. But we can write (5.12) for

W6 (f) ,

By Lemma 5.3, we can pass to the limit in the right-hand side in C ( ~0, T ~ ,
Ll (JR x R)). Therefore,



For the last term 1/J(fo) = fo+l~~/(1-f-1/~) in (5.8), we can use the approx-
imation

Then the argument is similar as above (even simpler, L 1 is

obtained directly since f1/03BB0 E L03BB(1+1/03BB), M0 [f] E L1+1/03BB), and we do not
repeat the proof.

5.5. Proof of Theorem 1.3

According to the previous subsections, we can apply Lemma 5.2 to each
term of the decomposition (5.8). Noticing that the convention on the value
of H’(o, ~) corresponds to ~’(o) - 0, we obtain (1.25)-(1.28). Moreover,
~H( f (t, x, ~), ~) E x R) and

But by Proposition 2.6,

and since J’ ( f - M ~ f ~ ) d~ = 0,

thus P E L 1 (~ 0, x R) . Finally, since

from (5.31) and (5.32) we obtain (1.29) and (1.30). D



Remark 5.1. - It is possible to prove directly that

Indeed by (2.4) and Proposition 2.5,

thus

and pU2, p’Y E L 1 {I~) ) . Then, the inequality

proves that 2Cfi . A similar estimate holds for and
the other terms in (5.36) are easy to estimate with (5.38).
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