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RESUME. - Dans cette note, notre but est d’établir brièvement l’algébri-
cite d’une application holomorphe entre deux variétés CR réelles algébri-
ques en supposant qu’une condition de reflexion double, généralisant la
condition classique de reflexion simple, est satisfaite. Nous entreprenons
une étude complete, supportée par des exemples élémentaires, de la com-
binatoire des différents théorèmes possibles.

ABSTRACT. - In this note, our purpose is to establish shortly the alge-
braicity of a holomorphic mapping between two real algebraic CR man-
ifolds under a double reflection condition which generalizes the classical
single reflection. A complete study of various double reflection conditions
illustrated by simple examples is also provided.

The goal of this note is to understand double reflection for holomorphic
mappings f : M -~ between real algebraic CR manifolds in complex
spaces of different dimensions. We plan to understand it in the general case,
that is with and without reducing, shrinking or stratifying the first family
of equations "f (z) E :_ ~z" (see below) which comes from the
first reflection.

Thus, let us quickly present the general problematics.
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Let f : : M --~ Alf be a holomorphic map between two real algebraic CR
manifolds in en, en’ given by the vanishing of real polynomial equations

z) = 0, 1 x j x d, p~, (z’, z’) = 0, 1 ~ d’, so that pf(j(z), f(w)) = 0
if p(z, w) = 0, and let Qw, Qw, denote Segre varieties.

It appears that two crucial observations yield heuristic insights into the
problem of finding sufficient conditions (C) such that: (C) =~ f is algebraic.

First, starting form the natural observation:

(intentionally, we do not specify w’ E U’ or w’ G these two possibilities
will be studied hereafter), one is led to guess that the algebraic set V~ (which
is parametrized by z) is a finite algebraic determinacy set for the value of
f (z) if = 0 b’ z. Effectively, this classical circumstance entails that
f is algebraic (see [1,2,7,13] ; the set Vo is called the characteristic variety of
f at 0 in [7]). As usual, this determinacy set V~ can be constructed simply
by applying the tangential Cauchy-Riemann fields of Af to the equations
p’( f (z), f (w)) = 0.

The second canonical observation, which is due to Zaitsev [14], is as

follows:

Analogously, one is then led to predict that f is algebraic, provided dimf(z)
= 0 V z, w such that p(z, = 0. We can justify our choice of notation
( e.g. instead of ~z,~, ) by the fact that the operator conjugates

the dependence with respect to parameters. We shall call identity (I) first
reflection and identity (II) second reflection. For reasons explained below,
third determination rM, or fourth etc. provide no new information.

Also, let us mention a possible third approach ([8,14]). This approach
consists in choosing smaller algebraic sets ~z C ~z with nicer properties,
in particular to insure the holomorphic dependence with respect to the pa-
rameter z, in order to compute the second reflection rM~ (v~, ) in an easier
way. Of course, such a shrinking of V~ in the form W~ is (and in fact must
be) constructive. Using only minors of matrices of holomorphic functions,
we will in this paper provide a uniform manner of constructing such a set

W~ in an unambiguous way. The core of the article is to discuss such a

shrinking.

This leads to a third type of determinacy:



Through various statements and examples, our aim will be thus to com-
pare the three conditions of determinacy of the value j(z) by (I), (II) or
(III), to ask which one is the strongest, to ask whether some are necessary,
to ask whether it is sufficient to require = 0 or = 0

or = 0 for a single or all points p E M, etc. There will appear
a real combinatorics of possible statements. Among other things, we will
mainly establish that:

1. Determination of j(z) by wz is strictly finer than by ~z .

By this, we mean that = 0, 1 V z for some explicit
examples of f, , M, , M’, idem for 2, 3, 4, 5, 6 below. Such examples are
constructed in the paper.

2. Determination of j(z) by is strictly finer than by ~Vz (or by ~z).

3. Determination of j(z) by is strictly finer than by ~z.

In other words, the inclusions C ~z and C wz c ~z are all strict
in general. However, none of the inclusion C and C is

true in general, because: 
~ ~ ’ ’

4. Determination of j(z) by can be strictly finer than by .

5. Determination of j(z) by can be strictly finer than by .

To summarize, we are led to define a fourth determinacy set:

for which we can establish the following:

6. Determination of by M’z,w is strictly finer than by or by
Z’z,w.

In other words, the inclusions C and C are all strict
in general. 

~ ~ 

Our goal is to find examples which exhibit the nonanalytic behavior of
with respect to parameters and to explain why the various second

reflection conditions (II), (III) and (IV) are inequivalent. Our work deliber-
ately forsakes the point of view of jets, about which the reader is referred
to the works [3,8,12,14].

This paper originates from questions the author has asked Dmitri Zaitsev
at the Mathematische Forschungsinstitut (Oberwolfach, Deutschland) dur-
ing the Conference Reelle Methoden der Komplexen Analysis (28.02/06.03



1999). Then a substantial revision of [14] was done before publication.
The author also acknowledges fruitful conversations with A. Sukhov and
S. Damour.

1. Introduction and statement of results

1.1. General assumptions

The general assumptions throughout this article are as follows. We de-
note by Vcn (p) a small open polydisc neighborhood of and by
03BDCn (M) := ~q~M03BDCn (q). Our object of study is a local holomorphic map
f : en’ which induces a map f : M --~ M’ between two real
algebraic CR generic manifolds in (Cn, We assume that M is minimal
in the sense of Tumanov at one of its points p (equivalently, (M, p) is of
finite type in the sense of Bloom-Graham). Even if some of our statements
remain true for M non-minimal, we shall not notify it for simplicity. Also,
n>2.

We set m :== dimcRAl, d :== codimR M, m’ := :== codimR M’,
whence m + d = n, m’ + d’ = n’. We assume that m ~ 1 and m’ > 1.

In suitable coordinates z E C~, z’ G (Cn, we have p == 0, f (p) = 0,
M = ~z E U : p{z, z) - 0~ and M’ - ~z’ E U’ : p’ (z’, z’) - 0~, where U
and U’ are small polydiscs centered at the origin, and where z) - 

,
. 

6!, 03C1’j’(z’,z’) = 03A3| ’|,|03BD’|N’03C1’j’, ’,03BD’z’ ’-03BD’z’
are real polynomials satisfying ~03C11 ^ ... ^ ~03C1d(0) ~ 0 and

n ... n (0) ~ 0.

We can assume that U = (~A)", ~ > 0 and U’ = (~’A)"B ~ > 0, so U
(conjugate set) = U and U’ = U’. .

1.2. Reflection operator

Let Qw = U p(z, - 0} denote Segre variety (we maintain the
bar on w in the notation Qw, see [11] for arguments). For every subset
E c U, we define the action of the reflection operator : :

say, the first reflection of E and its second reflection across M. Their basic
properties are explained in Lemma 2.1:



Observe that = A similar is defined across M’.

Now, let z E Qw. Let f M’ as above. Then f (Qz ) C Also:

Consequently also:

Also, a last notification:

Observe that , r~, ... offer nothing more, because r~,T, (E’ ) ~ E’ Notice
that the determination f(z) E coincides with (1.4), since
rM’ C ~ f(w) by definition.

1.7. Organization

This expanded Section 1 will now be divided in several paragraphs
corresponding to various questions and answers that present themselves.
We shall shortly present all the problems, all the results, all the technical
lemmas, all the examples in the next paragraphs and we shall explain all the
major links between them. Finally, the precise checking of all the remaining
details and of all the technicalities will be postponed to Sections 2, 3 and 4.

1.8. The results

The fundamental observation is that, as M’ is algebraic, both rM~ (E’)
and rM, (E’) are complex algebraic sets for any set E’, since in (1.3) all
the Qw, are. Therefore (1.5) should determine f as an algebraic map of
z if = 0 for all z, w close to 0, z E Qw, a result which is
true and which was originally proved in [14] (preprint version) for 
An analogous result is due to Baouendi-Rothschild [1] and to Baouendi-
Ebenfelt-Rothschild [2] with use of V’z := rM’(f(Qz)) only.



THEOREM 1.9. If - 0 or if - 0 V z, w E

V~n (0) with z E . then f is algebraic. 
’

Of course, the case = 0 is contained in the more general case
= 0, because we clearly have C V~. Our proof of Theo-

rem 1.9 will be achieved shortly, thanks to a partial algebraicity theorem
proved in [10,13]. We shall indeed establish that the condition 
0, V z, w E Qw implies that f is complex algebraic on each Segre
variety in some open set V := V~n (0) and then apply:

THEOREM 1.10.2014 ([10]) Let g ~ O(V, C) and let M be minimal at 0.
Then g is algebraic if and only if is algebraic V w E V.

We also obtain an equivalent version of Theorem 1.9:

THEOREM 1.11.2014 ([10,14]) If = 0 V z E M ~ 03BDCn (0), then
f is algebraic. 

Theorem 1.11 admits several applications and covers several known results
(e.g. [1,2,13,14]). In truth, some unexpected phenomena and some subtle
things are hidden behind Theorem 1.11. Our work is aimed to reveal most
of them.

1.12. First remarks and questions

This Theorem 1.11 will be deduced from Theorem 1.9 by proving that
there exist points p E M arbitrarily close to 0 such that = 0

Vz,w E z E Qw, see Proposition 1.23 below. The main difhculty
here is that the set is not in general holomorphically parametrized by
z, iu E U, z E in the sense that there would exist analytic equations
such that xz,w = ~z’ w, z’) - 0,1  j  J~. In fact, the existence
of such equations would readily yield the following upper semi-continuity
property:

And (1.13) above would immediately yield that Theorem 1.9 implies The-
orem 1.11. However, ( 1.13) fails to hold in general. Our goal is there-

fore to explore the properties of the map (z, w) H l~z,~, . Let us denote
M := {z E = {(z, 03C9) ~ U x U:p(z,w) - 0}, which is a complex-
algebraic d-codimensional submanifold of U x U, called the extrinsic com-
plexification of lll. To be exhaustive, we wish also to compare the following



twelve determinacy conditions:

and also:

As a preliminary in this exposition, we will first recall and state some of the
nice properties of the mapping z 1---+ V~.

1.14. Analytic dependence of z ’2014~ V~

By An(U), we denote the ring of polynomial mappings from U to C,
or more generally, of holomorphic algebraic functions over U (see [1,2]). By
On(U), we denote the ring of plain holomorphic mapping from U to C.
By a slight abuse of notation, we denote by On(U) x the ring of
functions g(z, w) which are holomorphic with respect to z and polynomial
with respect to w. Also, we write x E On(U) if x is antiholomorphic with
respect to the variable w E U.

By the well-known process of applying the tangential Cauchy-Riemann
operators to the identity p’( f (z), f (w)) - 0 as p(z, - 0, one can estab-
lish that the map z V~ is analytic (algebraic here because M, M’ are
algebraic) :

PROPOSITION 1.15. - There exist J E N* and functions rj(z, w, z’) E
x On(U) x ,,4n~ (U’), 1  j  J, such that b’ (z, w) E U x U with

z E Q~? , then:

Here, we write "vectorially" r for (rl, ... , r J ) and we have set :



Then in (1.16) above, S; w simply denotes the fiber of S~. Although the
equations (1.16) of V~ do depend in general of some w such that z E Qw,
the zero-set V~ appears to be independent of w provided (z, E .~t. This
is in fact clear because by its definition, it is the set equal to .

But the analytic equations r(z, z’) = 0 justify the notation (not to
be confused with V~). 

Proposition 1.15 and the upper semi-continuity of the fiber dimension
of a holomorphic map immediately yield the following:

COROLLARY 1.19. - if - 0 for some z E U and some
w E Qz, , then there exists N c M a proper complex analytic subvariety
such that the map

is an immersion at f(z), for all (z, E 

This is of course equivalent to the generic rank of the mapping

be maximal equal to 2m -~- d ~- n’. Just one further remark. As ~ (z, z) E
M} embeds as a real algebraic maximally real submanifold of M, then
N n Af :== N is also a proper real analytic subset of M. In particular, after
applying the implicit function theorem to (1.20) near (p, p), we obtain the
existence of a neighborhood Vp := V~n (p) and of holomorphic, partially
algebraic functions ~ v ( z, w) E An(Vp) x On(Vp), , 1  v  n’ such that

fv(z) = ~v(z, w), v = 1, ... n’, z E Qw (using elimination theory, one can
even assume that the ~v are polynomial with respect to z). Fixing w, this
shows that f is algebraic on Segre varieties and Theorem 1.10 then applies
to show that f is algebraic. In particular, we recover the main theorem of

[2] with a slight variation. For further properties and knowledge about the
geometry of S (the first reflection variety), we refer to [1,2,3,4,6,7,10,14].

1.22. Almost everywhere analytic dependence of (z, w) ~ ~z,w

Now, we present the way how (z, w) ’2014~ varies:

PROPOSITION 1.23. - if - 0, b’ z C J then there exists

a dense open subset DM C M such that



and such that the graph of f_over M#M := {(z, w, z1 ) : p(z, w) = 0, p(w, zl )
- 0~ intersected with Up x Up x Up satisfies

Furthermore; there exist similar analytic equations r (z w, z’) = 0; zl, z’)
- 0 such that

is an immersion at f (z) .

We invite the reader to notice that the dependence of S2 is holomorphic
with respect to z and antiholomorphic with respect to w, which justifies
and explains the notation This technical proposition, whose proof is
postponed to Section 3, appeals several remarks. The first one is: what is
the structure of the closed set C l~~ exactly ? Surprisingly, it is not
an analytic set, it is in general a subanalytic set. Leaving this question for a
while, we shall return to it in Examples 1.66 and 1.68 below. The second re-
mark is: we prove Theorem 1.9 without using Proposition 1.23. This propo-
sition is indeed used only to prove that Theorem 1.9 =~ Theorem 1.11. Next,
a third remark. As rr(f) - ~2, the projection 7r : ~2 ( C Up x Up x Up x Up, ) ~
Up x Up x Up is submersive. The zero locus S2 == rr(f) is smooth, but the
equations defining S2 can be non-reduced. After taking the reduced complex
space Red S2, we obtain the immersion property (**) of Proposition 1.23 for
z, w, zi E Vcn (p). Of course, the equations s(w, zl, z’) = 0 of which Propo-
sition 1.23 asserts the existence are clearly those for rM, ( f (Qw)), while as
before r (z, w, z’ ) come for rM~ ( f (Qz ) ) Now, we come to the most important
remark. Thanks to the analytic parametrization (1.24), we have:

We therefore obtain the desired semi-continuity property:



In summary, the reduction of Theorem 1.11 to Theorem 1.9 via Proposi-
tion 1.23 is completed.

1.29. Solvability of f over a dense open set

The fundamental remark is that after solving f (z) from (**) of Propo-
sition 1.23 at q E Up, p G i. e. solving f (z) from the collection of
equations:

where z G E we obtain:

COROLLARY 1.31. - Vp E DM, Vq E Up = :3Wq - 
~ ~v(z, w, zl) E An(Wq) x On(Wq) x On(Wq), 1  v  n’, such that

Then equation (1.32) immediately shows that f is algebraic on each Segre
variety Wq: Just fix w, zl in (1.32) and let z E Qw vary. Thus, again
Theorem 1.10 applies, as in 1.14 above.

1.33. Algebraicity of f

Theorem 1.11 admits the following main corollary:

THEOREM 1.34. - ([6,10,14]) If M’ does not contain complex algebraic
sets of positive dimension, then f is algebraic.

Proof. - Indeed, we have:

Consequently, = 0 V z E M necessarily holds under the assump-
tion of Theorem 1.34: Theorem 1.11 then applies. D

Remark. - The author obtains a completely different proof of Theo-
rem 1.34 in [10]. A similar proof is given in [6], but for M being Segre-
transversal instead of being minimal.



1.35. Comparison of ~z, ~z w

We have now completed the presentation of the main steps in the proof
of Theorem 1.11. Next, we come to the comparison between the zero di-
mension conditions about V~ and ~z,w . It is easy to see that there exist
many examples of ,f M, ~.1’, U, U’ such that 1, V z E U and

= 0, V z, w G U, z E Qw. Consequently the condition is

strictly finer than (same fact about C2 (.J~l ) or C4 (.I1~( ) ) Here is such
an example (exercise).

Example 1.36. 2014 Take : z4 - z4 + iz1z1 in C2(z1,z4), f(z1, z4) -

(z1, 0, 0, z4) E C4, and the hypersurface

It is also known that the second reflection is superfluous when n = n’ and
f is a biholomorphic map ( cf. [1,2,3,14]) or if one assumes directly that

= 0 ( cf. ~7~ ).

1.38. Comparisons between ~z , ~z , ~z ~ 

Yet another strategy ( cf. ~8,14~ ) consists in replacing (when possible) the
set S~ = ~(z, w, z’) : r(z, w, z’) - 0~ by some smaller complex analytic set
~1 = {(z, w, z’) : f(z, w, z’) = 0~ C S~ such that:

3. S1 is obtained in a constructive way.

The set S~ should really be given by means of an explicit construction,
because S~ is the concrete datum from which one tries to deduce that z’
is solvable in terms of z, w. Constructing such a set one can hope that

- 0. For instance, if I‘r( f ) is contained in the singular locus
Sing(~1), which is computable in terms of r(z, z’), since ~1 is explicitely
given, it is possible to shrink S~ and to replace it by S~ :== Sing(Sl), obtain-
ing new, possibly finer equations f(z, w, f (z)) = 0. In [14] (preprint version),
S~ is also shrunk more again, still in a constructive way, in order that ~1
becomes a "holomorphic family". Therefore, there might exist many differ-
ent such Sl depending on the way how Sl is shrunk in a constructive way.
However in the end of Section 3 we propose a uniform unambiguous method,



which uses only elementary tools: minors and the uniqueness principle (but
not passing to the filtration by singular complex subspaces).

Then f (z) E because

The gain in reducing S~ ~1 lies in the fact that one can easily insure that
(w, z1) ~ rM’ (W’w,z1) becomes an analytic parametrization (or a "holomor-
phic family" ) by having first a nice representation of 

In [8], it is established that the representation (1.42) is unique: the =

~’ (z, w, zl ) ~ being the maximal for inclusion among all the sets of the form
A = ~ z2 = ~’ (z, w, z1 ) ~ (for some splitting of the coordinates z’) satisfying
hr( f ) ~  ~ S1. Let now p E MB(N := N n M) and let Up = (p) with
Up c Up x Up. The representation (4.2) yields after some easy work (see
[8,14]) that there exist K E N*, E On(Up) x On(Up) x 
such that Vz,w E Up, z E b’ w, zl E Up, w E ,

As in Proposition 1.23, we have got the analytic dependence of the map
(z, w) (again, the set does not depend as a set of zl if

(z, w, z1) E and it coincides with which was defined in a set

theoretical way). We will come back later to the construction of ~’, see
Proposition 1.74 below.



1.44. Fundamental remark

The constructiveness of a shrinking S1 ~ 1 is essential. One is temp-
tated to introduce S1min := the minimal (for inclusion) An x On x An’-
set contained in S1 satisfying rr(f) ~ S1min C S1, i.e. the intersection of

all even those which are not constructive, and to put 
’ 
.

n ~ However, the equations w, z’) - 0 be-
ing not known from the datum ~1 in general and not constructible in
an explicit way, it is quite impossible to deduce from f(z) E 
anything. Not to mention that anyway if f was algebraic from the begin-
ning, then rmin : z’ - f(z) would have been convenient and the condition

- 0 (here - 0) then becomes surpris-
ingly tautological! 

’ ’ ’

1.45. Properties of 

Before entering into further discussions, let us summarize the properties
of as follows (see also Proposition 1.74).

THEOREM 1.46. - (1) The set of points where (z, w) H is not

holomorphic is a proper complex analytic subset N of Let N := N .

(2) If - 0 b’ z E ~ M, then - 0 for z
outside a proper real analytic subvariety Nl of 

’

(3) If = 0 at some point p E MB (N U Nl ) . then f is alge-
braic. 

Remark. - That the bad set J1~ is analytic is a property which is spe-
cific to . For X’z,w, the bad set MBDM is definitely not analytic, see
Example 1.68 below.

1.47. Discussion

We can now summarize the main result in [14] (preprint version).

THEOREM 1.48. - ([14]) = 0 V p E n then f
is algebraic. 

’

This theorem also implies Theorem 1.34 (which is the main applica-
tion of double reflection). Indeed, a possible proof of Theorem 1.34 starting
from Theorem 1.48 above can be achieved exactly as we did supra in 1.33,
because the intersection Zpp = n C must also be a
zero-dimensional complex algebraic set. 

~’~



1.49. Reverse inclusions

Now, we return to comparison of xz,w with . If > 1

V z E U (so second reflection is needed), one can expect that 
’

i. e. that the study of is sufhcient to get a complete proof of Theo-
rem 1.9. Nevertheless, two inclusions of opposite sense enter in com-
petition

so that it is not clear how

could be comparable. Indeed, implication (1.50) is simply untrue:

Example 1.53.2014 There exist /, M, M’ such that:

In conclusion, the determination of f (z) by can be strictly finer than
by (for the details, see Section 4). And quite surprisingly, it is also
true that determination of f (z) by can be strictly finer than by 

Example 1.56. - There exist f, such that = 0 but

1 V z. To be explicit, take Al : z4 == z4 + iz1z1 in 

f (zl, z4) _ (zl, 0, 0, z4) E ~4, and:

In summary:

Consequently, it is justified to introduce:



where

for a constructive shrinking S~ of S~. (Of course, different such shrinkings
may exist, which depend on the conditions that are imposed; the choice
§~ = g~ can always be done; our examples illustrate well the phenomenon.)

1.61. Comparison between and Z~ ~ X~

Our examples also show that the reverse implications =~ are both untrue.

1.64. Summarizing tabulae

It is time to give a complete link tabular between the twelve conditions

Return to definitions. Here, p E SI is a fixed chosen point, the origin in
previous coordinates. The point p is chosen arbitrarily and is fixed. Cp
denotes: = 0, = 0, Cp = 0,

C~ : : 0. Henceforth, does not denote "Cq Vq E M,
but V q G DM" , , i. e. over a dense open subset DM of A-f. . Idem for C~ (M). .
Consequently, the implication C~ (14I ) =~ Cp is a priori untrue, since p can
well belong to the set of points q where Cq is not satisfied.

First, we already know that if is satisfied over an open dense
subset of then C~ (M) is satisfied over an open dense subset of .J~t, for
j = 1, 2, 3, 4, and conversely. We know this thanks to Propositions 1.15, 1.23
and 1.41. Therefore, if Cp denotes (Cp ) 1, j ~4, = (C~ (M) ) 1,~ 4, C(M)
= (C~ (.Jl~t ) ) 1~ 4, the comparison of our twelve conditions which could have
been explored in a 12 x 12 tabular with 144 entries can be reduced to only
three 4 x 4 tabulars:



Our examples are intended to explain only the main nontrivial (non)
implication links above. Those not in the articles are easier to find.

1.65. Nonanalytic behavior of (z, w) H 

We give two examples of it.

~) Example 1.66 shows everything: CP =~ C~, 4.
~ Example 1.36 shows everything: C~ (./1~l) ~ Cl (.M), 4.

~) Example 1.53.
(4) Example 1.56.



Example 1.66. - There exist f, with f nonalgebraic such that
the function M 3 (z, ~ E N is not upper semi-continuous

at 0. Explicitely, take z4 = z4 + iz1z1 in 

and = (z1, z4 sin3 z1, 0, z4). Here, 0, - 1

0, z E Qj. . ( Idem for instead. ) See Section 4. This example
therefore shows that cannot be written as ~z’ : a(z, w, z’) - 0~ for
holomorphic A E Vcn (0) x Vcn (0) x (0) in general.

Example 1.68. - ( See Section 4.) There exist f , , M’ all algebraic
such that if £ denotes the set of points (z, w, zl ) E in a neighborhood
of which (*) of Proposition 1.23 is not satisfied, then £ is not a complex
analytic subset of but a real analytic subset.

1.69. Globalization of r~,

First, we notice that rM~ (E’) (= rM, (E’)) which we have localized in U’
could have been defined globally as follows:

because the p~, are polynomials. A variation of Theorem 1.9 would be:

(Identical proof). Suprisingly, Theorem 1.71 can be more general than The-
orem 1.9 because:

Example 1.72. - There exist f , Nl, U, U’ such that:

Conversely, Theorem 1.9 can be more general than Theorem 1.71 (exercise
left to the reader).



1.74. About 

It is not difficult to see that all the three positive Theorems 1.9, 1.11
and 1.71 concerning extend immediately to be satisfied by Z’z,w and
by once we have established the following result analogous to Propo-
sition 1.23:

PROPOSITION 1.75. - There exists a standard constructive way of
finding a variety ~1 - ~(z, w, z’) z’) - 0~ contained in ~1 with

fj(z, w, z’) E An(U) x x An, (U’) . 1  j  J; J > J, such that

and such that there exist a Zariski open subset DM :_ .JlilB.JU of M, N c M
complex analytic, dimCN  2m + d - l; and an integer ni, 0  nl  n’ such
that

Consequently; (*) implies that

Proposition 1.75 shows that after shrinking the first reflection variety ~1
to the crucial property (*) above is satified. This property is appropriate
to compute the second reflection after localisation in a smaller
open subset Up, because it yields the convenient analytic dependence with
respect to the parameters (w, zl ) , as we have written in (1.77). We would
like to remind the reader that our examples show that there is a serious
difference between Proposition 1.23 and Proposition 1.75 and a serious dif-

ference between applying operators or or Finally, by applying
Proposition 1.75, we clearly obtain the Theorems 1.9 and 1.11 with ~z,w
and with instead of ~z,~, . The remainder of the paper is devoted to
explore the technicalities.



LEMMA 2. l. - (i) For any set E c U; E n C M and E c

Proof. - (ii), (iii) and (iv) are classical. Prove (i). If e E E and e E
- ~w~EQw then e E Qe, so e E M by (it), i.e. E n rM(E) C .

Furthermore, by construction of rM (E),

Let = ~ (z, w) E U x U p(z, w) - 0~. Let ~ _ ~~ 1 2U) ,

1  l  rrz, be tangent vectors to which are the complexifications of
a basis of tangent vectors Ll - ~3 1 z) , 1  l  m generating

with polynomial coefficients and which commute.

LEMMA 2.3. - There exist J E N* and functions rj(z, w, z’) E .,4.n x
C~n x ; 1  j  J; such that ‘d (z, w) 

Remark. - Two sets z’) = 0~ and w2, z’) - 0~ for
different wl, w2 such that z E z E coincide and are equal to
rM’ (f 

Proof. - By definition, rM, ( f(Qz)) _ ~w’ E U’ : p’( f (w), w’) = 0, V w E
Qz~. Using Lemma 2.1 (iv), rM, ( f(Qz)) _ ~z’ E U’ : p’(z’, f (w)) = 0, b’w E
Qz~. Equivalently, G~z 3 m--~ p’(z’, f (w)) E vanishes identically as an
antiholomorphic map of w defined on the complex algebraic manifold Qz .
Thanks to the identity principle, this is equivalent to ,C~ (p’(z’, f (w) ) ) = 0,

E Nm. Put w, z’) : 03B3(03C1’(z’, f (w))). Then E An  n  A’n’. By
noetherianity, a finite subcollection of the defines ( f (Qz ) ) . D

LEMMA 2.5. - There exist K E N* and polynomials (depending
on w), 1  k  K, such that



Proof. - Simply because is algebraic, by the definition ( 1.3) . .
D

End of proof of Theorem 1.9. - Fix w. We prove that is alge-
braic. Indeed

By Theorem 5.3.9 in [4] (in the algebraic case), there exist Weierstrass
polynomials - z’jNj + Ak,j 1 

j  n’, such that ~ is contained {(z, z’) E V x V’ : Pj (z, = 0,1 
j  ?T/}. As (z, f (z)) G ~, we obtain that

Equation (2.6) above yields at once that each map Qw n V C
is holomorphic algebraic, 1  j  n’. To conclude, apply Theorem 1.10. D

3. Proof of Proposition 1.23

Proposition 1.23 relies upon the following statement (denseness of DM
is then clear and (*) =4> (**) also) :

PROPOSITION 3.1.2014 if = 0, V z E M n _: n V,
then there exists p E M n V arbitrarily close to 0 such that =

0. Vz, w E z E Qw and (*) of Proposition 1.23 holds in Up -
03BDCn (p) C v.

As we have already observed, the main difhculty here is that there

does not necessarily exist holomorphic equations z’) such that

xz,w == {z’ E U’ w, z’) - 0~ as for example like there existed some
for - ~z’ E U’ :r(z,z,z’) - 0~, z E M, z E Qz. To get such
a local parametrized family, we shall have to shift p E Af from a certain
number of images by holomorphic maps of complex analytic sets. Our proof
shows that the set of p E M in a neighborhood of which should be holo-

morphically parametrized is a dense open subset of M. It will also clearly
show that the bad set can be at least as worst as a subanalytic set.

We will prove Proposition 3.1 with M, of class CW. For that purpose,
let V~ :== - ~z’ E U’ r(z, w, z’) - 0~ (in vectorial notations,



r = (rl , ... , r,~ ) ) so that - 
. Let us recall that the

representation of V~ by holomorphic equations r(z, w, z’) - 0 gives the
same set V~ for any choice of (z, E M (cf. Lemma 2.3). Therefore the
introduction of a third point 2~1 E Qw yields a representation V~ = ~z’ E
U’ : r(w, z1, z’) = 0}.

From now on, we let z, w, zi E U, z E Qw, w E Qz1, and we denote 
instead of V~, V~. This is justified by the fact that although the set

~ z’ E U’ : r ( z, w, z’ ) = 0 ~ does not depend on w, the equations r,y ( z, w, z’ ) _
_,C~ [p’(z’, f (w))~ = 0 do really depend on w. (Inspect for instance the identity
map ~2 -~ C~, M ~ M, M = ~ z2 = Z2 The notation simply
means a fiber over (z, w) of the set S~ (even if (z, ?D) ~ M). We then write

We shall establish that there exist points p = (zp, zp) E M arbitrarily close
to 0, neighborhoods Up = Up, - - f (p) ) and holomorphic
functions s(w, z1, z’) near (zp, zp, f (zp)) in Up x Up x U’p, such that:

LEMMA 3.3. 2014 If the above conditions 1-2 are fulfilled. then 
= 0, V z, E V M (p), , if = o.

Proof. - Indeed, let - ~z’ E U’:r(z, w, z’) = 0, s(w, zl, z’) = 0~
D ~ f(z). By assumption, - o. Since is holo-

morphically parametrized, then = 0, V z, w, zl in some small
neighborhood of p in en with z E Qw, w E Therefore = 0
also. D 

Let us assume for a while that we have obtained a dense open set DM
where the above conditions 1 and 2 are fulfilled. To complete (*) of Propo-
sition 1.23, it sufhces to take S~ := the irreducible component of Y’ =
{(z, w, z1 z’) E x Up x Up))  U’p’ : r(z, w, z’) = 0, s(w, z1, z’) _
0~ containing the graph of f over n ( Up x Up x Up). . ~2 is defined
by similar partially polynomial equations r E An (Up) x x ,,4n~ ( Up, ) ,
s E On (Up) x x ,,4n~ (Up, ). The graph of f is in fact a local irreducible
component of 82, for reasons of dimension. Therefore, S~ is smooth there
and (if the equations r = s = 0 are reduced) the rank of the mapping (1.26)
equals n’ almost everywhere, which completes the proof of Proposition 1.23.

o



Consequently, it remains to establish 1 and 2 above. In fact, this can be
reduced to a statement which we now formalize in an independent fashion,
abandoning Segre varieties, see Lemma 3.7. Let A be the unit disc in C. Let
/~ E N* , n E l~* , vi E l~* , g : 0’~ x On --~ CVl be a holomorphic power series
mapping converging normally in (20)’~+n, (t, z) ~---~ g(t, z), let

Assume that there exists a holomorphic map A : : 0’~ --~ 0’~ converging
normally in (2A)" such that (t, .~(t)) E F, Vt E 0’~, hence ~r(F) - 0’~,
where 7r : 0’~ 0’~, (t, z) H t. Let n’ E N*, v2 E N*, let p : :
A~ x 0’~ --~ ~v2 be a holomorphic series converging normally in (20)n +n
and denote for t 

Let I’~ c 0’~ be the maximally real set I’~ = ( -1,1 ) ‘~ , I = ( -1,1 ) . Introduce
the complex filtration F = Fi D F2 ~ F3 D ~ ~ ~ ~ Fa+1 = 0, ~, a > 1,
of F by singular subspaces: = Fi,sin9. Assume also that:

with ga : (2Q)’~+n -~ converging normally and assume that all irre-
ducible components of Fa are defined analogously. We denote by 
~ > 0, the polydisc of center t, radius ~, with t. E Q’~, ~ « dist(t, bQ’~). It
remains to establish:

LEMMA 3.7.2014 There exist t. E I’~; ~ > 0 and holomorphic equations
s(t, z’) in such that:

Proof. - First, G F [t] = G F1, reg [t] n G F2, reg [t] n ... n G Fa, reg [t] (Fa =
Fa,reg). Also, V Q, 1  03B1  a, G F [t] == G F1,reg [t] n ... n G F03B1-1,reg [t] n G Fa [t].
Let F03B1 = b03B1 G N* , denote the decomposition of F03B1 into irre-

ducible components. Then also:

We have (see [C], Chapter 1):



This yields

Denote now by Fl , ... , c = bl -~- ~ ~ + ba E N* the which are
irreducible. So GF~t~ = ~t~. Let F be one of the 1  ~y  c.

Now, we come to a dichotomy. Either the generic rank satisfies

LEMMA 3.11. - Let F := one of the If gen  ~. then

the closed set 7f(F) := 7r(F C A G A (here, ~ denotes closure) is
contained in a countable union ~03BD~N* A03BD of analytic sets A03BD ~ 039403BB03BD with

 

Proof. - Let F be a F,y with gen  ~. Since F is defined
over ( 20 )’~+n and irreducible, paragraph 3.8 in [C] applies. D

Hence the Lebesgue measure (~r (F) ) = 0. Furthermore, V v, ~~, (I ~ n
Av ) = 0, since I’~ is maximally real. Hence ~,~ (~r(F) n I’~ ) = 0. Thus there
exists an open dense subset BF of I ‘~ such that for all t G BF, there exists
an open neighborhood 03BD039403BA (t) with 03BD039403BA (t) n 03C0(F) = Ø. Consequently, all
irreducible components F.y such that gen  ~ can be forgotten.
Indeed, for almost all t E 0’~, F,y ~t~ _ ~, so for such t, F,y makes no contri-
bution to the set GF ~t~ defined by intersecting the sets ~ p(z’, z) - 0~ over
those z E F,y ~t~ . But of course, since there exist a : : 0’~ --~ On such that
(t, ~(t)) E F = Fl U ~ ~ ~ U F~, Vt E ~‘~, there exists at least one ~y such
that gen ~. Let now T denote the dense open set of t E II’B,
such that F,y ~t~ _ ~ for the -y’s with gen  ~. We proceed with
gen ~, = 1, ... , c after forgetting other component and
renumbering the remaining ones. Fix F := a Fy. Let C := critical locus
of . Denote F :== It is known that C extends as a complex
analytic subset of F itself and that  ~ ([C], , ibidem). . Again for
an open dense set T of t (still denoted by T), we have ~r ( C ) ~ t ( Lemma
3.11).

Let AF :=_~r(F), BF :_ 7r(F) nIl’B,. Clearly, AF is a nonempty subdomain
(since F is connected).



If BF = 0, makes no contribution to if t E I ‘~ We
can forget those components F since according to the desired conditions
1-2 of Lemma 3.7, it is harmless to add equations to GFreg[t] for some other
t E AF that are close to I’~ but do not belong to I’~ .

Assume therefore that BF 7~ f~. Again, by 7r(rr(A)) == 0’~, there must
exist at least one F such that 0. Let ml := dimCF. Choose t G 
which is possible since BF is open and T is dense open, choose _~ > 0
with n IfB, cc AF n T. For all t E consists

of finitely many (ml - ~)-dimensional complex submanifolds of F, since
~r-1 (0,~ (t, ~) ) n C = 0, whence 7r has constant rank ~ over Fn (0,~ (t, ~) 
and since

and the latter has a finite number of connected components. This number
can only increase locally as t moves. It is bounded on 0,~ (t, ~) n I’~ Hence we
can find a newt E I‘~ n 0,~ (t, ~) in a neighborhood of which this number of
connected components is constant, say in 0,~ (t, _~) n Denote again simply
this polydisc by ~). 

- -

LEMMA 3.13. - Let t E I’~ such that there exists _~ > 0 such that the

number of connected components of is constant equal to ~ E N*
for all t E ~) n I’~ and with n I’~ cT. Then there exist

holomorphic equations s(t, z’) in x such that

Assume for a while that Lemma 3.13 is proved. Then Lemma 3.7 holds
for one irreducible component F of the Pick a second component.
Letting t vary now in (instead of 0’~), we can repeat the above
argument a finite number of steps and get Lemma 3.7 as desired. D

For short, let us denote 0,~ : 0,~ (t, ~) . .

Proof of Lemma 3.13. - Let D1, ... , D03B4 be the components of (t) .
These are (_ml - ~)-dimensional connected complex submanifolds of F (be-
cause 7r : F -~ 0’~ is submersive). Let pl , ... , p~ _E Dl , ... , D~ be points,
let U1, ..., U03B4 be neighborhoods of p1, ... , p03B4 in F with maps 03A6j : 03BA X
~77.1-~ __, U- such that ~~ (O x Om1 ~ ) - D. n U~ , x is



the fiber x 0))) C F, b’ 1  j  ~, q E 0’~ and such that
x 0’nl ~)) - q~

After all the above reductions and simplifications, we now can prove the
main step in two lemmas:

LEMMA 3.15. Each is equal to a set ~z’ E U’ = 0~,
where s~ = a finite set of holomorphic functions.

Proof of Lemma 3.14. - Let D1 ~t~, ... , D~ ~t~ denote the connected com-
ponents of t E 0,~ n I’~.

Now, if p(z’, z) - 0 Vz E Uj ~t~, by the uniqueness principle, then
p(z’, z) - 0 on the connected complex manifold Dj ~t~, so = n

A~ n If t E the cardinal of the set of con-
nected components of can be > b, so diminishes, c

J " ° ° ° " . D

Proof of Lemma 3.15. - Let Ej . x 0) given by a holomorphic
graph z = c;v (t) over 0,~ . Then Ej is a transverse manifold to the fibers
of 7r. For each j, there exist vector fields L{, ..., , over Uj with
holomorphic coefficients in (t, z) commuting with each other with integral
manifolds x Then p(z’, z) = 0 V z E if and only if

_ ~ d’y E 
Put s j (t, z’) : -’~ and use noetherianity. D

Proof of Proposition 1.75. - Starting with :_ ~ (z, w, z’) : (z, w) E
M, r(z, w, z’) - o~ and rr(f) - w, f (z)) : (z, ) E c we can

again formalize the data as follows. We take coordinates on .I1~I "--J 0’~, /~ =

2m + d. Let 03BA E N*, n E N*, J E N*, r : 039403BA x On ~ CJ, (t, z) r(t, z) be
a holomorphic power series mapping converging normally in ( 20 )’~ , assume
rj E x let



Assume that there exists A : : x --~ holomorphic, converging in
(20)’~ such that Fr(A) C S, let 1r : 0’~ x On --~ On be the projection.

Let us inductively define a collection of Sa’s, a G N*. First S1 = S.
Next, Sa = ~ (t, z) E 0~ : ra (t, z) = o~, ra : ~‘~ --~ J a E N*,
Ja  ra,j - ra-l,j d 1 C .~ ~ Ja-l, ra,j E ~,~(0~’) X and

Fr(A) C Sa.

The construction of consists in forming the Jacobian matrix of the

, with respect t to z, H - ( 
J03B1 in taking the col-a, j S WI p 0 z, H a - ~r03B1,j ~zk)1jJ03B1 1kn, In a Ing j the col-

lection of all the minors z), 1  j  ea, of maximal generic rank over
0’~ x On of this matrix, where ea =: Ja E N* is the number of such
minors. Then put := 

and put

Of course, E C~,~(0’~) x V j = Ja + 1,..., Also if we
were starting with (z, w) = t G M, we would have got some w, z’)
depending on the two variables ( z, w ) even if we let ( z, w ) vary only in .M, ,
hence getting new equations like the r~ of Proposition 1.75.

Then Indeed by construction > Ja and the zero-locus
of equations from a minor of maximal generic rank coincides with Sa
at each point (tp, zp) where zp) ~ 0 but does not contain in

a neighborhood of such a point.

Thus there exists an integer a E N* such that and D

Fr(A) or Sa D Fr(A) and there exists a minor z) such that 
= 0}. The case Sa+1 = Sa and Fr(A) C Sa+1 is impossible because

then 1 and therefore its minors are nontrivial which implies
that Sa by the above remark.

At each point of the Zariski open subset ~ ~a,~ ~ 0 ~ n Fr(A) of Fr(A),
locally Sa is given by equations of the form z2 = ~(t, zl), (zl, z2) E x

nl + n2 == n, because of the constant rank theorem. This proves (*)
of Proposition 1.75 in this context. Notice that we make localization in a
smaller open set, which is a neighborhood of some point (t, a(t)) G rr(A) n

~ ~~.

Next, we compute in case F(= Sa) is given by ~ (t, z) E 0‘~ x
: z2 = ~ (t, to get (**). This is a particular case of Lemma 3.15: let

L = a 1 + (t, z1) ~ ~z2 be in vectorial notation the basis of vector fields tan-



gent to F. Then p’ (z’, z1, 03A6(t, z1)) = 0 V zl if and only if L03B3 p’ ( z’, 0, 03A6 (t, 0) ) _
0 G these define analytic equations s (t, z’ ), which completes the
proof of Proposition 1.75. Notice that we make localization before comput-
ing GF[t] : this corresponds to taking n (Up x Up x UP, ) and

[]then M . D

4. Examples

The general idea of all of these examples is to construct M, lvI’, f with
the reflection set S~ = ~(z, iu, z’) : r(z, w, z’) - 0~ containing two or more
irreducible components and to exploit this fact in order to exhibit rather
disharmonious phenomena.

Check of Example 1.53. - Let z E 

Then z’ E rM, ( f(Qz) ) if and only if

From this follows z’5 = z5, z’1 = z1, z’3z’4 = 0. Therefore

Now, it is clear that T r ( f ) is contained in

To compute we write

From this follows w’3 = 0, w5 = w5 + iw’1w1. Therefore



and

In conclusion, = V z. On the other hand,

and the equations of rM~ (~w ) are given by

From (4.11) we deduce w’3 - 0, w’2 = 0, w’4 = 0, w’5 + iw’1w1. From
(4.12) we deduce w’3 = 0, w’5 = w5 + iw’1w1. Therefore

and finally

In conclusion, = 0. This completes Example 1.53. D

Now, it is clear that rr( f ) is contained in ~sing

Whence

and finally

On the other hand,

and the equations of (~w ) are given by



It follows only the equation w’4 = w4 + + Therefore

whence = 1 V z. Example 1.56 is complete. D

Check of Example 1.66. Let us establish:

The function M ~ (z, w) H E N is neither upper semi
continuous nor lower semi continuous in general.

Proof. First, whenever dim f(o) rM~ ( f (Qo ) ) = 0, then dim f(z) ( f (Qz ) ) _
0 too for z E VCn (0) because of Lemma 2.3 and so there exists V = (0)
such that - 0 V z, w E U, z E Qw. For instance, M = M’,
f = Id, Af = ~ z2 = Z2 + 

Therefore (z, w) H could be continuous.

This is false. Indeed, let M = M’ - {z3 - z3 + iz1z1(1 + z2z2)} C
C3, f = Id. First, ~T is Levi-nondegenerate at every point of =

0~, so - 0 at those points. Let Qo - ~(zl, z2, 0) : : zl, z2 E (C~,
rM~ (Qo) - ~(~~ z2~ 0) : z2 E ~~ - ~q E (C3 Qq - Qo~, so (Qo) - 
~(zm z2~ ~) ~ zm z2 E C}, so rM,(Qo) n (Qo) - ~(~~ z2~ 0) ~ z2 E (C~ has
dimension 1.

Therefore ( z, w ) H can be at best upper semi-continuous.

This is false. Indeed, let M = {(z1, z4) E C2 : z4 = z4 + iz1z1}, let

and



This will show that (z, w) cannot be upper semicontinuous
in general. 

Indeed,

so 1 holds.

Let (z1, z4) ~ (0,0), let z E Qw, w = (w1, w4), z4 = w4 + iz1w1. Then
f(Qz) - {(w1, (z4 + iw1z1) sin3 w1, 0, z4 + iw1z1) : w1 E C}. By definition,
rM, ( f(Qz)) _ ~z’ p’(z’, f {w)) = 0 Vw E Qz~. Write

We deduce equations z4 = z4, zi = zl, z3z2 - 0, z3z4 - 0, 0.
Therefore if (zl, z4) ~ (0,0), then

Next, ( f (Qw ) ) is given by

We deduce equations z’3 = 0, z’4 = w4 + iz’1w1, so

Finally for such (zl, z4) ~ (0,0),

which shows that 2 above holds. This completes Example 1.66. D

Example 1.66 already shows that is not analytically parametrized
by (z, w). Example 1.68 also provides a supplementary reason.

Check of Example 1.68. First, let us take in (3.4): ~ - 2, n - 3,
~ t2) _ (tl, ~ t2 ~ ~) 



Then the fibers F2[t] = 0 if |t22|  |t1|, say if t ~ Tc := 03942 n {|t22|  |t1|}, and

F2(t~ _ {(zl, zz, z3) E 03 : z3 = if t E To := Clearly

and

if t ~ Tc and

if t E To. The border equals T o n Tc = {t E I = It is real

analytic, not complex.

Next, we build a mapping on the basis of this example. Let n = 3, n’ - 4,
: z4 = Z4 + iz1z1 + iz2z2,

, z4 == ( zl , z2 , 0, z4 ) . Then one can check that the equations =

V~ are: z4 = z4, zl = zl , z2 = z2, = 0, from which Example 1.68
follows. 0

Check of Example 1. 72. Consider f : ~2 ~ (zl, z4) H (zl, 0, 0, z4) E CC4,
and

Identify .~~ with _ ~ ( zl , 0, 0, z4 ) : ( zl , z4 ) e . Take U = 

A x 0 x 0 x A, U’ = A~. We will first check 1 and 2 for z = w = 0 E C~2.

First, compute by writing p’ (z’, f (zl 0) ) = z4 - ~-

z3 ) z3J so that equations of rM~ (Qo ) are z4 - 0, zi - 0, (1 + z3 ) z3 - 0,
whence

~(Qo)-{(0~2,0,0):~~C}U{(0~~1~):~~C}:=A~UA~. (4.39)
To compute (r~)~(Qo), write //(~, (0,~,0,0)) = ~4 - ~[~~24] so that
equations of (rU’M’)2(Q0) are z’4 = 0, = 0, whence



On the other hand, (r~ )~(Qo) = ~~ (A~) U r~ (A~), where as above

To compute r~ (A~), write //(~, (0, 1~ 0)) = ~4 - + ~2~~] = 0
so that its equations are z’4 == 0, z’22 = 0, z’2z’3 = 0, whence rCn’M’ (A20) =

{(~,0,~,0):~ ~C} and

In conclusion, for z = w = 0 E M, rCn’M’ (Q0) ~ (rCn’M’ )2(Q0) is finite whereas
U (r~)~(Qo)] = 1. Now, let 2; e e A x 0 x 0 x A,

(~1,0,0~4) e ~(Q~,o,o,~) ~ (~)~(~i,o,o~4)’ As above,

To compute (rM, )2 (Qw ) _ {w’ E 04 : p’ (w’, z’) = 0 V z’ E write
first

whence

On the other hand analogously

To compute (A~) = {tt/ ~ C~ : p’(~’, ~) = 0 Vz’ e A~}, write

whence
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This completes Example 1.72. D
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