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Nearly ordinary deformations
of irreducible residual representations(*)

C.M. SKINNER (1) AND ANDREW J. WILES (2)

Annales de la Faculty des Sciences de Toulouse Vol. X, n° 1, 2001
pp. 185-215

Nous prouvons dans cet article la modularité de certaines
representations p-adiques de Gal(F/F), ou F est un corps totalement reel.
Les conditions principales sont que p soit impair, que la representation
soit irréductible et impaire, et que la representation residuelle ait un
relevement modulaire convenable. La methode est une adaptation de celle
employee par les auteurs dans le cas ou la representation residuelle est
reductible.

ABSTRACT. - In this paper we establish the modularity of certain
p-adic representations of Gal(F/F), where F is a totally real field. The
main conditions imposed are that p be odd, the representation be irre-
ducible and odd, and that the residual representation have a suitable
modular lift. The methods are an adaptation of those used in our work
on the case where the residual representation is reducible.
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1. Introduction

In this paper we give criteria for the modularity of certain two-dimensional
Galois representations. To say that p : : Gal(Q/Q) --> GL2(E), E either a
finite extension of Qp or a finite field of characteristic p, is modular or that
it comes from a modular form is to mean that there exists a modular form

f with the property that if T ($) f = . f then

for all f at which p is unramified. Here is the .~h Hecke operator. To
make sense of (1.1) in the case where E has characteristic zero an embedding
of E into C is chosen so that tracep(Frobi) can be viewed as an element of
C. When E is finite then a prime of Q over p is chosen. Reducing modulo
this prime permits each c(f) to be viewed as an element of Fp. Finally, an
embedding of E into Fp is chosen so that tracep(Frobi) can be viewed as
being in Fp as well.

Suppose that E has characteristic zero. If we pick a stable lattice in
E2 and reduce p modulo a uniformizer A of the ring of integers of
E, then we get a representation p of Gal(Q/Q) into If p is
irreducible, then it is uniquely determined by p. In general we write pss for
the semisimplification of p, and this is uniquely determined by p in all cases.

In this paper we consider the case where pss is irreducible, and we prove
the following theorem. Here and throughout the rest of this paper p is an
odd prime.

THEOREM. - Suppose that p : -~ GL2(E) is a continuous

representation, irreducible and unramified outside a finite set of primes,
where E is a finite extension of Qp. Suppose also that

(i) p88 is irreducible,

(ii) ~2 where 1.

(iii) pss comes from a modular form, .

0 ~)’
(v) det p = for some k  2 and is odd,

where ~ is the cyclotomic character and is of finite order. Then p comes
from a modular form.



This is not included in the results of [W] and [Dl] as this theorem also
covers the cases where pes is reducible over fa(~~,). These are in fact precisely
the cases not covered in [W] and [Dl]. We also prove a similar theorem with
Q replaced by a general totally real number field F, including the cases
where p88 is reducible over F((p): see §5. Results in the totally real case
similar to the main results of [W] and [Dl] have been obtained by Fujiwara
[F], again excluding the cases where pss is reducible over F((p). Fujiwara also
assumes the existence of a minimal modular lift, but this can be bypassed
thanks to the the base change technique of [SW2].

In a previous paper we considered the case where p88 is reducible,
and our proof of the above theorem follows the proof of the main theorems
of that paper. The techniques we use were developed for the reducible case.
However they also work in general, and our purpose in this paper is to show
how they can be applied to the case where p88 is reducible over F(~~,), a case
that eludes the more direct approaches of [W], [Dl], and [F]. Hypothesis (iv)
of the theorem, which we refer to as the condition that p be ordinary, is
essential to these techniques.

We now give an outline of this paper. In §2 we introduce certain deforma-
tion problems over totally real fields and their associated deformation rings
RD. In §3 we introduce certain Hecke rings TD associated to these defor-
mation problems and recall some of their important properties. These rings
were studied in detail in and the reader is often referred there for def-
initions and proofs. What sets apart the case where p88 is irreducible from
the case where it is reducible is that in the former there exists a deformation
into GL2 (TD). This considerably simplifies the proofs, as a comparison of
the next section, §4, with ~SWl,§4) shows. One consequence of the existence
of a deformation into GL2(TD) is the existence of a canonical surjection
RD ~ We say that a prime of RD is pro-modular if it is the inverse im-
age under this surjection of a prime of The main result of §4 establishes
the pro-modularity of all primes of RD under certain hypotheses on D and
F. The proof of this result is modelled on the proof of the main result of
[SW1,§4], though, as mentioned before, it is considerably easier. The main
ideas behind this proof are discussed in the introduction to [SW1], and the
interested reader should consult there. In §5 we apply the result of §4 to
deduce the theorem above as well as its generalization to totally real fields.
In doing so we find it necessary to change the base field so that our resid-
ual representation p88 satisfies the hypotheses of §4 and so that the results
of [SW2] on the existence of minimal modular lifts apply. The remaining
sections, §§6-8, contain the proof of the remaining assumption made in §4,
namely that the property (P) defined therein holds for RD.



2. A deformation problem

Let F be a totally real number field of degree d. For any finite set of
finite places E let FE be the maximal extension of F unramified outside

of E and all For each place v fix once and for all an embedding of
F into Fv Doing so fixes a choice of decomposition group Dv and inertia
group Iv for each finite place v and a choice of complex conjugation for each
infinite place. Let zl, ... Zd be the d complex conjugations so chosen, and let
v1, ... , vt be the places dividing p. Write DZ and IZ for the decomposition
group and inertia group chosen for the place v;. Let d; be the degree of
Fvi over Qp. Normalize the reciprocity maps of Class Field Theory so that
uniformizers correspond to arithmetic Frobenii.

Suppose that k is a finite field of characteristic p and that

is a representation such that

(i) po is absolutely irreducible,

(ii) det po (zi ) = -1 for i = 1, ..., d, (2.1 )

ill 03C10 Di ~ 
(~(i)1 *x(i)2), ~(i)1 ~ ~(i)2 , or ’l = , ..., , an

(iv) if po is ramified at some v poo then ~ 1 03C9*-1).
If 03C10|Di is split, then we fix once and for all a labelling of the characters in
(2.liii). As usual, w is the character giving the action of Gal(F/F) on the
pth roots of unity.

A deformation datum relative to F and po is a 3-tuple D = ( C7, E, M)
consisting of the ring of integers C7 of a local field with residue field k , a finite
set of finite places E containing all those at which po is ramified together
with P = ... , and a set of places M C ~ B~ at which po is ramified.
For future reference we set Eo to be the set of finite places consisting of the
places in P and the places at which po is ramified, and we set Mo to be the
set 

A deformation of po is a local complete Noetherian ring A with residue
field k and maximal ideal m.A together with a strict equivalence class of con-
tinuous representations p : Gal(F/F) -~ GL2 (A) satisfying po = p mod m A.
Such a deformation is of type-D if



. A is an O - algebra,

. p is unramified outside of £ and the places above oo,

P’D" " ( ~~~~ ,l) ) X’~ ~ ’~~~~°~ °~A ~°~ ~"~ ~ ~ ~ ’ ° ° ~~. P Di ~ (

2 
WI Xl = 0/1 mo mA or each i = , ..., , an

. if w G M then 03C1|Iw = (1 i ) .
We usually denote a deformation by a member of its equivalence class.

For any deformation datum D = (O, £, M) there is a universal defor-
mation of type-D:

This is well known (see [Ml] and [M2] for a precise formulation of the
universal property as well as a proof of existence).

We now state a preliminary result on the structure of RD as an abstract
ring. We omit the proof of this result since it is essentially the same as that
of Proposition 2.4]. The only difference is that it may be that 03C10|Di is
non-split. In this case one needs to analyze the universal (nearly ordinary)
deformation ring associated to . The necessary analysis can be done
just as in Corollary 2.3] (the split case). Let 6F be the Zp-rank of the
Galois group of the maximal abelian pro-p-extension of F.

PROPOSITION 2.1. - Suppose that D = (O, E, M) is a deformation da-
tum. There exist integers g and r, depending on D, such that

and

In the course of our analysis of the rings RD we shall sometimes have to
consider some augmented deformation problems. Here we introduce these
deformations and their universal deformation rings.

Let D = ( C7, E, M) be a deformation datum and Q a finite set of finite
places Q = ~wl, ... disjoint from E. A deformation p of E U

Q, M) is oftype-VQ if

. det p is unramified at each Wi E Q.



There exists a universal deformation of type-D~ :

For a deformation datum D = let LE/F be the maximal
abelian pro-p-extension of F unramified away from E, and let NE be the
torsion subgroup of Gal(LE/F). A deformation p : Gal(FE/F) -~ GL2(A)
of type- DQ is DQ-minimal (D-minimal if Q = Ø) if det p is trivial on NE.
Let

be the universal DQ-minimal deformation. If Q = 0, then we just write
and RDin. There is a simple relation between RD~ and We fix

for each E a free Zp-summand H03A3 ~ Gal(LE/F) such that Gal(L03A3/F) ~
NE. We choose the HE’s to be compatible with varying E. Let 1

NE denote the character obtained by projecting modulo HE.
The representation ~ 03A803A3 : Gal(FE/F) ~ GL2(RminDQ ~O O[N03A3]) is

easily seen to be a deformation of type-DQ. It follows from the universal
properties of RD~ and that

Next we consider a special class of deformations. A deformation p of po
is dihedral if there exists a quadratic extension F’ of F such that the restric-
tion of p to Gal(F/F’) factors through an abelian quotient. The following
properties of dihedral deformations are trivialities:

(i) p is dihedral if and only if there exists an abelian extension L of
F such that the restriction of p to Gal(F/L) factors through an abelian
quotient; (2.3)

(ii) p is dihedral only if po is dihedral.

From property (ii) we see that the field F’ is uniquely determined by po. If
po is dihedral, then we shall assume that

where Gal(F/F’) --~ 1~" is a character and is the usual two-
dimensional representation induced from "po. This is not a real restriction
since if po is dihedral then it always has a basis satisfying (2.4), possibly
upon replacing k by a quadratic extension. Let the conjugate of ~o by
an element restricting to the non-trivial automorphism of F’ over F. Since



po is irreducible it must be that the characters and are distinct. If

p : : Gal(F/F) --> GL2(A) is a dihedral deformation, then p - where
W : Gal(F/F’) - AX is a character such that = W mod mA.

Assume for the moment that po = IndF’F 03C80 (i.e., that po is dihedral). Of-
ten one can describe the universal dihedral deformation of type-(O, E, M).
Let L~ be the maximal abelian pro-p-extension of F’ unramified away from
E, and let rE = Gal(L’03A3/F’). Denote by 03C8 the canonical projection of
Gal(FE/F’) onto rE. Define a character : by

= Here the ’tilde’ denotes the Teichmüller lift. If every
place of F above p splits in F’ and if .M = 0 then the desired universal
deformation of E,.M) is just

In the remaining cases (i.e., if some prime of F above p does not split in F’
or if J~! ~ 0) it is a quotient of this deformation.

Let be the Zp-rank of the summand of 039303A3 on which Gal(F’/F) ^_, Z/2
acts non-trivially. By [Wal] we know that d/2. The following lemma
is a simple consequence of this and the preceding analysis of the universal
dihedral deformations.

LEMMA 2.2. - If q C RD is a prime containing p such that pD mod q is
dihedral and its determinant has finite order, then dim Rv/q  bF,  d/2.

Finally, we describe how each of the deformation rings RD and RD~ is
an algebra over a certain multivariate "Iwasawa algebra". Let Lo be the
maximal abelian pro-p extension of F unramified away from P. Let I C

Gal(Lo/F) be the subgroup generated by the images of the inertia groups
= 1, ... , t. We fix once and for all a maximal free Zp-summand Io of

I (necessarily of rank dF). Fix also a free Zp-summand Go of Gal(Lo /F)
containing Io (this also has rank 6F). . Finally, fix elements ~yl , ... , ~y~F E
Gal(F/F) whose images in Gal(Lo/F) generate Go and for which there
exist integers rl , ... , r03B4F such that ... generate Io . For each
0  i  t fix once and for all ... , E Ll2 (the units of Fvs ) generating
a free Zp-summand of rank d; . Put 

"

The rings RD (and hence the RDQ) are algebras over Ao via

~ ’2014~ i = 1,... , ~F .



. - 03C8(i)2(i) (y(i)j) - 1 , where 03C8*(i)2) and we have
identified U; with the inertia subgroup of Dfb via local reciprocity.

Suppose that D = (C~, E, M) and D’ = (C~, E’, M’) are deformation
data with E C E’ and M’ C M. The natural map RD~ -~ RD is a map of
Ao-algebras.

The following lemma is immediate from [C] and the universality of RDQ .

LEMMA 2.3.2014 If DQ = (O, E, M)Q is any augmented deformation da-
tum, and if S is any finite set of places of F containing E U Q, then RDQ
is generated as a Ao -algebra by the set I g S) .

3. Hecke rings

In this section we introduce the Hecke rings that will play prominent
roles in our study of deformations of po . We keep the conventions of the
previous section. We shall borrow freely from the definitions, notations, and

results of [SW1,§3]. As in the just-referenced paper, we fix an embedding of
F into Qp.

Let A and A f denote the adeles and finite adeles of F, respectively.
Let be the ring of integers of F, and let 0 be the ring of integers of
some local field having residue field k. Let pi, ...,pt be the prime ideals of
F dividing p. For each compact subgroup such that

. U = 03A0w~ Uw , Uw C GL2 (C7F,w ),

. Uv = (3.1)

. Uo (n) C U C U(n) for some ideal n,

= +... + 03BAdd E with all 03BAi  2 (1 = ..., d} are the
d embeddings of F into R), and each integer a > 0, let be the

Hecke ring defined and so denoted in [SW1,§3.2]. Let G ( U) be the group
defined there as well. In [SW1, §§3.1, 3.2] we defined Hecke operators T(f)
and for each f f n, To(p,) for each i = 1, ..., t, and To (p), all acting on
the space of modular forms of weight ~ and level Ua and commuting one
with another. (The definition of depended on a choice of a uniformizer

a(~~i) which we now choose so that (x1z)/x2i))(~(~~i)) ~ 1.) We also defined an
action of G ( U) on this space of forms via certain Hecke operators denoted
by Ty and where y runs over the elements of (Of ® and x runs



over the elements of

The ring d ) is just the ring (over C~) obtained by restricting the
action of these operators to certain spaces of modular forms. These Hecke
rings are finite, flat, commutative, reduced 0-algebras. If V D U is an-
other open compact subgroup satisfying (3.1) and if b > a, then there is a
canonical homomorphism C’~) - T,~ (Ua, d ). Put

(The subscript 2 indicates the parallel weight 2 . + "’ + Td ) ~ )

Let AD = d QXl, ..., ..., Y~t ~~. In [SW1,§3.2] we defined a ho-
momorphism ’O ~ T~(U, ) which we now recall. Let U = 03A0uvi C 

vt

Zp)X = where uvi C is the subgroup of units congruent to

one modulo v;. Let G U be as at then end of §2. Let :pi,..., E Z(U)
be the images of ~ B..., respectively, via the global reciprocity map
(for the definition of 03B3i and ri see the end of §2). The xi’s generate a maxi-
mal Zp-free direct summand of Z( U) . The ring C~) is an algebra over
the ring l~n via and ’2014~ T -1.

We now make the added hypothesis that

the degree of F over Q is even. (Heven)

Let M~ (U) and M+~ (U) be the T~ (U, O)-modules defined in [SW1, §3.2] .
We now recall some important properties of these modules and rings. We will
say that a compact open subgroup U is sufficiently small if U C Ul (l1... ls)
where ..., .~s ~ is a set of unramified primes satisfying the hypotheses of
[SWl, Corollary 3.6].

LEMMA 3.1.2014 ([SWl, Prop. 3.3, Cor. 3.4, 3.6] )

(i) If U is sufficiently small, then and M+~(U) are free
’O-modules of equal 

(ii) and M+~(U) are faithful O)-modules.

(iii) a finite, torsion-free ’O-module. In particular, it is a
semilocal ring complete with respect to its radical.



An O-algebra homomorphism A : O) - Q~, is algebraic if a(1 +
Y(j)i) = (root of unity) for 1  j  t, 1  i dj and there is an intger   0
such that A(l + Xi) = (root of for 1 ~ i ~ bF. An algebraic
prime is a prime of O) that is the kernel of an algebraic homomor-
phism. There are only finitely many algebaic homomorphisms whose kernel
is a given algebraic prime P. We denote this finite set of homomorphisms by 
1t(P). The set of algebraic primes is Zariski dense in 0)). Hida
[HI] has established the following remarkable connection between algebraic
homomorphisms and automorphic representations.

PROPOSITION 3.2. - If a (~) - Q~, is an algebraic homomor-
phism, then there exists a nearly ordinary automorphic representation 7r of
weight 03BA = 03BA11 + ... + 03BAi 2, containing a vector fixed by Ua for
some a and for which a(T(2)) and equal, respectively, the eigenval-
ues of T(f) and acting on the newform associated to 7r for all prime
ideals ~ ~ p for which Ue = 

Suppose that Q is a prime of ~7). Let R = O)/Q and let L
be the field of fractions of R. Note that R is a complete local domain. There
is a continuous, semi-simple representation PQ : Gal(F/F) - GL2 (L) such
that

(i)~)=(~ _,)
(ii) pQ is unramified at all primes f f np

(iii) trace03C1Q (Frobl) = T (2) mod Q for all l ~ np

(iv) det = e(f) mod Q for all l f np (3.2)

(v) det pQ(x) = Sx e(x) mod Q for all x E Z(U)

(vi) 03C1Q|Di ~ ( 03C8(i)1 *03C8(i)2) with v> = T mod Q forall v E (7"
and 03C8(i)2(03BB(pi)pi) = mod Q forall i = 1, ... , t.

By pQ being continuous we mean that there is a finitely generated Gal(F / F)-
stable R-module M in the underlying representation space of pQ such that
Gal(F/F) acts continuously on M. The existence of p~ is essentially due
to Hida (cf. [H2]), but is also established in §3.3].

If Q is an algebraic prime, then fixing an identification of L with Qp (as
O-algebras) amounts to choosing an algebraic homomorphism A E H(Q).
Let 7r be the automorphic representation corresponding to A as in Proposi-



tion 3.2. Under the chosen identification L = Qp we have Here,
: Gal(F/F) 2014~ GL2(Qp) is the representation associated to 7r and the

fixed embedding F ~ Qp (cf. ~SW1,~3.3~).
Suppose that m is a maximal ideal of C~). From the existence of

the pQ’s it follows easily that there is a representation

satisfying the list of properties (3.2) but with p~ replaced by pU,m and
with the ’mod Q’ omitted. (Here is the field of fractions of l1~ . ) If the
representation pm is irreducible, then for a suitable choice of basis pU,m takes
values in GL2(Too(U, d )m). This last fact can be proven by the arguments
on the bottom of page 482 and top of page 483 of [W].

If m is a maximal ideal of C~) such that pm is irreducible, then
is a Ao-algebra via 1 + TZ H for i = 1, ..., ~F and

1 + T for 1  i  d, 1  j  dZ. (Here Ao is the ring introduced
at the end of §2.) The natural inclusion of An into Ao makes the latter a
finite, free module over the former.

Let E(U) be the set of places w such that GL2(OF,w) together
with the places in P. Part (i) of the following lemma can be proven as was
[SW1, Lemma 3.11], while part (ii) follows from part (i) and Lemma 3.1.

LEMMA 3.3.

(i) Let S be any finite set of places containing 03A3(U). Ifm is a maximal
ideal O)m such that p,n is irreducible, then O)m is generated
over Ao by the set ~T (.~) : £ ~’ ~S’~ .

(ii) If U is sufficiently small and if m is as in part (i), then 
and M~(U)m are free Ao-modules of equal mnk.

If m is a maximal ideal of ) such that pm = po and 
(03BB(pi)pi): 1  i  t} C m, then we say that m is permissible. Such a

maximal ideal is clearly unique.

Next we associate Hecke rings to various deformation data. Essentially
this is done by first defining a suitable open compact subgroup of GL2(OF 0
Z) and then localizing the corresponding Hecke ring at a permissible max-
imal ideal. Obviously, this requires the existence of a permissible maximal
ideal of the prescribed level. This is a consequence of the hypothesis denoted
(Hde f ) below.



Suppose that DQ = (0, E, M)Q is an (augmented) deformation datum.
For each finite place w we write .~w for the prime ideal of F corresponding
to w and we write 0~, for the Sylow p-subgroup of which we

identify with a subgroup of for any r > 1. We also write 0~, for
a complementary subgroup of (so ^_~ 0~, x Ow ) . We
define a subgroup UDQ = II Z) by putting

wtoo

If Q = 0, then we write UD for UVø. Let Do be the minimal deformation
datum We assume that

T~(UD0, O) has a permissible maximal ideal. (HdeJ)
As UDQ C UD0 for any DQ, it follows that the hypothesis (Hde f ) implies
that every T~(UDQ, ) has a permissible maximal ideal.

Let m be a permissible maximal ideal of T~(UDQ ,). Put

We define TD to be We write pDQ for the representation into GL2 
described above. We assume that we have chosen a basis for so that

03C1modDQ mod m = 03C10.

PROPOSITION 3.4. is a deformation of po of type-D~, , and the
corresponding map rDQ : R’DQ ~ T’DQ is surjective.

Proof. Let P be a minimal prime of T’DQ Let pp = 03C1modDQ mod P.
(This is a slight change from the notation in (3.2).) We first prove that
pp is a deformation of type-Do. That det pp is unramified at each w E Q
can be seen by reducing pp modulo algebraic primes and then invoking the
compatibility of these reduced representations with the local Langlands’
correspondence (i.e., invoking Proposition 3.2 and [SW1, (3.3)]).

Next we establish the required properties of . By hypothesis

~(i)1(03BB(pi)pi ~ ~(i)2(03BB(pi)pi). Choose 03C3i E Di mapping to 03BB(pi)pi via local reci-
procity. Choose a basis for pp such that = ‘~ ~ with a



mod m = (~ ). It follows easily from (3.2vi) and from the fact that
T0(pi) - ~(i)2(03BB(pi)pi ~ m that with respect to this basis 03C1P|Di = B

with ~/J2z~ mod m = as desired.

It remains to verify the required properties of 03C1P|Iw for each place w E
M . Let w E .M. Let p be any algebraic homomorphism containing P. Choose
A E and let 1r be the automorphic representation associated to A by
Proposition 3.2. Since 7r has a non-zero vector fixed by UDQ it follows from
the definition of UDQ,", and from the compatibility of with the local

Langlands’ correspondence for 7rw (see [SW1, (3.3)]) that is either
unramified or Type A in the sense of [SW1, §2.3]. Now let R = TDQ /P
and let L be the field of fractions of R. The arguments used to prove (SWl,
Proposition 3.13] then show that is either unramified or of Type
A. Since is ramified, the first alternative cannot be. Thus 
is Type A. This means that ( 1 i ) with * not identically zero.
Let M be a free R-module of rank two on which Gal(F/F) acts via pp. Let
r E Iw map to a (topological) generator of the pro-p-part of tame inertia at
w. Clearly (Q -1)2 annihilates M. Thus cr -1 annihilates N = M/M~~ -1~.
The reduction N = N mod m is then a (non-zero) quotient of po annihilated
by (cr 2014 1) and thus is one-dimensional over k. It follows from this that
N - R and M[7 2014 1] ~ R. Therefore M has a basis with respect to which

( 1 * ) as was to be proven.
We have shown that pp is a deformation of type-VQ. Let rp : 

TDQ /P be the corresponding map coming from the universality of RDQ .
The ring TDQ/P obtains a Ao-algebra structure from that of RDQ via rp.
This agrees with the Ao-structure inherited from TDQ, so rp is a map of
Ao-algebras. We have thus a map of Ao-algebras

where the product is over the minimal primes of Since rDQ (trace pDQ
(Frobi)) = mod P) for all l ¢ EUQ, it follows from Lemmas 2.3 and
3.3 that the image of T’DQ is just T’DQ. We have thus obtained a surjection
TVQ : RD~, -~ TVQ of Ao-algebras. Let be the induced representation
into GL2(TvQ). Since mod P = mod P for all minimal primes
P it must be that = This proves that fJ1JQ is a deformation of

type-DQ, completing the proof of the proposition. D

For each datum we also define TDQ-modules MVQ and MDQ These
are defined exactly as in the paragraph following Lemma 3.25] but



with Mc replaced by Mo and r (w ) = 1. These modules are just the lo-
calizations of and at a permissible maximal ideal,
where is a suitable subgroup of UD0 containing UDQ .

Suppose w E Q. Recall that Ow is the Sylow-p-subgroup of (OF /.~w ) x ,
where fw is the prime ideal of OF corresponding to w. In ~SW1,§3.5~ we
defined an action of 0~, on M’DQ and MDQ commuting with that of T’DQ.
For varying w these actions commute and give rise to an action of A~ :=
03A0w~Q Ow on M’DQ and For each w E Q fix once and for all a generator
6w of Ow and a Uw E Iw mapping to 6w via the local reciprocity map.

As in [SW1] we shall find it necessary to work with a quotient of
This is essentially the largest reduced quotient of TDQ such that the

induced map from factors through We will not define TDQ here,
referring the reader instead to §3.6] and contenting ourselves with
recalling the important properties of Write for the deformation

into induced from The deformation is DQ-minimal.
Write : ~ TminDQ for the corresponding map. It is surjective by
Proposition 3.4. The following follows from the definition of and the

arguments used to prove [SW1, Prop. 3.23, Lemmas 3.21, 3.25].

LEMMA 3.5. - Let N03A3 be as in (2.2). .

(i) There is an isomorphism TDQ ^-~ TDQ ®n compatible with
the maps and and with the isomorphism (2.2) . .

(ii) TDQ is a finite, reduced, torsion-free Ao-algebra.

(iii) For each w E Q, acts on MDQ and MDQ as

03B4w + 03B4-1w.

4. The key result

We keep the conventions of § §2 and 3. We say that a pair (F, po ) is good if

(i) d/2 > 2 + 2t + 7. #Mo,

(ii) di > 2 + 2t + 7. = 1, ..., t, (4.1)

(iii) hypotheses (Heven ) and (Hde f ) of §3 hold.

Let D = (0, E, M) be a deformation datum. A prime q of RD is pro-
modular if it is the inverse image under rD of a prime of TD. In other words, q



is pro-modular if there is a map 0q : RD/q such that the composition
8q o rv is just reduction modulo q. A deformation p : : Gal(F/F) -~ GL2 (A)
of type-D with A a domain is said to be pro-modular if the kernel of the
corresponding map RD -~ A is a pro-modular prime.

A prime p of RD is nice for D if

(i) p is a dimension one prime containing p,

(ii) pD mod p is not dihedral, and det pD mod p has finite order, (4.2)

(iii) for each vi|pi (03C1D mod p)|Di ~ (03C8(i)1 *03C8(i)2) with 03C8(i)1 /03C8(i)2 having
infinite order,

(iv) p is the inverse image of a prime of TDo (so in particular p is pro-
modular).

Recall that Do = (C~, Eo, Mo). A prime satisfying (i), (it), (iii), and such
that pD mod p is of type-Do will be called merely nice.

Our preliminaries are completed by stating the following property of
primes that are nice for D.

If p is a prime that is nice for P, then 
P

any prime q C p is pro-modular. ( )

Sections 6, 7, and 8 of this paper are devoted to establishing property (P)
(under hypotheses (Heven) and (Hdef)). .

PROPOSITION 4.1. Suppose (F, po ) is a good pair and that
D = a deformation datum. If (P) holds for every deforma-
tion datum (0, ~’, .Jl~t’) with M C M’ and E’ C E, then every prime of RD
is pro-modular.

Proof. - The proof of this Proposition is essentially the same as that
of Proposition 4.1].

Let CD be the set of irreducible components of spec(RD). An irreducible
component is said to be pro-modular if the corresponding minimal prime
is. Clearly, if an irreducible component is pro-modular then all primes on
that component are pro-modular. Let C CD be the subset consisting
of pro-modular components. The assertion of the proposition is equivalent
to c = CmodD .

We begin by proving the proposition for the case D = Do. The proof
consists of three steps. In the first we show that RDo has a prime that is nice



for Do. In the second we show that any component of spec(RD0) containing
a prime that is nice for Do is itself pro-modular. As a consequence of this
and step one we have that 0. In the third step we combine step
two with our analysis of the structure of the ring RDo to conclude that
cmod - cD .~Do-

By hypothesis (F, Po) is a good pair. In particular hypothesis (Hde/)
holds, and the ring Tvo exists. As the deformation is of type-Do by
Proposition 3.4 and since the corresponding map rD0 : RD0 ~ TD0 is

surjective, any prime p of T Vo satisfying

(i) Tvo/p is one-dimensional and contains p, (4.3)

(ii) 03C1modD0 mod p satisfies (4.2ii,iii).
will be nice for Do- We now prove the existence of such a p.

Let Q be a minimal prime of R = . Since TD0 is a
finite, torsion free Ao-algebra by Lemma 3.1, it follows that Ri = R/Q
is an integral extension of ..., Thus the dimension of Rl is d .
We claim that pi = mod Q is not dihedral. This is clear if po is not
dihedral. Suppose then that po = Ind~ ~o (notation as in §2). Note that
detpi has finite order since Q contains Tl ..., . Since Rl is a quotient
of Rvo (see Proposition 3.4), if pi were dihedral, then the dimension of Ri
would be at most d/2 by Lemma 2.2, contradicting what we just proved
about the dimension of Rl. It then follows easily that there are infinitely
many dimension one primes p of Ri such that pi mod p is not dihedral and

p does not contain Y(1), ..., ~(t-1), or Y(t) . It now follows easily from (3.2vi)
that p and 03C1modD0 mod p = pi mod p satisfy (4.3). This completes step one.

Suppose that p is nice for Do. It follows from (P) that if Q C p is any
prime of RDo then Q is pro-modular. In particular, any minimal prime of
RDo contained in p is pro-modular. This completes step two. Combining
this with step one, which asserts the existence of a prime nice for Do, yields

CmodD0~Ø.

The last step is to prove that GDo = . Put CDo = . If

cbo = 0, then there is nothing to prove, so assume otherwise. It follows
from Proposition 2.1 and Corollary A.2] that there are components
Ci E and C2 E CDo such that Ci n C2 contains a prime Q of dimension
d - 2t+03B4F-3.#M0. Let I1 be the ideal generated by the set { p; det pDo ( y2 ) -
1 | i = 1,..., 03B4F}. Let Qi be a minimal prime I1 ) The dimension
of Qi is at least d - 2t - 3 . > 1 + d/2, the inequality by (4.1). It
follows from Lemma 2.2 that P’Dcmod Ql is not dihedral.



Since Qi E Ci, Qi is pro-modular. The prime Qi determines a prime
Qmod1 of Tvo. The prime Qmod1 is the kernel of 03B8Q1 : TD0 ~ RD0/Q1.

Note that dim = dim Recall that TD0 is an integral
extension of Ao = d QY ( 1 ) , ... , Tl ... , ] ( cf. Lemma 3.1 ) . By con-
struction n Ao contains p, Tl , ... If Qmod1 n O also contained
Y(z), ... , it would follow that the dimension of would be at most
d - d;. Comparing this with the lower bound for the dimension of Qi ob-
tained earlier and recalling that the dimension of Qi equals that of 
one finds that di  2t + 3 . #Mo + 1 which contradicts (4.1). Thus, af-
ter possibly reordering the we may assume that Qi for each
2 . = 1,...,t.

Let p D Qi be a prime of dimension one not containing ... , 

and such that pDo mod p is not dihedral. Such a p always exists. As p E Ci
it is pro-modular. We claim that it is also nice. By construction p contains
p, and it is, of course, a prime of As p contains Tl ..., T~F as well,
det pDo mod p has finite order. So it remains to check the conditions at each
Di. Let A = and let p : Gal(F/F) --~ GL2 (A) be the deformation

03C1D0 mod p. Consider (03C8(i)1 *03C8(i)2)). By definition equals

1 + which has infinite order in A. Thus is a character of infinite

order. Since det p has finite order, it follows that /~22) has infinite order.
Therefore p is a prime of R~o that is nice for Do . As p E C2 it follows from
step two that C2 E contradicting the assumption that C2 C This

proves that CDo = .

We now prove the proposition in its full generality. We first show that
any component of spec(RD) containing a nice prime is pro-modular. For
this we use the proposition in the case D = We then combine this with
our previous analysis of RD to conclude that GD = .

Suppose that p is a nice prime of RD. . It follows that p is the inverse
image of a prime pi of RDo under the canonical map By the
proposition in the case D = Do, ~1 is a pro-modular prime. Thus there is a
map 03B8p1 : Tvo ~ RD0/p1 = inducing the deformation pDo mod p1 =
pD mod p. Composing 8~1 with the canonical map T~ -H Tvo yields a map
0p : --~ inducing the deformation pD mod p. It follows that p is
nice for D, whence by (P) any prime Q C p C RD is pro-modular. Therefore
any component of spec(RD) containing p is also pro-modular.

In our final step we complete the proof of the proposition in its full
generality. Let Q be a minimal prime of Rv. For each place v E :EBP fix a



generator Tv E Iv of the pro-p-part of tame inertia at v and choose a basis
for pD such that pD(Tv) mod mD = ( 1 i ) With respect to

this basis write ~Yp (Tv) = ( ~ ~ ) . Let 12 be the ideal generated by the set
av , bv - uv, cv, dv - l; det pD 1 I v E 03A3BP, j = 1, ... , cSF}. .

Let Q2 be a minimal prime of RD/(Q, 12). By Proposition 2.1 the dimension
of Q2 is at least d - 7 ~ #E - 1. It follows from this and from (4.1) that the
dimension of Q2 is at least d/2 +1, whence it follows from Lemma 2.2 that
pD mod Q2 is not dihedral. Moreover, it is clear from the fact that Q2 ~ 12
that pD mod Q2 is a deformation of type-Do. It follows from the proposition
in the case D = Do that Q2 is pro-modular. Arguing as in step two of the
proof in the case D = Do shows that Q2 is contained in a nice prime. As
Q C Q2, the same is true of Q. The conclusion of the preceding paragraph
now implies that Q is pro-modular. Therefore, every minimal prime of RD
is pro-modular. This completes the proof of the proposition. D

5. An application of the key result

In this section we drop all of our preceding conventions except those
listed in the first paragraph of §2. Suppose now that

is a representation such that
(i) p is continuous and irreducible,
(ii) p is unramified at all finite places outside of some finite set E,
(iii) det p(T) = -1 for all complex conjugations T, (5.1)
(iv) det p = for some integer /~ ~ 1 and some character ~ of finite

order, 

(v) for each i = 1, ..., t, 03C1|Di ~ ( 03C8(i)1 *03C8(i)2) with 03C8(i)2 |Ii having finite

order.

It is widely believed that such a p is a representation associated to some
(nearly ordinary) automorphic representation of GL2 / F. This is a natural
generalization to a totally real field of a special case of [FM, Conjecture 3c].

As p satisfies (4.1i,ii) it is not difficult to see that there exists a basis for
p with respect to which p takes values in GL2(0) with C~ the ring of integers
of a finite extension of Qp. Let A be a uniformizer of 0 and let k = 0/A.
Let : Gal( F / F)  GL2 (k) be the semisimplification of the reduction
p mod A. The representation pss is unique up to equivalence and extension of



the scalar field k. We say that p is Di-distinguished )
with x22) . In this case we fix and so that x22) _ ~2Z) mod ~.

Suppose that 03C1ss is Di-distinguished for each i = 1, ..., t. If p’ : Gal(F /F) -
GL2(Qp) is another representation satisfying (5.1) then we say that p’ is a
x2 -good lif t of where x2 = (x21) , ..., x2t) ), if ( p’ ) ss ^_~ ps$ and if for each

i = 1, ..., t, ^_~ ~1 (i) ~ ) and the reduction of is x22) . .

Recall that for a holomorphic automorphic representation 7r of GL2/F
we write p~. for the representation p~ ~ Gal(F /F) - GL2(Qp) associated to
7r and the fixed embedding jF 2014~ Qp. .

THEOREM 5.1. - Suppose p : Gal(F/F) - GL2(Qp) is a representation
satisf ying (5.1) . If

(i) p$$ is irreducible and Di-distinguished for all i = 1, ..., t,

(ii) there exists a nearly-ordinary automorphic representation 7ro of
GL2 / F such that is a x2-good lift of 03C1ss,

then for some automorphic representation 7r.

Remark. - Generalizations of the main results of [W] and [Dl] to totally
real fields have also been obtained by Fujiwara [F]. (A restricted version of
his results has been available for a few years.) Like those in [W] and [Dl],
his results exclude some cases where pss is dihedral. His proofs closely follow
those in [W] and [Dl] but with the crucial difference that he avoids having to
establish "multiplicity one." This he achieves by patching both Hecke rings
and modules, a technique which was also developed, but independently, by
Diamond in [D3].

Proof. Fix 0, A, and k as in the discussion preceding the statement
of the theorem, but so that if 03C1ss is dihedral then p8s = (notation
as in §2). We then have p : : Gal(FjF) --+ GL2(O). The hypotheses of the
theorem, together with the main result of [SW2], implies that there exists
some totally real extension L of F such that the Galois closure of L over F
is solvable and

~ p~ _ satisfies (2.1)

. (Heven ) and (Hde f ) hold for L and po .



Let EL be the set of places of L over those in E. By further requiring L to
contain a large real subfield of a suitable cyclotomic extension we can also
ensure that

. dL /2 > 2 + ? 

. dv > 2 + 7 . for all 

Here dL is the degree of L over Q, and dv is the degree of Lv over Qp for
It follows that the pair (L, Po) is good in the sense of §4.

The representation pi = is a deformation of po of type-DL,
with DL = (C~, ~). As (L, po) is a good pair, and since property (P)
holds for primes good for all data relative to L and po by Proposition 8.2,
it follows from Proposition 4.1 that pi is pro-modular. The corresponding
homomorphism C~ is clearly algebraic. Thus it follows from Proposi-
tion 3.2 that for some nearly ordinary automorphic representation
of GL2 ~L As the Galois closure of L over F is solvable, the conclusion of
the theorem now follows from known cases of base change for GL2. D

If F = Q then one can weaken hypothesis (ii) of the above theorem.

THEOREM 5.2. 2014 Suppose F = Q and suppose p : Gal(F/F) -~ 
is a representation satisf ying (5.1) . If

(i) pss is irreducible and Dp-distinguished,

(ii) there exists an automorphic representation 7ro of GL2/Q such that
P~o P ,

then p ^_~ p?r for some automorphic representation 7r.

Proof. The key is to prove that hypothesis (it) implies the existence of
a nearly ordinary automorphic representation ~rl such that is a x2-good
lift of for then the theorem follows from Theorem 5.1. If p ~ 3 or if

irreducible, then this follows from [D2, Theorem 6.4],
for instance. The existence of ~rl in the remaining cases is obvious. D

6. Complete intersections and free modules

In the remaining sections we give the proof of property (P) (see Propo-
sition 8.2). These sections do not make use of any results from §§4 or 5.

In this section we describe a criterion for a ring to be a complete in-
tersection and for a module over that ring to be free. This criterion is a



special case of that in [SW1,§5], whose proof is a variant on the patching
argument in [TW] and its refinement in [D3] and [F]. In section §8 we verify
this criterion for certain localizations of deformation rings and associated
modules.

Let k be a finite field of characteristic p, and let A = k[T]. Let K be
the field of fractions of A. Let ~C = {N} be a sequence of strictly increasing
odd integers together with zero. Let n be a fixed positive integer.

We introduce rings AN, BN (for each N E /~) given by

There is a homomorphism BN -> AN given by ti ~--~ (1 + si) + (1 +
2 which we use to identify BN as a subring of AN. We assume that

we are given a ring for each N of the form

with m independent of N. Furthermore we assume that R~~’~ has the fol-
lowing properties:

(i) R(N) is finite and free as an A-module.

(ii) C (xl, ... , 

(iii) 3 a surjective map R~~’~ --* R~°~ of A-algebras. (6.2)

(iv) R(N) is a BN-algebra for N > 0.

Now letting p~~’~ be the prime of R~~’~ corresponding to (xl, ... , , x,.",) (which
we usually abbreviate to p if the N is clear from the context) we assume
two further (and less formal) properties of :

(i) 3 d(0) > 0 such that pd(O) = 0 in R~°~,

(ii) ~~N~~O~N~)2 - An e Tor~r,~, (6.3)
where the free summand A’~ is spanned by xl, ... zn and Tor~N~ is a finite
group whose order is bounded independent of N.

For each 0 ~ a ~ N (a odd or a = 0) we assume given a ring which
has the following properties:

(i) is finite and free as an A-module.



(ii) RN ~ = R~r’~, .

(iii) There are surjective maps of BN-algebras

(iv) is a Ba-algebra (compatible with BN -~ Ba) such that if a > 1,
then

(v) is an Aa ~A K-algebra satisfying (via the map in (iii))

Letting denote the prime corresponding to (x1, ... , x".L) (which we
again write as p if a and N are clear from the context) we assume two
further properties:

(i) 3 d(a) > 0 independent of N such that pd(a) = 0 in 

(ii) ~a~) I (~aN) )2 N A~ ® Tor(N,a), (6.5)

where the free summand A’~ is spanned by xl, ... Xn and Tor(N,a) is a finite
group whose order is bounded independent of N and a.

Associated to the rings we have described we assume given a set of
modules as follows. First we assume given an integer r, independent of N.
Then we assume we are given M ( N ~ a finite satisfying the
hypotheses that

(i) M(N) is a free A-module of rank equal to the rank of AN,

(ii) M(N) is an AN-module compatible with the BN-structure via R(N),

(iii) There is a map M(N) -~ M(°~ of (6.6)

For 0  a  N (a odd or a = 0) we assume that we are given an R(N)-
module quotient of M(N) denoted and satisfying

(i) is a free A-module of rank equal to the rank of A~. .

(ii) MN ? = M(N) , .

(iii) There are surjective maps of R(N)-modules ~ M(N)1 ~

....



(iv) is an R(N)a-module (compatible with the 

(v) is an Aa-module (compatible with the Ba-structure induced
in (iv) ) in such a way that the maps in (iii) are compatible with Ao ~
A3.... The actions of and Aa commute on .

(vi) is a free Aa®AK-module and ®AK/(sl, ... sn) =
®A K.

Furthermore, we assume there exists x(N) E R(N) such that

(i) x(N) annihilates l(sl, ... sn) -~ 

(ii) = t  oo with t independent of N. (6.8)

PROPOSITION 6.1. 2014 R(0) ®A K is a complete intersection as a K-
algebra and ®A K is a free ®A K -module.

This is just the main results of [SW1, Propositions 5.8 and 5.9] in the case
that = for all N and a. The proof proceeds by "patching" var-
ious quotients of the and the thereby constructing a power
series ring Roo and a free Roe-module Moo such that R~°~ ®A K ^_~ Roo/I
and M~°~ ®A K ^_J where I is an ideal generated by n elements. A
complete proof can be found in [SW 1, § 5] . .

7. Selmer groups

In this section we consider a representation

where A - kQ~~. Here we are using the notation and assumptions of §2. We
let K be the field of fractions of A. Throughout this section we make the
following assumptions on p:

. p ~ K is irreducible and not dihedral.

. p mod A = po

. E contains the primes dividing p together with all primes at which po
is ramified.

. If w f p, then p is ramified at w if and only if po is. For all w f p,



. detp = detpo.

2022 (v) *x(v)2) with infinite order for each 

Let F’ be the splitting field of detp adjoin all p-power roots of unity, and
let F+ be the subfield of F’ fixed by the complex conjugation zl. .

LEMMA 7.1

(i) There exists u E such that the eigenvalues of p(u) have
infinite order and are in A.

(ii) There exists u E such that the eigenval-
ues of p(u) have infinite order and are in A.

This can be proved exactly as Lemma 6.3]. The only difference
is that while in the former situation we had to first prove that p is not

dihedral, in the present situation we have ruled that out from the start.

Let U be the representation space for p. This is a free A-module of rank
2 having for each vi|p a filtration 0 C Lh,i C U such that Lll,Z is a free

A-module on which DZ acts via a character reducing to modulo A. The

quotient U2,; = u/ul,i is a free A-module on which DZ acts via a character
reducing to modulo A. If po is ramified at w f p, then there is a filtration
0 C Uf C U such that both Uf and the quotient Ll2 = U /uw1 are free A-
modules on which Iw acts trivially. Let T = {f E adp : trace( f ) = 0}. Let

- ~ f E ~ : f(U) C Lll,Z } Similarly, if po is ramified at w ~ p, then let
TW = ~ f E T : f (Ll ) C We write Tn, ?’~° v and for T /~~,
and respectively. Let 

and let

For each w E ~, put

We define a Selmer group for T~~ by



PROPOSITION 7.2.- Let u E Gal(FE/F’) be an element such that the
eigenvalues of p(u) are in A and have infinite order, as in Lemma 7.1(i). .
Then there exists an integer r = r(p) such that for each m > 0 there are
infinitely many sets Q = {wl, ... , such that

(i) Nm(wi) = 1 mod for each i.

(ii) pp(Frobwi) - pp(r) mod lambda’"’~ for each i.

(iii) (K/A)’’ 
n

with EQ = Eo U Q,  C(u, r)  oo for some constant C(u, r)
depending only on u and r.

This proposition is proved exactly as [SW1, Proposition 6.10], to which
we refer the dedicated reader. The proof is slightly easier in the present
case.

8. Property (P)

We retain the notation and assumptions of §§2 and 3. We further assume
that hypotheses (Heven) and hold. In this section we complete the
proof that property (P) holds for all primes that are nice for some deforma-
tion datum, at least under the present assumptions.

Suppose that D = (0, E, M) is a deformation datum and that p C RD
is a prime that is nice for D. By definition p is the inverse image under rD
of a prime of TD, which we also denote by p. Since p contains p, it is not
difficult to see from Lemma 3.5(i) that p even comes from a prime of Tvin.
We denote this prime by p as well.

Since p is nice for D, the integral closure A of is isomorphic to
for some finite extension k’ of k. Furthermore, under the composite

map 
--:- , .

A is finite over Ao . (This is because of the assumptions on 
Writing 11n = d Qzl , ... , zm] let us suppose that zi H E A with ui
a unit or zero for each i. Then we may take ri > 0 for each i and we may
assume, after possibly renumbering, that 1~1 is a unit. Set

where 0’ is the ring of integers of any local field whose residue field is k’
and which contains O. There is a map Ao --~ A defined by Wi ~--~ A and



W2 H 0 for 2  i  m. Define a homomorphism Ao - Ao by

Here i denotes any fixed choice of lift of Ui to Ao. Then Ao is finite and
free over Ao and we have a commutative diagram of rings

and a similar diagram with Tvin replaced by RDin. From these diagrams
we deduce the existence of primes p of Ao and RDin lin
extending p. It will be convenient to write Tvin for ®~o and

RDin for RJfjn 0Ao Ao from now on. Let and denote the

localization and completions of and Tvin, respectively, at p. The map
rD induces a surjection

Assume now that D = Do (i.e., that E = ~o is the set of primes at which
po ramifies together with P = and that M = Mo = We
will use the criteria of §6 to prove that p) is an isomorphism.

Next we define the needed rings and modules. Let MD = Mp Ao . .
Then we define 

, ,

where is the localization and completion of MD with respect to p
and P C Ao is the prime P = (7r, W2, ..., Wm). We define a ring

where Fo = C (Rvin)p is the Fitting ideal of (Mp)p as an
Note that is an R~°~-module.

Now we introduce auxiliary levels. First we fix a u E as in
Lemma 7.1(i). Then there exists an integer r = r(p) as in Proposition 7.2
with the following property. For each odd integer N there is a set of primes



QN = {wiN~, ... , w;.N~ } of F satisfying - 1 (modpN) as well as
property (ii) and (iii) of Proposition 7.2. We can and do choose the sets QN
to be disjoint from each other as well as from E. For such a set Q = Q N , we
earlier introduced a deformation problem DQ as well as associated Hecke
and deformation rings T1f; and RDQ . In particular at the end of §3 we
associated a TminDQ-module MDQ to DQ. We now set

To each Wi E Q = QN we associated in §3 an element 6w; E
. We let s2 = ~~,~ - 1. We then define, for each odd integer

where the completion is as a TminDQ-module (with respect to p) and Q = QN.
Then is a module over the ring Aa = A~sl, ... ... , 

by construction. We put M(N) = .

Let E Gal(F/F) be as in Lemma 3.5(iii). There is a map of rings

given by ti ~ trace(03C1DQ (03C3wi)-2)~1, where here Q = Q N = {w1,...,wr} .

We define by

where Q = QN and FN = is the Fitting ideal of 

respect to the ring This ring is an algebra over Ba = AQtl, ... , tr]]/

,..., ta+1 2r) by construction. By Lemma 3.5(iii) the action of RaN on
is compatible with the Aa-action of the subring Ba. We define RoN)

by

Now put

Arguing as in the paragraph following [SW1, (7.14)] shows that there is a
natural map MD of TDQ-modules. It follows from [SWl, Lemma



3.26] and the assumption that po is irreducible that this map is surjective.
We define to be

It follows easily that

We now verify that these constructions satisfy the properties in §6 needed
for the conclusion of Proposition 6.1. A bound for the number of generar
tors of R(’) = is given by which is easily
bounded independent of N. We can choose the generators in each case so
that (6.2ii) holds by subtracting suitable elements of The other
properties in (6.2) follow from the definitions.

Next we consider the properties (6.7) of Properties (iii)-(v) are
straightforward, and property (ii) follows from (8.1). Property (vi) can be
checked using [SWl, Lemma 3.19]. Essentially this is done by showing that
one can replace in the definition of MVQ by a subgroup that is suf-
ficiently small in the sense of §3. For details see §7]. Property (6.7i)
follows from property (6.7vi).

The properties in (6.6) are consequences of those in (6.7) as well as of
the definitions of the 

Next we verify properties (6.3i) and (6.5i). Let di(a) = ~A
K). This is independent of N by (6.7vi). Again using (6.7vi)

where denotes the minimal number of generators of the S-module
X. Now annihilates ®A K and hence

From the definition of Q9A K it follows that = 0 in this

ring so we may take d(a) = + 1.

Now we check (6.5ii). Recall that we are given a set QN = ~wlN}, , . , 
of primes satisfying the hypotheses of Proposition 7.2, and that by the same
proposition



with EQ = E U Q N and bounded independent of N. We also have
the usual isomorphism in the style of [W, Proposition 1.2]

The isomorphism is obtained as follows. To an element ~p E ~~ we associate
the representation

This is a deformation of pp with values in and its associated

cohomology class lies in (T~.~). Property (6.5ii) follows easily from this.
We omit the details and refer to §7~ for a more detailed argument in
a similar situation.

It remains to prove the existence of an element as in (6.8). This is
done just as in (SWl, §7~ so we omit the proof.

We have now verified all the hypotheses in §6 and are thus in a position
to prove the following result.

PROPOSITION 8.1. - Suppose that F is a totally real field and that
(Heven) and (Hde f) hold. Suppose that p C TD0 is a prime that is nice
for Do in the sense of §4.2. Then

(i) - is an isomorphism and is a

complete intersection over Ao,p and reduced.

is a free 

Proof. - Our constructions give the following identifications:

By Proposition 6.1, M~°~ (g~ K is free over ®A K. As. the action of
R~°~ ®A K on M~°~ ®A K factors through the composite map R~°~ ®A K --~

we conclude that is a free and that

induces an isomorphism ^_r Picking
generators of M(0) (g) K as an R(0) 0 K-module and lifting them to 

A A ’

we get a map (for some minimal s)



which is an isomorphism modulo P. Since is free over Aa, p it follows
that (8.2) is an isomorphism. In particular is free over Ao, p .

As observed, the reduction mod P of the map

induced by is an isomorphism. Using that is free over Ap
we now deduce that (8.3) is an isomorphism. Under (8.3) Fo maps to zero
as is a free So Fo/PFo = 0 whence Fo = 0. Finally

is a complete intersection since is by Proposition 6.1.

(Note that is reduced as is reduced). This completes the proof
of the proposition. D

Using this proposition, one can deduce as in [SWl, §8] that is
an isomorphism for any D. This is just an application of the congruences
computed in §3.8]. From this one can deduce as in Proposition
8.4] that property (P) holds for any prime that is nice for some deforma-
tion datum. We refer the reader to the aforementioned section of for
detailed arguments. We thus obtain the following.

PROPOSITION 8.2. - Suppose that (Heven) and (Hde f ) hold for F. Sup-
pose that D is a deformation datum. If ~ C RD is nice for D, then

(i) is an isomorphism.

(ii) property (P) holds for ~. .
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