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Pleating coordinates
for the Earle embedding (*)

YOHEI KOMORI (1) AND CAROLINE SERIES (2)

Annales de la Faculty des Sciences de Toulouse Vol. X, n° 1, 2001
pp. 69-105

On étudie les coordonnées de plissage pour la section d’Earle
de l’espace des groupes quasifuchsiens pour un tore 7i épointé. Cette
section Ee est constituée de groupes quasifuchsiens r pour lesquels il existe
une involution conforme e de la sphere de Riemann qui induit la symétrie
rhombique 8 sur r, en echangant les generateurs marques. La section d’
Earle s’identifie naturellement a l’espace de Teichmuller Teich(7í). On
peut la considérer comme extension holomorphe de la ligne des losanges
de Teich(7í) dans Q~’. Les rayons de plissage en Ee sont les ensembles sur
lesquelles les classes projectives de la mesure de plissage du bord du coeur
convexe sont fixes; ils heritent de la symétrie 8. On montre que ces rayons
sont des lignes qui rencontrent la ligne rhombique dans ~03B8 en les points
critiques des fonctions de longeur correspondantes, ainsi on analyse les
rayons de plissage rationnels dans ~03B8 d’apres [10, 11]. On montre qu’ils ne
contiennent pas de singularités et qu’ils forment un feuilletage dense de Ee, ,
ce qui permet de calculer la position exacte de ~03B8 dans l’espace ambient,
voir la Figure 1. En etendant les résultats aux rayons irrationnels, on
obtient les coordonnees de plissage sur E8. .

ABSTRACT. - We study pleating coordinates for the Earle slice of quasi-
fuchsian space for the once punctured torus ?l. This slice consists of
quasifuchsian groups r for which there is a conformal involution e of the
Riemann sphere which induces the rhombic symmetry 8 on r which inter-
changes a pair of marked generators. The slice E8 is naturally identified
with the Teichmuller space Teich(% ) It can be thought as a holomorphic
extension of the rhombus line in Teich(%) into Pleating rays are
the loci in Ee on which the pro jective classes of the bending measure of
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the boundary of the convex core are fixed; they inherit the symmetry O.
We show that these rays are lines which meet the rhombus line in critical

points of the corresponding length functions, and hence analyse rational
pleating rays in E8 following [10, 11]. We show they are non-singular and
densely foliate E8, allowing computation of the exact position of Ee in the
ambient parameter space, see Figure 1. Extending our results to irrational
rays gives pleating coordinates on E8. .

1. Introduction

This paper is about pleating coordinates for the Earle slice of quasifuch-
sian space for the once punctured torus T . A quasifuchsian once punc-
tured torus group is a marked discrete subgroup r ~ of PSL2(C)
whose domain of discontinuity consists of two simply connected invariant
components whose quotients are punctured tori. In [5], Earle introduced
certain special slices of consisting of groups for which SZ+ and n- are
conformally equivalent under a map induced by a given involution 
In this paper, we study the slice which we call the Earle slice, consist-
ing of those groups in C~~ for which there is a conformal involution e of
the Riemann sphere which interchanges SZ+ and and which induces the
rhombic symmetry 8 on r. This means that the induced map on r inter-
changes the marked generators A and B. In particular, a Fuchsian group
lies in ~e if and only if the quotient torus is conformally a rhombus. Thus
~8 can be thought of as a holomorphic extension of the rhombus line in the
Teichmuller space Teich(T1) into 

Earle proved (in the context of closed surfaces of arbitrary genus) that
groups with such a symmetry give a holomorphic embedding of Teich(T1)
into &#x26;F. As is well known, the classical representation of Teich(T1) is the
upper half plane H. Thus in our situation, Se is the conformal image of
H under a Riemann map. In section 3, we write down an explicit family
r(d) = (A(d), B(d) : : d E C) of groups for which the matrix coefficients of
the generators A(d), B(d) are holomorphic functions of d on C* = C B ~0~
and such that Se can be identified with {d E C+ : r(d) E where

C+ _ ~ d E C : ed > 0 ~ . Thus there is exactly one group in C+ for each
conjugacy class of quasifuchsian groups in For d E R+ = R n C+ the
group thus obtained is always Fuchsian, however in general, it is not at all
clear for which d the group r (d) is in 

The method of pleating coordinates, originated in [10], can be viewed
among other things as a method of computing the exact set of parameter



values which correspond to a given quasiconfomal deformation class of a
holomorphic family of Kleinian groups; in the present context, this means
precisely, to determine for which d the group r(d) is in The results of
this paper allow one, among other things, to answer this question.

The method depends on locating what we call pleating varieties in
QF B F, where ~’ is the space of Fuchsian groups. These may be thought
of as loci in ~~’ on which the shape and combinatorics of the dynamics on
the limit set of r are of a fixed type. However it is easier to make a formal
definition in terms of the action of r by isometries on hyperbolic 3-space
H3, as follows.

Recall that a quasifuchsian punctured torus group acts on H3 with quo-
tient H3 /r homeomorphic to ?i x (-1,1). The ends of H3 /r at infinity
are the Riemann surfaces each homeomorphic to ~ . Let C be the
hyperbolic convex hull of the limit set A of r in H3; equivalently C/r is
the convex core of H3/r. The boundary ac/r of C/r has two connected
components /r, each homeomorphic to T . These components are each
pleated surfaces whose pleating or bending loci carry a transverse measure,
the bending measure, whose projective classes we denote pl:i:(r). .

Recall that the set of measured geodesic laminations on a hyperbolic
surface is independent of the hyperbolic structure. Denote by the
set of projective measured laminations on ?~1. For ~, r~ E PML (~1 ) define

= ~q E : pl+ (q) = ,pl-(q) = The variety is
defined to be the set C QF. The philosophy of the method of pleating
coordinates is that it is possible to identify and explicitly compute the exact
position of a dense set of pleating varieties, namely, those for which the
underlying laminations are rational, i.e., consist entirely of closed leaves.
This programme has been carried out for the whole space ~.~’(T’1 ) in ~14~;
the present case, being a one complex dimensional slice, is much simpler, and
this is what we examine here. Rather than use the full force of the results
in [14], we introduce some techniques from complex analysis which depend

being a biholomorphic image of H. We believe the same techniques
should be useful elsewhere.

The maximal number of closed leaves in a geodesic lamination on a
punctured torus, is one. A rational pleating variety in is therefore

specified by two simple closed curves; it is not hard to see that these curves
must be distinct. Let, be a simple closed geodesic on 7i; it is represented
in r by all those elements whose axes project The collection of all such
elements consists of all members of a conjugacy class together with their
inverses. We note that, up to ambiguity of sign, which will not affect our
remarks below, the trace Tr g, 9 E r is constant on this set. A simple closed



geodesic also defines a projective measure class in namely the
class of the transverse 6-measure on its support. Thus for rational ~ E PML,
we may without ambiguity write Tr ~ for the trace of any element of g E r
whose axis projects to the support of ~.

The key point in the pleating coordinate method in the present situa-
tion is first, that for ~, r~ rational, the pleating variety is the union of
connected components of the real locus n for the
known holomorphic functions and second, that the exact position
of these components can be identified and computed as a function of the
parameter d.

Recall that PML(Tl ) may be identified with the extended real line it =
R U oo, in such a way that rational laminations correspond to rational
numbers Q = Q U oo. With this identification understood, for x, y E R,
we let Px,y = {d : pl + ( d ) = x,pl-(d) = y ~ . Then for groups in
~8 B F, we have the further restriction that the boundary components 
are conjugate under the involution so that pl + ( d ) = x if and only if pl - ( d ) =

Applying the pleating coordinate method to ~e we shall further prove
that:

1. provided x ~ ±1, and Px,y = Ø otherwise.

2. The pleating varieties and are complex conjugate em-
bedded arcs in These arcs both limit on a unique point bx repre-
senting a Fuchsian group in the set is closed

3. For each x E Q B ~ ~ 1 }, bx is the unique critical point of the function
Trx on the positive real axis. This point is a minimum of 
Further, Tr x is strictly monotonic on and the only other limit

point of in C is a point ex E 8~8 representing a cusp group at
which = 2.

4. The rational pleating varieties are dense in ~e .

This allows us to draw the picture shown in Figure 1. The positive real
axis R+ represents Fuchsian groups with the rhombic symmetry, and only
the upper half of the Earle slice is shown, the picture being symmetrical
under reflection in the real axis. As in [10, 14], we use normalised complex
length as a substitute for the trace function to interpolate the irrational
rays; on an irrational ray the point bx is the unique critical point of this
normalised length on R+ .



Fig. 1. The Earle Slice. Courtesy of Peter Liepa.
This is the upper half of the Earle slice; the complete picture is symmetrical under
reflection in the real axis. The slice meets the real axis in the interval (0, oo) consisting of
points representing the Fuchsian groups in This interval is the image of the semicircle
centre 0 radius 1 representing rhombi in Teich(’1í) under the Riemann map from ~ :

and 

The lines shown are rational pleating rays: the imaginary axis {iy : y > 1} above i maps
to the pleating ray while {iy 0  y  1} maps to Each ray ends in a cusp
group, the boundary point x E Q being mapped to the cusp point cx .

In so far as possible, the methods of this paper have been kept inde-
pendent of those in [14], so as not to obscure the much simpler situation
in this present context. In dealing with the irrational pleating varieties,
however, we need to use some rather general principles developed in [14],
notably what we have stated as theorem 6.13 in section 6. We also refer to
McMullen [24] who has used completely different techniques to prove the
existence of pleating coordinates for Bers slices; we note however that his
methods give existence only and do not allow one to locate the pleating
varieties explicitly as we do here.

The paper is organized as follows. In section 2, we set up notation and
prove Earle’s theorem in our context. In section 3 we derive an explicit pa-
rameterisation and discuss some basic symmetries and the relation with the



classical Teichmuller space of flat tori. In section 4 we explain the enumera-
tion of simple closed curves on the punctured torus and derive some prelim-
inary results about rational pleating varieties. The serious work begins in
section 5 where we prove our main result theorem 5.1 about the structure
rational pleating varieties, including most of the points listed above. Finally
in section 6, we show how to interpolate the irrational rays and prove our
main results theorems 6.16 and 6.17. The appendix 1 contains a summary
by Peter Liepa of the method used to draw figure 1. In appendix 2, we show
that pleating rays in E8 are not in general geodesics with respect to the
hyperbolic metric on ~03B8 induced by the canonical Riemann map from H to

A similar result for pleating rays in the Maskit embedding was recently
proved by Matthews [23].

We wish to thank Peter Liepa for his kind assistance with computer
graphics and calculations, which have been most helpful as we proceeded
with this work. The first author would like to thank the Mathematics In-
stitute of Warwick University for hospitality during the preparation of this
paper and the second would like to thank the Royal Society and Osaka City
University for financial support.

2. Punctured tori and the Earle slice

Let T’1 be an oriented once-punctured torus. An ordered pair a, /3 of
generators of is called canonical if the algebraic intersection number
of a and /3 with respect to the given orientation of T is equal to +1. The
commutator ~a, ~3~ = a~3a-1 ~3-1 represents a loop around the puncture.

A discrete subgroup r C PSL2 (C) is called a quasifuchsian once punc-
tured torus group if it is the image of a faithful representation p : ~r1 (?’~1 ) -~
PSL2 (C), such that p([a, ~3~ ) is parabolic and such that the region of dis-
continuity H for the action of r on the Riemann sphere C has exactly two
simply connected invariant components SZ~ . The group r is marked by the
ordered pair of generators A = p ( a ) B = p ( ~3) .

The quotients are both homeomorphic to ?rl and inherit an orien-
tation induced from the orientation of C. We choose the labelling so that
SZ+ is the component such that the homotopy basis of induced by the
ordered pair of marked generators A, B of r is canonical. The group r is
Fuchsian if the components S2~ are round discs.

The following theorem is an adaptation of the main result of [5], see
also [19, 20], to the present case. The proof is essentially the same as the
original one given for the case of compact Riemann surfaces of genus greater
than two. Recall that an isomorphism of Kleinian groups is called type pre-



serving if it maps loxodromic elements in PSL2(C) to loxodromics and
parabolics to parabolics.

THEOREM 2.1. - Let B be an involution of ~rl (~’1 ) induced by an ori-
entation reversing diffeomorphism of a Riemann surface ?-1. Let (a, a) be a
homotopy basis of ~rl (T ) canonical with respect to the orientation induced
by the conformal structure on Tl. Then, up to conjugation in PSL2(C),
there exists a unique marked quasifuchsian group p : 03C01(T1) ~ r = (A, B), ,
such that:

1. There is a conformal map Tl --~ 52+/r inducing the representation p.
2. There is a Möbius tmnsformation 0398 E PSLZ(C) of order two, which

restricts to a conformal homeomorphism -~ 52~, such that

6(-yz) = B(y)6(z) for all -y E rand z E C. .

P~roof. - First we show the existence of a marked quasifuchsian group
r = (A, B) satisfying the above conditions. Fix a holomorphic universal
covering map from the upper half plane H to Tl, identifying ~rl (T ) with the
group G of covering transformations. By hypothesis, there is an orientation
reversing diffeomorphism of T that induces the involution B. Choosing a
particular lift of this diffeomorphism of ?-1 to H, we get an orientation
reversing diffeomorphism f : H -~ H satisfying I(gz) = 0(g) f(z) for all
g E G and z E H. We remark that 6 is a type preserving isomorphism of
the Fuchsian group G. Put h(z) = f(z) for z in the lower half plane H*.
Then h is an orientation preserving diffeomorphism from H* to H satisfying
h(gz) = 9(g)h(z) for all g E G and z E H*. Now we can define a Beltrami
differential ~ with respect to G by

It should be remarked that we can choose the diffeomorphism of 11. to be
quasiconformal, and that lifting this diffeomorphism, one automatically gets

~  1. By the Measurable Riemann Mapping Theorem ~1~, there exists
a quasiconformal map w : C -~ C, unique up to conjugation in PSL2 (C) ,
which satisfies the Beltrami equation wz = . Hence w and w o h-1
are conformal on H. Put r = A = w03B1w-1 and B = 
Then r = (A, B) is a marked quasifuchsian group with invariant regions
of discontinuity SZ+ = w (H) and n- = w(H*). . Since the conformal map
w : : H -~ SZ+ induces the conjugacy between G and r, it projects to a
conformal map Tl --~ satisfying condition (1). Moreover M = :

SZ- -~ S~+ is conformal. We claim that M is in fact a Mobius transformation.
Put e = M in n- and e = M-1 in H+. Then for all ~y E r, we have



= 8(,) in the region of discontinuity H, so that e induces the
type preserving isomorphism 8 from r to itself. The Marden Isomorphism
Theorem [21] states that if r is a geometrically finite Kleinian group of
the second kind, then a conformal map from St to itself which induces a
type preserving automorphism of r is a Mobius transformation. Thus e is
Mobius; moreover by construction, 82 = id on H, which means that 6 is
elliptic of order two and satisfies condition 2.

Next we show the uniqueness of r = (A, B) up to conjugacy in PSL2 (C).
For i = 1, 2 assume that ri = (A2, BZ) are marked quasifuchsian groups ri =

Bi) with invariant regions of discontinuity S2~ satisfying the conditions
of the theorem with the Mobius transformations e; : : ot. Then
condition 1 gives a conformal map H : ot so that in SZ2 we have
HA1H-1 = A2 and HB1H-1 = B2. Put F = H in of and F = 
81 in 01. Then F maps S21 to S22 inducing a type preserving isomorphism
from ri to r2. The Marden Isomorphism Theorem again shows that F is a
Mobius transformation, which gives the result. D

Theorem 2.1 shows that the map sending (Ti; a, ~3) to (S2+/r; A, B) de-
fines a holomorphic embedding of the Teichmuller space Teich(T1) of T1 into
the space of marked quasifuchsian punctured torus groups
modulo conjugation in PSL2(C). The idea is that the quasi-conformal de-
formation space De f (G) of the Kleinian group G = (r, 6) is a holomor-

phic submanifold of Def(f) = naturally isomorphic to Teich(S2/G) _
Teich(%). The embedding depends only on the choice of the involution 0
of We call the image, an Earle slice of and denote it ~B. In the
next section, we make an explicit choice of 8, and show how to realise the
corresponding slice as a domain in C.

3. Parametrisation of the rhombic Earle slice

3.1. Parametrisation

Let 8: 1r1(1i) be the involution 0(a) = (3, B(/3) = a. Clearly,
0 satisfies the condition of theorem 2.1. We begin by finding an explicit
parametrisation of the groups in the corresponding Earle slice which we
call rhombic becaoe this slice can be thought of as a holomorphic exten-
sion of the rhombus line in Teich(T1) into Q:F, c.f. proposition 3.8. The
parametrisation turns out to be essentially the restriction of Jørgensen’s
parametrisation [7] of ~.~’(Ti).

Suppose that 8 is induced by the elliptic transformation 8 and denote
the commutator [A, B] by P. By assumption, P is parabolic; denote its fixed



point by xp. Since = B, we have = and it follows that

xP is also a fixed point of 6. From now on, B will always denote this explicit
involution and ~B will denote the corresponding Earle slice.

THEOREM 3.1. - Let a, ~i be a canonical pair of generators for 
and let B be the involution defined above. Let p : ~rl (Ti ) ~ PSL2 (C) be
a marked quasifuchsian punctured torus group in the Earle slice £e. . Then,
after conjugation by Möbius tmnsformations if necessary, we can take rep-
resentatives of A = p(a), B = p(,Q) in SL(2, C) of the form A = A(d),
B = B(d) d E C* where

The parameter d2 is uniquely determined by p. The pairs of matrices
A(d), B(d) and A(-d), B(-d) are uniquely determined by p and the nor-
malisation P(z) = z + 2 and 6(z) = -z.

Proof. - Writing P = [A, B] and using the remark about fixed points
above, we can normalise so that P(z) = z + 2 and 8(z) = -z. Because r is
a discrete subgroup of PSL2(C) and P is a commutator, when we lift r to
SL2 (C) the representative of P in SL2(C) is

We remark that Tr P = -2, because if Tr P = 2, then A and B have a
common fixed point (see theorem 4.3.5 (i) in [2]), which implies that r
must be elementary, a contradiction.

The point is a fixed point of 6, and we deduce that
(00) = 0 . Combining this with = B we find ~r AB = 2 + ~ .

Now writing P = we find expressions for A, B and AB
which have the stated form. D

Remark 3. 2. - We can also characterize the Earle slice Ee in terms of
trace functions on QF. Setting = ’I~ AB, where
A, B are the generator pair of the marked group r = (A, B) in gives
an embedding of ~~’ into ~(x, y, z) E C3 : x2 + y2 + z2 = In ~7~,
Jørgensen gives the following explicit formula for the generators A, B of r
in terms of the traces x, y, z, with the normalisation [A, B] : z - z + 2:



With e(z) = -z as above, 8Ae-1 = B implies Tr A = ~ B. Conversely
if TrA = TrB, one checks that 0398A0398-1 = B. One concludes that ~03B8 =

{(~, y, z) E C3 : x = y}~

We have not been able to ascribe an obvious geometrical meaning to
our parameter d. However one can see it determines the group as follows.
The parameters x = Tr A, y = Tr B and z = Tr AB determine the marked
group (A, B) up to conjugacy in PSL2(C). Assuming that x = y, then the
Markov equation x2 -~ y2 + z2 = xyz implies that y/z determines x. In our
notation, y/z = d.

We write r(d) = (A(d), B(d)) C SL2(C) for the marked group corre-
sponding to the parameter d. The trace 2+ ~ of A(d)B(d) is an invariant up
to conjugation of r(d). We note also that ~ = 2(d2 + 2). The
choice of sign ~d corresponds to the ambiguity in lifting r(d) to SL2(C).
Thus d2 distinguishes groups r(d) up to conjugation, and in particular is a
holomorphic global coordinate for fe, see [19, 5].

PROPOSITION 3.3. - The group r(d) is Fuchsian if and only if
d E R* = R - {0}. In addition, R* C £e.

Proof. - If d E R* then r(d) C PSL2(R) and A(d), B(d) and A(d)B(d)
are all hyperbolic since their traces equal Za~+1, and 2 + ~ respec-
tively. One can easily verify that the region outside the isometric circles of

and (if d ~ ~ ), or of and

(A(d)B(d)-1)±1, (if d 1 2), and between the lines Rz = ±1, satisfies all
the conditions for Poincaré’s theorem and hence that r(d) is discrete and
free, see also theorem 2.1 [8]. .

Conversely if r(d) = (A(d), B(d)) is Fuchsian, then the traces ’I~ A(d) =

~~- and = 2 + ~ are both real, hence d ~ R* . D

We note in passing that by recent powerful results of Minsky [25], r(d)
is a punctured torus group if and only if d E ~B. On the other hand, there
are certainly discrete but not torsion free groups r(d) outside see [28].

Let c : C -~ C denote complex conjugation. This induces a symmetry of
Se , as follows.

PROPOSITION 3.4. - The set le is invariant under complex conjuga-
tion. We have SZ(d)+ = ~(S2(d)-), and the natural action of the marked



group r(d) = (A(d), B(d)) on S2(d)+ is the same as the action induced by
conjugating the action of r(d) = (A(d), B(d)) as a marked group on 

Proof. - The group r(d) = (A(d), B(d)) is the conjugate of r(d) by .
Clearly, r(d) is also a quasifuchsian once punctured torus group and, since
P(z) = z+2 and 6(z) _ -z commute with ~, it belongs to By considering
fixed points, we see that = A(d), and hence = SZ(d). The
generators A(d), B(d) are a canonical pair in ~(SZ(d)-) and the result follows.

D

PROPOSITION 3.5.- The imaginary axis {d E C : Re(d) = 0} is out-
side £B.

Proof. - From the trace equations = 2 + ~ and 
= 2(d2 + 1), A(d)B(d) and are elliptic on {d = iy E

C* : 1} and {d = iy E C* : 1} respectively. On the other hand,
any group r(d) for d is free and discrete, hence cannot contain elliptic
elements. The result follows. D

As a consequence of proposition 3.5, we can choose the parameter d for
parametrising ~B in the right half plane C+ = {d E C : Red > 0}, giving
an embedding of £B into C+. In other words, d is a holomorphic global
coordinate for ~B. From now on, we shall identify points in ~B with their
image in this embedding. We sometimes refer to the positive real axis as
the Earle line and denote it from proposition 3.3, we have .~e = Ee n .~’
where F is the space of Fuchsian punctured torus groups.

3.2. . Symmetries of ~03B8

We have already seen in lemma 3.4, that complex conjugation defines an
anti-holomorphic involution of There is also a holomorphic involution a.

PROPOSITION 3.6.- The map u(d) = 2d defines a holomorphic invo-
lution of £B. . The action of the marked group r(Q(d)) = (A(Q(d)), B(Q(d)))
on 52(Q(d))+ is conforrnally equivalent to the action of the marked group
r(d) = on S2(d)+. °

Proof. - Let r(d) = (A(d) B(d)) be a marked quasifuchsian group in
£B. The pair B(d), is also a canonical set of generators for r(d),
with the same components S2(d)t as r(d) = (A(d), B(d)). Thus using the
same conformal involution ~, we verify the conditions of theorem 2.1 for the
group (B(d), A(d)-1). In other words, is also in EB and so



there exists a(d) such that r(o’(d)) = (A(Q(d)), B(Q(d))) is conjugate
as a marked group to r(d) = (B(d), A(d)-1). We have

so that a(d) = where we choose the sign to ensure > 0. D

Remark 3.7. - In fact, one can verify directly that C 0 1 1 1 )
conjugates 0393(03C3(d)) _ A(03C3(d)), B(03C3(d))~ to r(d) = (B(d), A(d)-1). .

3.3. The Earle slice and the classical upper half plane

The Teichmuller space Teich(T1) of once punctured tori can be naturally
identified with the upper half plane H. Briefly, for any T E H, let G(T)
denote the marked group generated by ~--> z +1 and B (T) : z H z + T.
We consider G(T) acting on C(T) = {z E Clz 7~ ~ + mT for m, n E Z}.
The generators I and 11 (T) define a canonical homotopy basis of the marked
Riemann surface C(T)/G(T). This correspondence defines the conformal
map from H to Teich(1í). By composing the natural conformal map from
Teich(T1) to EB defined in theorem 3.1, we have a conformal homeomorphism
~ : : H  which we again call the Earle embedding. The following result
relates the symmetries of H and EB.

PROPOSITION 3.8. - 1. o a o = 

2. Under the Earle embedding ~, the semicircle {T E H : ~T~ = 1}
corresponds to the Earle line 

3. = 1‘T.

Proof

1. The proof of proposition 3.6 shows that a is the involutive element of
the Teichmuller modular group which replaces the canonical genera-
tors A(d), B(d) with the pair The corresponding map
on the T plane is induced by T -~ -1/T.

2. Following [8], a marked punctured torus (S; a, (~) is called rhombus

if S admits an anticonformal involution which induces the involution
of sending a to a. Then {T E H : ~T~ = 1} in H and in

eo are the rhombus line in their respective embeddings of Teich(1í).
Therefore the Earle embedding ~ maps {T E H = 1} to 



3. Assertion 3 follows from Assertion 2, because .~B and {T E = 1 }
are the fixed point sets of c and T -~ 1/T respectively. D

From this proposition, we can deduce that = and that
E C : : y > 0}) is the intersection of the circle centre 0 and radius
with Ee. .

4. Simple closed curves and the pleating locus

4.1. Simple closed curves

Denote by S, the set of free unoriented homotopy classes of simple closed
non-boundary parallel curves on Tl. As is well known, this set may be natu-
rally identified with Q = QUoo. One way to see this is described in [30], see
also [31, 3]. Let jC denote the integer lattice m + in, m, n E Z C C. Topo-
logically 7i is the quotient of the punctured plane C(i) = C - jC by the
natural action of G(i) = (~4, B(z)) = Z2 by horizontal and vertical transla-
tions. A straight line of rational slope in C - £, projects onto a simple closed
curve on the marked punctured torus S(i) = C(i)/G(i), and the projection
of all lines of the same rational slope and the same orientation are homo-
topic. We denote the unoriented homotopy class obtained by projecting the
line of slope -q/p by [Lp/q]. Relative to our choice of marking, [Lp/q] is in
the homology class of or aP {3-q on Tl, where a, /3 are projections of
horizontal and vertical lines corresponding to A, B(i) respectively. Setting
1/0 = oo, we obtain:

PROPOSITION 4.1. - The map  ~ S defined by P/q ~ [Lp/q] is well-
defined and bijective.

Proof. - See [30, 3] or [31]. . D

Remark l~.2. - The reason for the choice of convention that [Lp/q] cor-
responds to is that if we identify the Teichmüller space Teich(T1) of
once punctured tori with the upper half plane H, then one can easily com-
pute that the boundary point p/q E R, is the point where the extremal length
of curves in the class [Lp/q] has shrunk to zero, see also lemmas 5.3, 5.4,
and 5.5.

Suppose that p : : ~rl (Tl ) -~ r C PSL2 (C) is a quasifuchsian punctured
torus group, marked as usual by generators A = p(a), B = p((~). We denote
the unique geodesic in the homotopy class of p([Lp/q]) in H3/r by In



particular, for d E ~B, we denote by the corresponding geodesic in
H3/r(d).

In [32], D. Wright gave a beautiful recursive scheme for finding, for each
Q, an explicit word Wp/q in the marked generators (a, /~) of 

representing [Lp/q]. Although this scheme is not logically necessary in what
follows, since we deal entirely with traces which depend only on conjugacy
classes in r(d), it is essential for carrying out computations. We record it
here, see also [10] for details.

The words are generated from the initial data

by the formula

whenever p/q  r/s and ps - qr = -1.

It is easy to see that Wp /q is in the correct homology class; to see that it
represents a simple curve, observe that the curves represented by the genera-
tor pair Wo/i = /3, Wi/o = are both simple, and that for any p/q  r/s
with ps - qr = -1, both (Wp /q, and (W(~+T)/(q+s), Wr/s) are
marked pairs of generators obtained from the previous pair (Wp/q, Wr/s )
by a Nielsen move (equivalently a Dehn twist) about one or other of Wp/q
or Wr/s. . We also note that the recursion is set up in such a way that

~W~/Q, = whenever p/q  r/s and ps - qr = -1.

The canonical isomorphism ~rl (S’) --~ rd, d e sending cx, ~i to A(d), B(d),
allows us to identify Wp/q with a specific element of r(d) .

4.2. The pleating locus

We are now ready to discuss the convex hull boundary and the pleating
locus. Let d and let r = (A(d), B(d)) be the corresponding marked
quasifuchsian group with regular set and limit set H, A respectively. The 3-
manifold H3/r is homeomorphic to 7i x (0,1). The surfaces SZ/r at infinity
form the boundary 7i x ~0,1 ~ . As in the introduction, let ~G be the bound-
ary in H3 of the hyperbolic convex hull of A; it is clearly invariant under the
action of r. The nearest point retraction 03A9 ~ ac, defined as in [6] by map-
ping x to the unique point of contact with ac of the largest horoball
in H3 centered at x with interior disjoint from ac, can easily be modified
to a r-equivariant homeomorphism [12]. We denote two connected compo-
nents of o~G corresponding to by 8C respectively. Thus each component

is topologically a punctured torus. (In the special case in which r



is Fuchsian, 9C is a flat plane whose two sides serve as a substitute for the
two components 

As shown in detail in [6], are pleated surfaces in H3 Ir. More
precisely, there are complete hyperbolic surfaces S~, each homeomorphic
to Tl, and maps /~ : : S~ -> H3 Ir, such that every point in S~ is in the
interior of some geodesic arc which is mapped by to a geodesic arc in

and such that induce isomorphisms - r. Further, f ~
are isometries onto their images with the path metric induced from H3.
The bending or pleating locus of consists of those points of con-

tained in the interior of one and only one geodesic arc which is mapped by
to a geodesic arc in H3 Ir. For r non-Fuchsian, the pleating loci are

geodesic laminations, meaning they are closed unions of pairwise disjoint
simple geodesics on S:f:. We denote these laminations by ~ (d) ~, and usu-
ally identify such a lamination with its image under in H3/r. (See also
section 6.1 below, especially for an explanation of the notation.) Motivated
by the identification of laminations on ?i with R (see the introduction and
section 6.1), a geodesic lamination is called mtional if it consists entirely of
closed leaves. For the moment, we concentrate on the special case in which
at least one of the pleating loci is rational. (It will follow from our results
that in this case the other will be automatically rational too.) Since the
maximum number of pairwise disjoint simple closed curves on a punctured
torus is one, such a lamination consists of a single simple closed geodesic
and is therefore of the form for some p/q E Q.

For r/s E Q, define:

and

We call the (p/q, r/s)-pleating variety or pleating ray. This termi-
nology will be justified by theorem 5.1 below.

It is clear from the definitions that n ~Q~,r~ ~s~ = (b unless
p/q = p’/q’, r/s = r’/s’. We can deduce some further easy properties from
the symmetries ~, c. This uses the following lemma which is a restatement
in the present situation of lemma 2.1 in ~17J .

LEMMA 4.3. - Let j : C be an conformal or anticonformal bijec-
tion. Suppose that the pleating locus ~ of the marked group



r(d) = (A(d), B(d)) consists of a simple closed geodesic represented by a
word W(A(d) B(d)). . Then the pleating locus of the marked group

is a closed geodesic represented by the word 

Roughly, this works because the convex hull can be defined in terms of
maximal round disks inscribed inside the regular set and round circles are
preserved by conformal maps. The condition that a certain simple closed
geodesic is the pleating locus becomes the condition that its fixed points are
the intersection points of two maximal inscribed disks.

Applying this lemma to the involutions 9, ~ and cr we find:

COROLLARY 4.4. - Suppose that d E £B and that d E . Then

1. d E 

2. d E ’ and

3. Q(d) E .

Proof
1. Suppose that I = Apply lemma 4.3 to the involution

e : Z t-+ -z sending to O-(r(d)) and the marked generators
A(d) B(d) to the marked generators B(d), A(d).

2. From 1, we have ] = so that the pleating locus of the
marked group r(d) = (A(d), B(d)) in the component is rep-
resented by the word Wq/p = Wq/p(A(d), B(d)). Then by the lemma,
the pleating locus of the marked group r(d) = (A(d), B(d)) otr
tained by conjugating the action of r(d) = (A(d), B(d)) by ~, in the
component c(8C(d)-), is a closed geodesic represented by the word

On the other hand, by lemma 3.4, the action of

r(d) = (A(d), B(d)) on c(S2(d)-) is the same as the action of r(d) =
(A(d),B(d)) on S2(d)+. Thus =’YQlw

3. By construction, the action of r(l1(d)) = (A(~(d)), B(Q(d))) on
S2(Q(d))+ is the same as the action of r(d) = on

S2(d)+. Applying the lemma, we find that if = so that

the pleating locus of r(d) = (A(d), B(d)) acting on S2(d)+ is rep-
resented by the word Wp/q(A(d),B(d)), then the pleating locus of
r(d) = (B(d), is represented by the word Wp/q(B(d), 
Clearly from the definitions, = W(-q/p)(A(d),
B(d)), giving the result. D



Combining these results we find:

PROPOSITION 4.5. - The sets x, y E Q are pairwise disjoint and:

Prroof. - The first part of the statement is obvious from the definitions.
It is not hard to see ([13] proposition 3.3 and corollary 3.4), that, if r (d)
is not Fuchsian, the same geodesic cannot be simultaneously contained in
both sides of hence 0. The remainder is just a restatement of 4.4
above. D

We remark that since (f fixes the union of pleating varieties U
it follows from proposition 3.8 that U corresponds to the

imaginary axis in the upper half plane model of Teich(1í).
From now on, we shall write for We deduce immediately

that

COROLLARY 4.6. - The pleating varieties are empty.

We shall prove in theorem 4.10 below, that P~ ~ ~ . The
geometrical explanation why = 0 is that the projection of the involution
e to H3/r(d) exchanges the boundaries of the convex core, whereas it fixes
the two geodesics corresponding to words A(d)B(d) and .

4.3. Traces and pleating rays

In this section, we collect some deeper facts about the pleating varieties
for p/q E Q, which will be the key to our proof of the main theorem 5.1.

For any p/q E Q, consider the trace Tr Wp/q of the special word Wp /q
associated to p/q by the Wright recursion rules above. For d E C * , we have a
representation p : 03C01 (T ) ~ SL(2, C), so that we may consider the function
Tp /q (d) = Tr Wp/q(d) as a rational function on C*. We define the hyperbolic
locus of Tp/q to be the set

The following proposition gives some basic properties.



PROPOSITION 4.7. - For all p/q E G~: :
1. The Earle line Xe is contained in the hyperbolic locus 

2. Tp /q = Tq /p and hence Hp/q = 
.

3. The pleating varieties and Pq /p are contained in .

Proof.
1. If r(d) = (A(d), B(d)) is Fuchsian, then Wp/q is hyperbolic.

2. = B(d) and the fact that traces depend only on conjugacy
classes implies that =’I~(9WP~q9-1) = 

3. This is lemma 4.6 of [10]. The proof is as follows. For any d E the

axis Ax Wp/q(d) is a lift to H3 of the pleating locus fp/q of 8G(d)/r(d).
This axis is the intersection of two support planes of 9C(d). Because
Wp/q(d) preserves it leaves these planes invariant, hence is
purely hyperbolic. D

By statement 3 above, for p /q E Q, the pleating variety is contained
in the hyperbolic locus However (see ~10~), the converse is not always
true. Theorem 4.8 below gives a much deeper relationship between rational
pleating varieties and hyperbolic loci. The main point is that is both

open and closed in B Similar results are proved in proposition 5.4
of [10] and theorem 3.7 of [11]. A more general result involving irrational
pleating laminations is proved in [14] ; this we shall smnmarise and use in
section 6. Here, we sketch a proof along the lines of [10] and [11].

A subgroup F of r(d) is called F- peripheral if it is Fuchsian and if one
of the two open discs bounded by the circle containing the limit set A(F) of
F contains no points of A(r(d)). We call this open disc the peripheral disc
of F and denote it by A(F).

Peripheral discs correspond exactly to the circle chains discussed in [10].
For d E there are exactly two distinct conjugacy classes C+, G- of
F-peripheral discs, corresponding to the two components of 8G(d). Discs
in C+ intersect along lifts of the axis of fp/q at an angle ~9, say, while discs
in C- intersect in the same angle along the axes of lifts of "y (?/?). No disc
in C+ intersects any disc in C-. The union of the discs in C+ is exactly St+
and the union of the discs in C- is Q". The limit set A(r(d)) is the common
boundary of these two families of discs. In the special case in which d E 
~9 = 0 and all the discs in C+ degenerate into one disc whose boundary
consists of the entire limit set A(r(d)).



Let Up/q be the set of subgroups of r(d) generated by V = V(d) and
= with the condition that V represents the

free homotopy class of and V and W generate r(d). A key idea needed
for the next theorem is the following result (c.f. proposition 3.6 in [11]):
d B is contained in if and only if r(d) has an F-peripheral
subgroup F = E Up/q and C S2(d)+.

Now we can prove our theorem.

THEOREM 4.8. - The mtional pleating variety is open and closed
in ~ 

Proof. - First we show the openness. Let do E be a point ofPp/q.
Then r(do) has an F-peripheral subgroup F(do) E Up/q. The peripheral
disc A(F(do)) of F(do) is covered by images of a fundamental domain for
F(do) acting in whose sides are a finite number of geodesic arcs
whose endpoints can be taken to be specific fixed points of elements of F(do).
Under a small variation of d in which F = (V, remains Fuchsian,
these arcs do not move much and still define a fundamental domain for

F(d) acting in the disc bounded by A(F(d)). As in proposition 3.1 of ~11~, it
follows that F = F(d) remains F-peripheral. Now as in lemma 3.2 in ~11~,
d E implies that F(d) is Fuchsian. Since £B is open in the right
half plane, we conclude that is open in Hp/q B 

Now we show the closedness. Consider dn E with dn - d~ E
B Fe. As in [11] theorem 3.7, the groups r(dn) have F-peripheral

subgroups F(dn) = (V(dn), W(dn)V(dn)W-I(dn)) E The limit group
is clearly Fuchsian, and the circle containing bounds an

open disc which is the limit of the peripheral discs 0(F(d~ )). It is easy to see
by a limiting argument that this disc contains no limit points of and
hence that is also F-peripheral. Hence we conclude that E 
which shows that pp/q is closed in ~ . D

COROLLARY 4.9.- The rational pleating variety is a union of
connected components of B .~8.
We remark that since is defined without reference to £B, this corol-

lary gives a way of determining whether or not d E eo, without having to
test discreteness of r(d) in any other way. Thus it is a vital key to finding
the location of eo C C*.

The following result based on [13] shows that, for p/q E Q B {iLl},
the pleating variety is non-empty. This is a key point in the study of
pleating coordinates. A more general result is given in theorem 8.9 in [14]
which we shall need in the last section.



THEOREM 4.10. - If d in the hyperbolic locus and

sufficiently near the Earle line , then d E Pp/q U Pq/p. .

Proof. - Following [13], we shall construct directly a component of
8G(d) whose pleating locus is 

Let V = E r(d) represent the free homotopy class of and
choose W E r(d) such that V, W are a generator pair. Since d E 1-lp/q
and the commutator (V, W~ is parabolic, the group F = is
Fuchsian. Let S be the common perpendicular to the axis Ax V of V and

and let W’ be the unique element of PSL2(C) which sends
AxW-1VW to Ax V in such a way that the complex distance between
b and W’(8) is real and equal to the real part of the complex distance
between J and W(S). Clearly, the group G(d) = (V,W’) is Fuchsian. The
map x : : V, W’ ~--> V, W defines a natural isomorphism of G(d) with r(d),
and since = the groups G(d) and r(d) have F as a
common Fuchsian subgroup.

Denote by D the hyperbolic plane in H3 containing Ax V and
Since Gd is Fuchsian, its action leaves D invariant. We are

going to define a pleated surface map from (D, G(d)) to a bent surface
(D, r(d)) in H3. Let N be the Nielsen region of F acting in D, and let D =
r(d) . N C H3. Define § : D --~ D by ~(g(z)) = x(g)(~(z)), g E Gd, zEN.
It is not hard to see that § is a pleated surface map whose image surface D
is bent along the r(d)-orbit of Ax V and whose flat pieces are the r(d)-orbit
of N. The bending angle ~9 is the angle between the planes containing N
and W(N), which can be measured as the imaginary part of the complex
distance between 8 and tV(~). We want to conclude that for d near D
is a component of 9C(d).

As in [13] proposition 7.2, if is sufficiently small, then § : D -~ D is
an embedding and D is one of the two components of 8C(d). In our case
this condition is satisfied since 1J = - 0 whenever d - along

(In [13] we studied only deformations in which the length of was

held constant. However it is clear that for sufficiently small deformations all
the necessary estimates work even if varies, see also the discussion
in [13] proposition 7.6.) From its construction, D has as its pleating
locus, hence d E U Pq/p. D



5. Rational rays: the main theorem

We are now able to deduce our main result about the rational pleating
varieties P p / q.

THEOREM 5.1. - For any p/q E Q with p/q ~ ~l, is an embedded
arc in ~03B8. The set of limit points of Pp/q in C B Pp/q consists of the two
endpoints of the arc: a point on a£e at which = 2, and a
point bp/q E which is the unique critical point ofTp/q(d) on 

This theorem justifies the terminology pleating rays. The rays are the
arcs shown in figure 1 on page 73. Figure 2 shows the real loci of T2 (left)
and T3 (right) in the first quadrant of the d-plane C.

Fig. 2. Real loci of the trace functions T2 and T3

We need several lemmas.

LEMMA 5.2. - For any p/q E Q with p/q ~ ~1, the trace function Tp /q
restricted to the Earle line F03B8 is proper and has at least one maximum or
minimum on 

Proof - Let be the simple closed geodesic corresponding to p/q
on SZ (d) + /r (d) . For d E the group r (d) is Fuchsian and the hyperbolic
lengths of curves on SZ (d) ~ /r (d) (with respect to the Fuchsian uniformi-
sation of the complex structure) are given by the corresponding traces of
elements in r(d) as 2cosh’~ ~~. Because = =



4d2 + 2 and = 2 + 1 d2, the hyperbolic length of 03B31/1
goes to 0 when d -> 0 along and similarly the hyperbolic length of 
tends to 0 as d ~ oo. The axis of any simple closed geodesic ~ ~1
intersects both of on 8Gd /r(d) and so whenever the length of 
tends to zero, the length of tends to infinity by the collar lemma. The
conclusion about the critical point follows since the sign of Tp/q is constant

D

To make precise the connection between the classical upper half plane
picture of Teich(T1) and the Earle slice, we have to use conformal invariants,
so we need to consider extremal length, see for example [1]. We can then
make a standard comparison between extremal and hyperbolic lengths of
short curves.

LEMMA 5.3. - Consider H as the Teichmüller space Teich(lí) as ex-
plained in section 3.3. Let Cp/q(k) be the set of T E H such that the extremal
length of the homotopy class [Lp/q] in CT/GT is less than k, and let Cp/q(k)
be the closure of in C. Then: Cp/q(k) n 8H = {P/q}; if kl > k2
then ~ Cp/q(k2); and = ~p~q}~

Proof. - By definition, [Loo] corresponds to the element ui E G(T),
A(z) = z+1. The boundary is the horizontal line ~T = 1/k (see e.g.
example 1 in P. 12 of [1]), so that in this case all the claims are immediate.
Now the modular group PSL2(Z) acts on H as the mapping class group of
Tl, inducing the obvious action on G(T) = Z2. Thus is the image
of 3’T = I/A; under any element g E PSL2(Z) which takes [Loo] to [Lp/q].
Now as noted in remark 4.2, the extremal length of the class [Lp/q] goes
to zero at the point p/q E R U Hence g(oo) = p/q and is

conjugated into Cp/q(k) which is therefore a horocycle at p/q. The results
follow. D

We now want a similar result for hyperbolic length in the Fuchsian uni-
formisation of the complex structure of O(d)+ /r(d). .

LEMMA 5.4.- Let Dp/q(k) c H be the inverse image under the Earle
embedding 03C8 of the set of d E So such that the hyperbolic length of the curve

in S2(d)+/r(d) is less than k. Then there exist constants c, cl, c2 > 0
such that for k  c, ~ Dp/q(k) ~ 

Proof. - By construction, for d = the surfaces 52+(d)/r(d) and
C(T)/G(T) are conformally equivalent. The result follows from a well known
comparison of extremal and hyperbolic lengths due to Maskit [22]. D



Finally we can compare to hyperbolic length in H3/r(d). .

LEMMA 5.5. - Suppose that d E and ~ - 2. Then d E
k -> 0.

Proof. - For d E the hyperbolic length of in is the
same as the hyperbolic length in the hyperbolic structure of the pleated
surface Thus it suffices to compare the hyperbolic lengths
ll, l2 of on c9G(d)+/r(d) and S2(d)’~’/r(d) respectively. The result follows
either by a theorem of Sullivan [6] which states that there is a Lipschitz map
with universally bounded constant between these two structures; or by the
inequality l2  li which is a strengthened form of Bers inequality due to
McMullen, [24] corollary 3.2. D

We now consider the image of the sets Cp/q(k), k > 0, p/q E Q under
the Riemann map 03C8 : H -> So. Recall that a prime end of such a map
is an equivalence class of cross cuts, and that an accessible boundary point
defines such an end. The following is part of Carathéodory’s theory of prime
ends.

PROPOSITION 5.6. - Let U be a simply connected domain in C and let
D be the unit disc. Then any arc in U which lands at one point of 8U cor-
responds, under the Riemann map, to an arc in D which lands at one point
of 8D. Arcs which define distinct prime ends of 8U necessarily correspond
to arcs which land at distinct points of 8D.

Proof. - See proposition 2.14 and theorem 2.15 in [29]. D

Proof of theorem 5.1. - Suppose p/q E Q B ~1. By lemma 5.2, the trace
function Tp /q has a critical point bp /q on so that in a neighbourhood we
may choose a branch of Hp/q in C* Since Tp /q is a rational function, it
is a branched covering of C. Therefore we can follow this branch, possibly
through a critical point but always decreasing until we reach a point
cp /q at which = 2. This gives a simple arc from bp/q to cp/q.
Corollary 4.9 and theorem 4.10 show that the interior of is contained
in Hence is contained in So and cp/q E BEB. Thus 
defines a prime end of By taking its image under complex conjugation
if necessary, we may assume by corollary 4.4 that Ap/g C 

Now suppose that ap /q E B By proposition 4.7, ap/q E 
As before, using analytic continuation following the branch of starting
from ap/q in the direction of decreasing we find using corollary 4.9
another arc A C which ends in a boundary point c E a£B such that

[ = 2, which again defines a prime end of So. If the arc from ap/q



meets it must do so in a critical point of Tp/q(b), so that by following
different branches of Hp/q through the critical point we can always arrange
that any intersections of the arcs A and are transversal. We claim
that the prime ends defined by and a are distinct. If c ~ cp/q, this is
obvious, so suppose that c = cp/q. Since and .~ are distinct, cp/q must
be a critical point of Tp/q. Thus and .~ are separated on both sides in a
neighbourhood of cp/q by arcs on which Tp/q E R and 2 > ~ > 0, which
are certainly outside So .

Now, by Carathéodory’s theorem, and ~-1 (a) must have dis-
tinct endpoints in 8H. On the other hand, both branches satisfy the condi-
tions of lemma so that by lemmas 5.3, 5.4, 5.5, and ~-1 (a) both
limit on p/q E 8H. This is impossible. This also shows the uniqueness of
the critical point bp /q of the trace function Tp /q on D

Remark. - The uniqueness of the critical point bp /q of Tp /q on also
follows from proposition 6.12 in section 6, where we also prove that the map

bp/q extends to a strictly monotone map from (-1,1) so that

r/s, then bp /q 7~ br/B.
The following propositions complete our picture of the rational rays.

PROPOSITION 5.7. - The endpoints of distinct pleating rays on 8£B are
distinct: if p/q, r/s E Q ~ ~ r/s, then cp/q ~ .

Proof. - The group r(cp/q) is a maximal parabolic group in the sense
of [9], with parabolic elements Wp/q and Wq /p in addition to the parabolic
commutator [A, B~. Thus if {p/q, q/p~, we cannot have in addition

parabolic, so cp/q ~ From corollary 4.4 we have Pq /p = 
and hence that = c(c~,~q). Since r(cp/q) is certainly not Fuchsian, ~

and the result follows. 0

Remark. - By theorem 3 of ~9~, a maximally parabolic group is uniquely
determined up to conjugacy in PSL2(C) by its abstract isomorphism class
and its parabolic elements. The groups and have the same

parabolic elements but the conjugacy between them reverses orientation, so
that they represent distinct points on 8£B, see also [17].

Define Et = {d : ~d > 0}. Now we determine for which p/q,
C Et. .

LEMMA 5.8. - Po C EB .

Proof. - Since Po is contained in the real locus of Tr B, direct calcula-



tion and theorem 4.8 shows that either Po = {d E C : d = -7T/4 
0  0}, or Po = {d E C : : d = 0  0  Tr/4}. If a group is in
Po, then by definition the pleating locus of consisting of the axis of
B and its conjugates, faces the component Applying proposition 6.2
in [27] to our situation (see also figure 5 of p.193 in [27]), the marked group
r(d) = (A(d), B(d)), d E Po, is conjugate to r = (A, B) where

and in addition a > 0, b  0 and (sinh a) 2 cosh b = 1. By considering Tr AB,
we can conclude that Po = C : d = , 0  8  ~r/4~. . D

Remark 5.9. Another way to see the above result is as follows. By
lemmas 5.3, 5.4, 5.5, for ~ 1, the Earle embedding ~ : H = Teich ~1 --;
So extends to map the boundary point p/q E 8D to the cusp cp/q. . As in
lemma 5.2, it also maps 1 E 8H to 0 E 8F8 and -1 E 8H to 0o E 
This map preserves anticlockwise order round 8H, which forces the result.

There are two further results about how the rational rays sit in the Earle
slice. The proofs depend on facts about irrational rays and are given in the
next section, but to complete our picture we state the results here.

PROPOSITION 5.10. - If -1  p/q  1 , then C Ee . Moreover
bp/q> whenever -1  p/q  r/s  1.

This result is proved at the end of section 6.4.

THEOREM 5.11.2014 The union of the rational pleating rays is dense
in E8.

This result is proved at the end of section 6.3.

6. Irrational rays

In order to make the extension of theorem 5.1 from simple closed geodesics
to "irrational" laminations, we have to use a number of results from [14]. We
begin by discussing in more detail exactly what the irrational laminations
are.

6.1. Geodesic laminations

A geodesic lamination on a hyperbolic surface is a closed set that is a
union of pairwise disjoint simple geodesics called its leaves, see [31, 4]. A



geodesic lamination is measured if it carries a transverse measure that is,
an assignment of a finite Borel measure to each transversal which is invariant
under isotopies preserving leaves. We use ~ to denote both the measured
lamination and the transverse measure and denote the underlying lami-
nation by | |. In particular, if 03B3 is a simple closed non-boundary parallel
curve, then the unique geodesic in the homotopy class of , is a geodesic
lamination which carries a transverse measure of the form c > 0, which
assigns mass c to each intersection with 7. Such laminations we call rational
and denote the set of rational measured laminations by MLQ. . Two mea-
sured laminations E ML are projectively equivalent if ~~,~ = ~~c~~ [ and
if there exists c > 0 such that for any arc u transverse to the leaves of

~~C~, = Thus the family of measured laminations cb,y, c > 0 are
projectively equivalent.

We denote the set of all projective measured laminations on T’1 with no
leaves that end in the cusp by PML; this set is independent of the hyperbolic
structure on ?i and is well known to be homeomorphic to R U {oo~
(see for example [31] or [3]). Proposition 4.1 gives an embedding Q --~ PML
which identifies a curve in S with its corresponding projective class. The re-
maining projective laminations, corresponding to RBQ, may be obtained by
projecting families of parallel lines of irrational slope in C to Tl and "pulling
tight" to obtain a family of non-closed and pairwise disjoint geodesics which
intersect local transversals in Cantor like sets (whose Hausdorff dimension
is however zero). This picture is explained in more detail in [30]. The identi-
fication is continuous with respect to the natural weak (measure) topology
on PML and we always identify PML with R in this explicit fixed way.

6.2. Normalised complex length

In order to deal with irrational laminations, we need a substitute for the
trace function Tp/q. Suppose first that E is a hyperbolic surface H2/G, G C
PSL2 (R) and let g E G represent a geodesic 7 on E. The hyperbolic length

is related to the trace by = 2cosh(l(y)/2). Now let ~ E ML(E)
be a measured geodesic lamination on E. One can define the hyperbolic
length of /~ by integrating the length of leaves against the measure ~C
on transversals, for details see [15]. With this definition, the length function
is continuous on ML, and, for a geodesic, E S, l(c. ~ ~.y) = c ~ L(y), c ~ 0.

Now for G C PSL2(C) one has the similar formula Z7r g = 2 cosh
(.~(y)/2), where now is the complex length of q. (For a more geometri-
cal interpretation, see for example [27].) We can pick a well defined branch
of by choosing it to be positive on .F. In [14] section 5, a normal family
argument is used to extend the complex length function to a holomorphic



function on whose restriction to .~’ is exactly the lamination length
above. For ~, E MLQ and q E let ~~(q) be the complex length of ~, at
q. The following is [14] theorem 5.3.

PROPOSITION 6.1. - The function MLQ x -~ C defined by (~, q) H
a~ (q) extends to a continuous function .~~ : ML x - C defined by
(~,, q) ~--> a~ (q). . The length function q H ~~ (q) is non-constant and holo-

morphic for all For K C ML compact, the family is uniformly
bounded and equicontinuous on compact subsets of 

We want to restrict to So . Rather than consider all lengths of laminations
in the same projective class, it will be sufficient to normalise the length
functions by choosing a continuous section PML - ML. This we do by
choosing to be the unique lamination in the class x for which =

1, where do = represents the square torus. (Note that =

~~,~ (do), and that this normalisation is equivalent to taking the length to be
for all ~, E ML.) Thus for each ~ E R., we define the normalised

length function Lx So -~ C by = ~~s(d). Applied to our situation,
we immediately deduce:

THEOREM 6.2.- The function R, x EB ~ C defined by (x, d) - Lx(d)
has the following ProPerties:

1. It is holomorphic in d for fixed x.

2. It is continuous in x for fixed d.

3. If ~n -~ ~, then L~" -~ L~, uniformly on compact subsets of £B.

We can also prove the analogue of lemma 5.2 for irrational rays.

LEMMA 6.3. - For x E R, B tl, the length function Lx has a critical
point on the Earle line 

Proof. - The proof is similar to that of lemma 5.2. As in that proof,
the hyperbolic length of L(71/1) of 03B31/1 tends to 0 as d ~ 0 along and

l(03B3y-1/1) ~ 0 as d - ~. Then intersects both 03B3±1/1. The length of [
can be computed as an integral of first return lengths along the transversal
7m/1, against a fixed and non-zero measure on the transversal. Thus if

 E , say, then by the collar lemma, the return length of any leaf
of | x| to the transversal 03B3±1/1 is greater than - log e so that L2 (d) - o0
as d -~ 0, oo as required. D

We immediately deduce

COROLLARY 6.4.- For any x E R, L~ is non-constant on £B.



6.3. Pleating varieties

As explained in 4.2, the pleating locus of 8G(d)~/r(d) is a geodesic
lamination carrying a natural transverse measure, the bending measure.
We denote the projective classes of these measures pl~(d) respectively. The
following is a special case of one of the main results of [12].

THEOREM 6.5 ([12] Theorem 4.6). - The map B --~ PML,
d ~--> pl~(d), is continuous.

Extending the definitions of section 4.2, for E PML, we define

and also ~~ (~) _ {d E ~~.

We note that = ?~~ n and that, identifying the geodesic, E S
with the projective measure class this definition is consistent with
the previous definition of As before, we call the (03BE, ~)-pleating
variety or pleating ray. It is clear from the definitions that n ~~.,~~ _ ~
unless x = x’, y = y’, and that So = Applying 6.5 and 5.11,
we obtain the following extension of proposition 4.5.

PROPOSITION 6.6. - The sets x, y E R are pairwise disjoint and:

1. . Pz,z # 0.

2. = (~ unless y = 1 /x.

3. _ and _ 

4. So B F03B8 = 

From now on, we shall write ~~ for ~~ ~ .
Let T~~ = {d E E R). We call ~Z~ the real locus of L~ We

note that for x E Q, 7Z~ is almost the same as the hyperbolic locus 
The difference is that the trace is defined on the whole d-plane minus zero,
and is the subset of the whole d-plane minus zero on which the complex
length of the corresponding group element is real, while L~ is only defined
on So and TZ~ C The following extension of proposition 4.7 (3) is an

important result in ~14~ . .

THEOREM fi.7. - theorem 6.9) For x E R, ~~ 



Proof of theorem 5.11 (See [14] theorem 4).- Let d E P~ for some
x E R B Q, so that Lx(d) E R. Since Lx is holomorphic and non-constant,
there is a point d’ near d at which Lx(d’) ft R, hence, by theorem 6.7,
d’ ft Join d to d’ by an arc in Along this arc, the function is

continuous and non-constant, so that there must be points at which 
takes rational values arbitrarily close to d. D

6.4. Critical points

In order to complete our picture of the irrational pleating varieties, we
need to study the critical points of the length function Lx on the Earle
line This we do by considering the efiect of the Earle symmetry on
the space F of Fuchsian groups. By combining with results of Kerckhoff
about geodesic length functions for hyperbolic surfaces, this will allow us to
extend the results of section 5 about the uniqueness of the critical point to
irrational laminations.

The classical uniformisation theorem gives a bijection between the Te-
ichmuller space of the flat torus and the space F of marked Fuchsian once
punctured torus groups p : : -~ PSL(2, R), modulo conjugation in
PSL(2, R). We denote by F(T) the marked Fuchsian group correspond-
ing to the marked torus C(r)/G(r) under this map. (Strictly, F(T) is only
defined up to conjugation in PSL(2, R); the exact normalisation will not
matter in what follows.) We denote by the length of the measured lam-
ination  on the hyperbolic surface H/F(T), and remark that for x E PML,

is the lamination such that (i) = 1, since i E H represents the square
torus and hence corresponds to the point do = E We write lx for

and emphasize that lx is not the same as the complex length Lx; ; lx
is defined on .~ and takes values in R+ while Lx is a holomorphic func-
tion on There is however a natural identification of the line of groups
F(T), ~T~ = l with groups r(d) for d on the Earle line and on this line
the functions lx and Lx coincide.

LEMMA 6.8. - 1. The map T F--> 1 /T induces an anticonformal bijection
between the marked torus (G(T); A, B(T)) and the marked torus
(G(T) B(1/T), A). . The fixed point set of the induced involution J : F ~ F
consists exactly of groups F(T) on the rhombus line ~T~ = 1.

L~~I~T~ = 

Proof. - For (1) we note that complex conjugation gives a natural anti-
conformal bijection between the marked tori (G(T); A, B(T)) and

(G(T); A, B(T)). The second of these tori is conformally the same as the
marked torus (G(1/T); B(1/T), A).



To prove (2) we proceed as follows. By definition, the word 
represents the homotopy class A-qBP on the flat torus C(T)/G(T). Thus

A) represents the homotopy class Since by proposition 4.1
there is a unique homotopy class of curves on Tl with this property, it follows
that B) is conjugate in the free group F2 = (A, B) to 

The (orientation reversing) map of marked groups

induced by T ~--> 1/T is clearly an isometry. Thus if V (A, B) is any word in F2
and if l (V ) (T) denotes hyperbolic length of the axis corresponding to V on
the surface H/F(T), then L(V(A,B))(T) = d(V(A,B))(1/T). In particular,

On the other hand, by the remarks above,

Thus = This shows that the length
of in the marked group (F(T); A, B) is equal to length of in the
marked group (F(1/T); B, A), which is exactly the result (2) in the case
x = p/q. The result for general x follows by taking limits. D

Recall that for any hyperbolic surface E, and for any measured lamina-
tion  E the time t earthquake ~ (t) along  is a generalisation of
distance t Fenchel-Nielsen twist about a simple closed geodesic on E. We
call {£~,(t)(p) : t E R} C .~’ the earthquake path along ~ through p. Recall
Kerckhoff’s theorem [15] about lengths of geodesics along earthquake paths:
if v E ML(E) has non-zero intersection with ~, then the lamination length
lv on a earthquake path E~(t)(p) is a convex function of t with a unique
minimum at a point Po E E~ (t) (p) which is also the unique minimum for the
length l  along Wolpert has shown further, that this minimum is
a simple critical point for the length function. It follows immediately that
any two earthquake paths intersect in at most two points.

Using these results, we showed in [14] section 3 that for each ~C E ML(?rl)
and each c > 0, all points p for which = c lie on a unique
earthquake path obtained by earthquaking along J-t from the same base
point po = For k > 0, define = {T E H  k}, where
as above, means the hyperbolic length of the lamination on the
surface H/F(r). Clearly, aEx(k) is exactly the earthquake path along ~~
through any point for which = k. It follows that any two sets 8Ex(k)
and 8Ex’ (k’) intersect in at most two points.



LEMMA 6.9. - An earthquake path intersects the rhombus line

F03B8 in at most two points.

Proof. - If T E n then J(T) = T and so by the symmetry
lemma 6.8, T E . The result follows since and 
intersect at most twice. D

LEMMA 6.10. - For x E R B ~1, there exists a unique k = k~ > 0
such that the earthquake paths and are tangent The

tangency point u~ is on the rhombus line = 1.

Proof. - The projective laminations x and 1/x are distinct and thus,
as in the proof of corollary 6.3, cannot be simultaneously short. Thus for
small J~, the sets and are certainly disjoint. On the other
hand, certainly n ~ ~ for some k’ and since the sets 
are nested, it follows that n ~ ~ for sufficiently large J~’ .
Since and intersect in at most two points, the first part of
the statement follows.

We denote the tangency point by uz. At this point, k~ = =

From the symmetry lemma 6.8 we see that = 

and it follows that ux is a fixed point of J, and hence ux E F03B8 as required.
D

COROLLARY 6.11. - The length function L~ r~estricted to the Earle line
F03B8 has a unique critical point on This point is a simple critical point
and is exactl y the tangency point u~ of the earthquake paths and

.

Proof. - Since is tangent to F03B8 at ux, points on F03B8 near ux
are outside and hence u~ is a local minimum for . Suppose
that v~ were another critical point on Then ~- I v - x = 0, where C7t
denotes differentiation along Since = the same is true of
the derivative of l~ along Now aE~ (L~ (v~)) is a level set of l~ and hence
must be tangent to F03B8 at vx. However by lemma 6.9, cuts F03B8
at most twice, so that n ,~e = ~v~ ~. Finally, since the sets

as c varies are nested, we conclude that = J~~ and hence that
v~ = u~ as required. D

In the case x = p/q E GZ, this result allows us to identify the critical
point u~ with the critical point bp/q of theorem 5.1. Thus from now on, we
write b~ for u~, and note from the construction that = b~.

PROPOSITION 6.12. - The map x H bx from (-1,1) to F03B8 is a mono-



tonically decreasing homeomorphism.

Proof. - Kerckhoff shows in [16] that for any p E the map which

associates ~ E ML to the tangent to the earthquake path along at p
is a homeomorphism between the space of measured laminations ML and
the tangent space to ~’ at p. The inverse of this map induces a map
f on rays which takes the ray [v] of tangent vectors Av, A E R+ at the
point p to the projective measured lamination x for which the forward
tangent to the earthquake path along x through p is in [v]. (This makes
sense since for any ~c E ML, (t) = ~~ (t/c) . ) Since 8E~ is tangent to
F03B8 at bx, we see that the restriction of f to the space of forward pointing
tangent rays to F03B8 is exactly the inverse of the map z - bx. The fact that
earthquake paths intersect at most twice easily implies that this restriction
of f is monotone, and the result follows. D

Proof of proposition 5.10. We find by direct calculation that b(-1/2) >

b(0). (In fact b(-1/2) = 3 2 33 and b(0) = 1/B/2. ) From proposition 6.12
we conclude that bp /q > whenever -1  p/q  r/s  1. The result fol-

lows from theorem 6.5 which asserts the continuity of the map pl+ : ~e -~
( -1,1 ) and lemma 5.8 above. D

6.5. Irrational pleating rays

Finally, we are able to complete our picture of the structure of irrational
rays. We need the extension of theorem 4.8. This is given by the fundamental
local and limit pleating theorems of [14]. .

THEOREM 6.13. - For x E R,
1. . Px U ~ F03B8 is open and closed in Rx .

2. If dn E P~ and if -~ c, then a subsequence of the groups r(dn)
have an algebraic limit 0393~ . The limit is in ~03B8 unless c = 0.

Proof. - (1) is just [14] theorem 8.1. (2) follows from [14] theorem 5.1
with the easy observation that if 0393~ is an algebraic limit of groups in So,
and if 0393~ E then Foo E Eo. D

COROLLARY 6. 14. - 1. If x E R and d E Rx B F03B8 is sufficiently near
, then d E P~ U In particular, P~ ~ ~ for x E R B ~1. .

2. Px is a union of connected components of 7Z~ in Ee B 



3. Let K C Px be a connected component . Then = (o, oo),
(0, or oo), where kx = is the minimum of Lx on F03B8 . In the
last two cases, b~ is in the closure of K in ~8.

Proof. - Part 1 is a direct application of theorem 6.13 (1), see also [14]
theorem 8.9. Part 2 is immediate from theorem 6.13. Part 3 is like [14] lemma
9.3. The local pleating theorem shows that L~ ~ K is an open map. If r E

r > 0, then we have a sequence dn E K with - r, so by the
limit pleating theorem, a subsequence has algebraic limit 0393(d~) E

By theorem 6.5, either E Px or r(doo) E In the second case,
we must have doo = bx. The result follows from theorem 6.13 (1). D

PROPOSITION 6.15. - For x E R B ~l, the map has bounded

mnge.

Proof. - Without loss of generality, we may assume -1  x  1.
Choose -1  a  x  b  1. By proposition 6.12, the map y - by is
continuous on ( -1,1 ), and hence there exists M > 0 such that M
for a  y ~ b. Now it follows from theorem 5.1 that Lp~q (bp~q )
for all p/q E Q B ~ 1 and d E . Now suppose d E Px. Pick 

Q n ~ x and use corollary 5.11 to find dn E d.

Using the equicontinuity of the family ~/ 2014~ Ly we conclude that M.
This gives the result. D

THEOREM 6.16. - For x ~ ~ 1, L~ has a unique critical point b~ on
. The pleating variety ~~ is an embedded arc of ~8 whose boundary in ,~’8

is exactl y .

Proof. - The only points remaining to prove are that ~~ is connected
and contains no critical points of Lx. By proposition 6.15 the range of Lx on
any component of ~~ is bounded, so that analytically continuing along any
branch of ~~ C ?Z~ in the direction of increasing length, we must eventually
reach the critical point bx E By corollary 6.11, the critical point bx
is simple so at most two arcs of Px meet F03B8 at bx. However, one of these
arcs must belong to Px and one to which are certainly distinct, so we
conclude that exactly one arc of Px meets F03B8 at bx. Finally, if Px contained
a critical point, we could continue along at least two distinct arcs in the
direction of increasing length, which by the above is impossible. 0

The above results combine to give our main theorem about pleating
coordinates for the Earle slice.



THEOREM 6.17.2014 The maps

defined by = are homeomorphisms onto their
images.

7. Appendix 1: Computing Pleating coordinates for the Earle
embedding, by P. Liepa

The calculations for the drawing in Figure 1 were based on Wright’s
recursive scheme. For a given rational p/q, let Tp/q (d), Cr/q and br/q be
defined as in sections 4 and 5. Using the Farey recursion, if we have the
above data for p/q  r/s and ps - rq = -1, then we can calculate the
corresponding data for (p + r)/(q + s) from = - Tt,
where t = ~. (See [10] proposition 3.1.)

The value is calculated numerically, using an initial guess
based on a weighted average of cp/q and cr/s derived from the position of
(p + r) I (q + s) in the interval Likewise is calculated

numerically, using an initial guess derived from and .

For selected values of p/q the rays are computed as follows. Let A =
2 cosh-1 (Tr/q /2) . To compute an n-segment approximation of the ray,
n + 1 approximately equally spaced points on the ray must be computed.
The ith position can be computed by finding the value d for which Tplq(d) =
2 cosh({1 - (n - i)2/n2)a/2).

The value d is found numerically, using the (i - 1 )th sample as an initial
guess. In Figure 1, n = 50.1

8. Appendix 2: Geodesics and pleating rays in ee

As we saw in section 3.3, the Teichmuller space Teich(T1) of once punc-
tured tori can be naturally identified with the upper half plane H and the
Earle slice ee, hence we have a conformal homeomorphism 1b : H --~ e8,
called the Earle embedding. Proposition 3.8 shows that under this Riemann
map ~, the semicircle C = {T E H : ITI = 1 ~ corresponds to the Earle
line Fe, and the imaginary axis corresponds to n ~ bo ~ U where

bo = For any x E ( -1,1 ) , let ~~ be the semicircle from x to which
is a hyperbolic geodesic in H. Then it is easy to check that 
satisfies the following conditions: 

(1) ) Extensive details about similar computations of pleating rays and boundaries, and
about making limit set plots, are to be found in [26].



1. ~~ is a real analytic curve and n = 0 if x 1 7~ x 2 .

2. ~~ intersects C orthogonally.

3. H = 

For any x E (-1,1), put Px = Px U U From the results in

sections 5 and 6, satisfies similar conditions:

1. ~~ is a real analytic curve and n = 0 if x 1 ~ x 2 .

2. Px intersects F03B8 orthogonally.
3. ~e = O

From these facts it seems natural to ask whether ~ ( ~~ ) = for any z E

( -1,1 ) . The answer is negative; in fact

PROPOSITION 8.1.2014 ~(~2_~) ~ 

Proof. - First we remark that e7ri/3 and are both on the semi-
circle C. It is well-known that the marked Fuchsian group F = (A, B) corre-
sponding to E H is characterized by the trace values (Tr A, Tr B, Tr AB)
= (3, 3, 3) . Hence it follows = 1 and by proposition 3.8 (1),

= 1 /2. It also easy to check that E Therefore if we

assume that ~ (~2 _ ~ ) - then b2 _ ~ should be equal to 1/2. Be-
cause 2 - B/3 is a real quadratic number, its continued fractional expansion
is eventually periodic, and we can easily find its rational approximations:
1/3,1/4, 2/7, 3/11, ~ ~ ~. If z is rational, bx is the unique critical point of Tx
on we can calculate it by using recursive formula for Tx in Appendix
1. The result is the following table. From proposition 6.12, 2 - V3  3/11
should imply b3/11  b2_~ which contradicts the values in the table. D
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