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RESUME. - Dans cet article, nous demontrons la semicontinuite inferieure
pour la convergence faible dans de fonctionnelles quasiconvexes
de la ou 0 ~ f (x, s, ~)  c(1 + ~~~q), q >
p > 1 et est un operateur differentiel linéaire du premier ordre.
Nous demontrons aussi un résultat de semicontinuite inferieure pour des

fonctionnelles du Q*w))dx, ou g : IR ~ [0, -~) est con-
vexe, ou P et Q sont des operateurs differentiels du premier ordre tels que
ImP = Ker Q, et of Q* est l’adjoint formel de Q.

ABSTRACT. - In this paper we prove the lower semicontinuity of qua-
siconvex functionals of the form with respect
to the weak convergence in W 1 ~~’ (SZ), where 0  f(x, s, ~)  c(1 +
!$!~)? q > p > 1 and ~C is a linear differential operator of first order.
We also show a lower semicontinuity result for functionals of the type

j Q*w))dx, where g IR -~ (0, -E-oo) is convex, P, Q are linear
differential operators of first order such that ImP = Ker Q and Q* is the
formal adjoint operator of Q.

1. Introduction

In this paper we study the lower semicontinuity of an integral functional
of the type

(*) > Reçu le 18 avril 2001, accepte le 15 octobre 2001
(1) Dipartimento di Matematica e Applicazioni "R. Caccioppoli" via Cintia, 80126

Napoli, Italy.



where Q  IRN is a bounded open set, u E f is a nonnegative
integrand satisfying the growth condition

q > p > 1 and L is a linear differential operator of first order , £ : :

In the special case ,Cu = i7u and q = p, there is a vast literature

on the subject of lower semicontinuity properties of F (see for instance
~21~,~22~,~2~,~19~,~17~ ). °

More recently, in connection with the applications to materials exhibiting
non standard elastic and magnetic behaviours, people have been interested
to study lower semicontinuity also when p  q and L is a general linear

operator of first order (see ~l l~, ~12~, ~10~ ) .

To fix the ideas let us assume that

where Ak, k = 1 , ... , N , , are given linear operators from IRd into IRm. Then

our main result, when f depends only on g, is the following.

THEOREM I.I. - Assume q ) p > ma> {1,qN - 1 N }. Let f = f(£) :

- [0, +oo) be a function satisfying (1.2) and £ a linear differential
operator of the type (1.3). Let us assume that for any A 6 IRN d and any
u 6 we have

where Q = is the unit cube.

Then for any u E IRd) and any sequence un E (Q, IRd) such
that u~ -~ u weakly in IRd) we have

This result, very much in the spirit of the lower semicontinuity results
of Fonseca-Maly and Fonseca-Marcellini, is proved by a blow-up argument.



This type of argument is also used to extend the result to the case when f
depends on x and s too.

It is interesting to notice that in this framework it is natural to consider
the particular case u = (v, w) and ,Cu = (Pv, Q*w). Here P, Q are linear
differential operators of first order with constant coefficients forming an
elliptic complex, i.e.

where the symbols P(A) : IRd --~ Q(A) : IRk are linear operators
(see Section 5). Here we denote by £* the formal adjoint operator of £

defined by the rule

for any v E C°° and any u E Then one can easily
check that any functional of the type

where g : : IR -~ [0,oo) is convex, is quasiconvex in u. Hence Theorem 1.1
implies the lower semicontinuity of G with respect to the weak convergence

in W 1 ,p for all > 
2 ( N 2014 1 ) 

. Functionals of the t e 1. 5 can be vieyved as

a generalization of the usual polyconvex functionals. In fact if N = 2, taking

Pu = ~u, u ~ C~ (IR2, IR), Qv = curlv = ~v2 ~x - ~v1 ~y, v ~ C~ (IR2, IR2)
then one has an elliptic complex and (Pu, Q*w) is equal to the determinant
of the matrix whose rows are given by i7u and Vt~.

2. Notation and preliminaries

The space of infinitely differentiable functions in IRN which take values
in IRd will be denoted by .

Let /: : IR d) --~ be a linear differential operator
of first order of the type



where Ak , k = 1, ... , N are given linear operators from IRd into IR’n.

Our basic example is that of the gradient operator

Other two interesting examples are the divergence operator

defined by

and the so-called rotation operator

defined by

for v = ... , vN) (here we have identified in the obvious way IR(N 2) with
the space of 2-covectors on 

Many more examples of operators in applied PDEs also fit well into the
framework of this paper, but we shall not discuss them here.

Let us denote by IRd) the Sobolev space consisting of those
functions u : SZ -~ IRd such that ~u~ E and E Lp(SZ), where ~u
denotes the distributional gradient of u. Notice that if u E IRd)
then (2.1) makes still sense and LU E Lp ( SZ, 

Let us give the following definition.

DEFINITION 2.1.2014 Let ,C be a linear differential operator of the type
(2.1). Let f : SZ x IRd x IRm ~ IR be a Carathéodory function. We say that
f is quasiconvex with respect to the operator ,C if for almost every xo E Q,
for any so 6 IRd and any matrix A E we have

for all u E Co (Q, where Q = is the unit cube.

Notice that by a density argument it follows that if ~ f (x, s, ~) ~  c(1 +
then (2.9) holds with u E 



3. Main result

This section is devoted to the proof of Theorem 1 . 1 . We consider fixed ex-

ponents r, q ) 1 and p > mar( 1, qN - 1 N}. The following lemmaponents r, q 1 and p > max 1, N N . The following lemma,
proved by Fonseca-Malý [11] , will be useful in the sequel.

LEMMA 3. I. - Let V CC 03A9 and W ~ 03A9 be open sets, Q = V U W, v G
and w e Let m ~ N. There exist a function z 6 

and open sets V’ C V and W’ C W, such that V’UW’ = Q, z = v on Q-
W’, z = w on Q - V’,

In the sequel we denote by the ball {y E IRN : Iy - xl  o~; if the
center of the ball is the origin we will simply write Bp instead of .

Proof of Theorem 1.1. The proof falls naturally into two parts.

Step 1. We prove the result in the special case that H = Bi and u is
linear, == Ax for A E IRNxd. According to Rellich’s compact imbedding
theorem, we may assume that

Let R  1 and /) = 2014-2014. We apply the lemma above to v = un, w = u,
V and W = J3i B BR in order to obtain e W1,q(B1,IRd) and open
sets ~ GG V, W~ C ?’ such that ~ U ~ = ~i,

where M = and T > 0 is the exponent provided by Lemma
3.1. Since zn - u E from the growth condition and the qua-
siconvexity of f we have



Therefore

The conclusion follows letting first n - oo and then R -~ 1.

Step 2. Let u E un E u in 

With no loss of generality we may assume that

Passing, if necessary, to a subsequence, we obtain the existence of finite
Radon nonnegative measures ~c and v such that

where M(O) is the space of all Radon measures. Now our purpose is to
prove that for LN-a.e. ro E Q

In fact if (3.2) is true, then we have

exist and are finite and



Note that the last three conditions are satisfied by all points Xo E SZ, except
maybe on a set of LN-measure zero. Then we select p~ --~ 0+ such that

(xo)) _ 0, (xo)) = 0.

Thus

where

It follows that z

and

Hence, we may extract a subsequence such that

and

Therefore from Step 1 we get

and this concludes the proof.

4. Extensions

In the sequel f(x, s, ç) will denote a function such that

i) f(x, s, ç) is quasiconvex;

iii) for any (xo, so) E n x IRd and any E > 0, there exists 6 > 0 such that
if |x - x0|  03B4, s - so (i-~)f(x0,s0,03BE).



THEOREM 4.1. Let us suppose that f(x, s, ~) satisfies conditions i),
ii) and iii) . Let un E IRd) and u E such that un ~ u

in IRd). . Then

Proof. - Passing to a subsequence we may assume that

and

Let us observe that for LN-a.e. x0 ~ 03A9 we have

If we prove that for a.e. x0 ~ 03A9

we have

and therefore the conclusion.

To prove (4.2), let us consider x0 ~ 03A9 such that the limits in (4.1) exist
and are finite and

Let us choose p~ --~ 0 such that

It is well known that conditions (4.1 ) and (4.3) are satisfied in each point
x0 ~ 03A9 except at most on a set whose LN-measure is zero.



Hence

where

We get E 

and

Take now a subsequence such that

and

The last inequality follows from Theorem 1.1. Letting E ~ 0, we get the
conclusion.

5. Poly convex case

In this section the operator £ will be defined by means of a pair of
differential operators of first order in N independent variables with constant
coefficients

The symbols P(A) and Q(A) are linear operators in A = { a 1, ~ ~ ~ , AN) E
IRN respectively valued in and in IRk) and given ex-
plicitely by



The complex (5.1) is said to be elliptic if the sequence of symbols

is exact, i.e.

The dual sequence consists of the formal adjoint operators

where the formal adjoint of a linear operator £ is defined by the formula

(1.4).

It is immediate to check that the dual complex is elliptic if the original
complex is so.

where a E ~3 E JRk) and SZ is any domain in 
~V ~ 2 , is said to be an elliptic couple associated to the complex (5.1 ) . It
is worth pointing out that , if N = 2, the complex

is elliptic and the associated elliptic couple is .~’ = (~u, R(~w) ), where

Notice that

This example can be easily generalized in higher dimension considering the

complex

where (up to the standard identification of N 2) with the space of 2-covectors)
curlv is defined as in (2.4).

Notice that the complex is elliptic since it can be easily checked that for

any A E IRN the linear operators ~P(A) : IR ~ IRN, Q(A) : are

given by



Thus 0

In the following we shall consider variational integrals defined on elliptic
couples. The integrals in question take the form

where the integrand f : x IR is at least continuous and P, Q are
linear operators forming an elliptic complex. In [15] the following definition
of polyconvexity is given.

DEFINITION 5.1. 2014 / is said to be polyconvex if it can be expressed as :

where g IR"2 x IR"2 x Iit - IR is convex.

The notion of polyconvex integrands, already given in the book of Morrey
[22], was deeply studied by Ball [3] providing a better understanding of
several problems, especially those concerning the theory of finite elasticity.

Note that our definition of polyconvexity agrees with the one given by
Ball in dimension two, provided that we take Pu = Qv = curlv.

In the sequel we prove that Theorem 1.1 still holds if the function f is
polyconvex.

Let f (x, y, z, ~, 03BE) : 03A9 x x ~ [0, ~) be a Carathéodory func-
tion such that

i) for all x E H, (y, z) E IRd x IRk the function (TJ, ç) - f(x, y, z, ~, 03BE)
is polyconvex;

ii) for any (xo, Yo, zo) E n x IRd x IR~ and any E > 0, there exists 6 > 0
such that if x0|  03B4,

|(y,z) - (y0,z0) |  03B4 and 03BE, ~ E IRN d then y, z, ~, 03BE)  (1 -

THEOREM 5. l. Suppose that f(x, y, z, ~, 03BE) satisfies conditions i) and

ii) and suppose p > 2 N- 1 .



Let an E E and a E E

IRk) such that an ~ a in IRd ) and ,~n ~ ~3 in IRk).
Then

Proof. If f verifies the assumptions, there exists a sequence of contin-
uous nonnegative functions

g~ (x, y, z, r~, ~) such that each gj is polyconvex in (r~, ~) and

(see Lemma 3.2 in [13]). Observe that polyconvexity implies quasiconvexity
(see [15]) and that

Therefore Theorem 1.1 holds and we have

Now notice that since gj is increasing, we get

This concludes the proof.
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