
ANNALES DE LA FACULTÉ DES SCIENCES DE TOULOUSE

FRANCK BARTHE
Levels of concentration between exponential
and Gaussian
Annales de la faculté des sciences de Toulouse 6e série, tome 10,
no 3 (2001), p. 393-404
<http://www.numdam.org/item?id=AFST_2001_6_10_3_393_0>

© Université Paul Sabatier, 2001, tous droits réservés.

L’accès aux archives de la revue « Annales de la faculté des sciences de
Toulouse » (http://picard.ups-tlse.fr/~annales/) implique l’accord avec les
conditions générales d’utilisation (http://www.numdam.org/conditions).
Toute utilisation commerciale ou impression systématique est constitu-
tive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AFST_2001_6_10_3_393_0
http://picard.ups-tlse.fr/~annales/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


- 393 -
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pp. 393-404

RESUME. - Soit ~C une mesure de probability log-concave sur Si ~C
verifie pour c > 1, d > 0, r E [1, 2] fixes et pour tout t positif, ~c.c(~x; ~x~ >
d.t})  c exp(-tr), alors  verifie une famille d’inegalites de Sobolev.
En consequence, les mesures produit ont, independamment de k, une
propriete de concentration sur le modele de .

ABSTRACT. - Let ~C be a log-concave probability measure on If for
fixed c > 1, d > 0, r E [1,2] and all positive t, the measure ~c satisfies
,u(~x; Ixl > d.t~)  then p satisfies a family of Sobolev in-
equalities. Consequently, the product measures have independently of
k a concentrat ion property on t he model of 

We are interested in proving dimension free concentration inequalities for
product measures. For this purpose, the famous Poincare and log-Sobolev
inequalities are very efficient. Recall that a Borel probability measure J1 on
the Euclidean space satisfies a Poincare inequality with constant
C if

holds for every smooth f : : R. It is said to verify a log-Sobolev
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inequality with constant D whenever

holds for f as before. These inequalities have the tensorisation property:
if they hold for p, then they automatically hold for all the product mea-
sures ~c~, 1~ > 1. Moreover, the Poincare inequality implies a concentration
inequality of exponential type, whereas the log-Sobolev inequality implies
Gaussian concentration (see e.g. [17] for details and precise references).
Bobkov [7] recently studied these inequalities for log-concave probability
measures (this reduces to absolutely continuous probabilities, with log-
concave densities by [9]). Using the Prékopa-Leindler inequality, he proved
that any log-concave probability satisfies a Poincare inequality. Under the
additional condition  exp(~|x|2) d (x)  oo for a positive E, the measure p
satisfies a log-Sobolev inequality (this result was proved first by Wang [21],
but Bobkov’s approach is somewhat simpler). As a corollary, one gets the
following: a log-concave probability  on Rn such that

holds for fixed c > 1, d > 0 and all positive t, satisfies an infinite dimensional
concentration inequality, which can be stated on functions as follows. For
any integer k  1, and any F : ~ R with Lipschitz constant ~F~Lip  1,
one has

where C > 0 depends only on c, d. Equivalently, concentration can be ex-
pressed on sets; for any Borel set A C with > 0, one has

where AT := {x; d(x, A)  r~ is the Euclidean enlargement of A by a

length r. Note that the hypothesis ~c ( ~ x; ~~ ~ > t ~ )  ce-(t/d)2 is some

very weak form of Gaussian concentration for p itself. In some sense, for

log-concave probability measures, Gaussian concentration for balls implies
Gaussian concentration for the infinite product measure. Our aim here is
to extend this result to other levels of concentration, between exponential
and Gaussian. We follow Bobkov’s approach, but we need some other ingre-
dients. In particular, we shall use functional inequalities interpolating be-
tween Poincare and log-Sobolev. Such inequalities were presented by Beck-
ner for the Gaussian measure [4] and established for densities cr ,



r E (1, 2) in a recent work by Latala and Oleszkiewicz ~15~ . They still enjoy
the tensorisation property (see [16] or the latter paper), and imply concen-
tration but with rates exp( -tT) for r E ~l, 2~. We summarize these facts in
the following

THEOREM 1 ( ~15~ ). - Let r E ~l, 2~ and C > 0. Let ~c be a probability
measure on . Assume that for any smooth f : --~ II~ and any p E ~1, 2); ,
one has

Then for any integer k > 1 and any h : --~ II~ with 1, one has
j Ihl d~c  oo and

Next, we need a systematic way to derive the latter inequalities from isoperi-
metric inequalities. Before exposing this, we recall that the isoperimetric
function of a Borel probability measure v is by definition

where v+ (A) : liminfEo+(v(AE) - v(A) ) /E is the boundary measure of A
in the sense of v.

1. A transfer principle

Lipschitz mappings are a convenient tool to prove concentration inequal-
ities (see for example [13], [18]). Let ~c and v be Radon probability measures,
say on Euclidean spaces and R". Let T : JRn a Lipschitz map
with Lipschitz constant L. Assume that T transports JL onto v, meaning for
every Borel A c one has v (A) = ~ (T -1 (A) ) . Then v concentrates at
least as much as ~c. More precisely, let A C and denote B = ~c (T -1 ( A) ) .
The Lipschitz property of T ensures that for h > 0,

Thus v(A) = and v(ALh) > In particular, we obtain the
following comparison of isoperimetric functions: Iv > 



Further, any Sobolev type inequality satisfied by  will transfer to v
with a change in the constants depending only on L. For example, assume
that there exist C > 0, a E [0,1] and p E [1,2) such that for any locally
Lipschitz function f : R, one has

Now let g : --~ ll~ be locally Lipschitz. Applying the latter inequality to
f = g o T, noticing that ~~f ~ _ ~(~g) ° T~  ° and using
the fact that v is the image of ~c by T, we obtain

Our aim is to emphasize another transfer principle, based on rearrange-
ment of functions: Given a function f, , one builds a function f * having
the same distribution, monotonicity properties, and nicer level sets (cho-
sen among a one-parameter family of sets, ordered for the inclusion). If a
Sobolev inequality holds for f *, then it will be satisfied by f, provided the
rearrangement decreases the energy: that or more

for positive non-decreasing convex func-
tions F. This principle is classical and can be found in several texts (see e.g.
[19], [2]). However, it is often exposed in special cases which do not fit with
our purposes and the proof of the decrease of the energy under rearrange-
ment is sometimes complicated or based on artificial tricks. This is why we
write here another proof; it is an extension and a simplification of an ar-
gument of Bakry and Ledoux [1] for the Gaussian measure. These authors
use the formalism of conditional expectation, which yields limpid proofs
of the decrease of energy (one should notice that conditional expectations
appeared implicitly in previous proofs, as in [11].)

LEMMA 2. - Let ~c be measure on R. with density cp. We assume that w
is bounded continuous and positive on an interval (c, d) (c, d may be infinite),
and vanishes outside. Let ~(t) _ t~) be its distribution function, and
assume that it is finite for any t E R. Let v be an absolutely continuous Borel
measure on with _ Assume that the isoperimetric function
of v is estimated from below

where L is a positive real number and = 03C6 o 



Let f : -~ 1~ be Lipschitz and denote by v f its distribution with respect
to v. Set N(r) : v f ( (-oo, r~ ) and assume that it is finite for all r. Further,
we assume that vj is supported on [a, b] c is absolutely continuous with
respect to Lebesgue’s measure and has a continuous density N’ on (a, b) .

Then, there exists a non-decreasing function k, defined on such that
its distribution with respect to ~c coincides with the one of f with respect to
v, and e.

where 8 is a regular version of the conditional expectation of ~ ~ f ~ with

respect to the sigma-field generated by f. .

Proof. The relation Iv > yields by integration that for Borel
sets A C if v(A) ~ 0, then v(Ah) > (v(A)) + h/L). Let us use
this fact to derive useful properties of f . We set K :_ ~~ f (~Lip. Let h > 0.
The Lipschitz property easily yields that

Thus by the isoperimetric inequality for the measure v

holds whenever 0. This inequality ensures that v f has a positive
density N’ (r) on (a, b) In particular, the inverse function N-1 : (0, --~

[a, b] is well-defined. By construction, the function k = N-1 ~a, b~
has distribution vi with respect to p.

Let E > 0 and r G (a, b) . Consider the function

c....

Set g~ _ o f . By the co-area formula ( ~12~ ) and the isoperimetric inequal-
ity, one has

Now, we let ~ to zero. For t E (0,1), one has

Thus : t~) = : f (x)  r~) = N(r). Since J,~ is
continuous on (0, ~c{II~) ), we obtain that



On the other hand,

tends to N’(r)8(r) when £ tends to zero, for almost every r G (a, b). Even-
tually, we have proved

for r E (a, b) B .I~, where J1~ c (a, b) is Lebesgue negligible. Next, we differ-
entiate the relation that defines k and get for x C (c, d)

Let x E (c, d) such that E (a, b) B N. The latter inequality applied with
r = k(x) gives

As previously discussed N’ ( I~ (x) ) is positive, so we have proved that k’ (x) 
holds whenever x E (c, d) and E (a, b) B ,J~. This condition is

true because ,u((c, d)C) = 0 and

by our assumptions on v f The proof is complete. D

Remarks. This lemma holds in more general settings, for example if
v is a measure on a Riemannian manifold. Also note that the function J,~
is larger than the isoperimetric function of ~c. Indeed the sets (-oo, t] have
-measure 03A6(t) and p-boundary measure 03C6(t). So this hypothesis I v > 
is stronger than I v > these assertions are equivalent when  is an even
log-concave probability measure on R = J~ in this case, see [10], [6].)

Let us now illustrate the transfer principle. For r E [1, 2~, let pr be the
probability measure on the real line defined by

Latala and Oleszkiewicz proved in [15] that for any p E ~l, 2) and any smooth
k I~ ~ R, one has

where C is an absolute constant.



Assume that v is an absolutely continuous probability measure on JRn
such that 

_ _

Then, we can show that v satisfies the same inequality as pr with the
constant C replaced by CL2. When the density of v is regular enough (log-
concave suffices) , standard approximation arguments show that it suffices to
prove the inequality for Lipschitz functions f with a distribution function v f
satisfying the hypothesis of Lemma 2 (for example, one can use polygonal
approximations of the graph of f and modify them slightly in order to avoid
horizontal pieces). For such a function, the lemma provides a non-decreasing
function k on R with distribution vj. It satisfies inequality (1), where the
left-hand side is exactly

whereas the right-hand side is less than or equal to

To conclude, notice that the latter integral is

More generally, this method allows to transfer inequalities of the form

where G is jointly convex, and non-decreasing in the second variable. This
was used to transfer Bobkov’s isoperimetric inequality in [3]. We should like
to emphasize that several results in the literature may be understood ill a
simple way from the preceding remarks. See e.g. in [5], [8].

To conclude this section, we explain how the lemma recovers a spherical
symmetrization. In [14], Ilias shows the following: if (AI, d, v) is Riemannian
manifold with geodesic distance and normalized volume such that I is

larger than the isoperimetric function ISn of the Euclidean sphere with
uniform probability an, then the Sobolev inequalities valid on S" are still
true on M. Let p be a point of the sphere, and f a function on R. Applying



a Sobolev inequality on the sphere to the function x -~ f(d(x,p)) yields a
Sobolev inequality on the real line for the image measure  of an by the map
x ~ f(d(x,p)). With the notation of the lemma, the function coincides

with Isn (because d(p,.) is a good parametrization of the extremal sets on
the sphere.) So by the lemma, the Sobolev inequality for p will transfer to

d, v) .

2. Log-concave probabilities

We state the main result of the paper.

THEOREM 3.2014 Let r E ~l, 2) . Let ~C be a log-concave probability on Ilgn
such that there exists c > 1 and d > 0 such that

Then there exits a constant C(c, d) depending only on c and d such that for
any smooth function f : ~ I~ and any p E ~l, 2) one has

In particular, the infinite product measure will concentrate, up to con-

stant, as much as the measure /cr dt, t E I~.

In addition to the transfer principle exposed in the previous section, we
need the following lemmas.

LEMMA 4. - Let r, c, d as before and let ~c be a log-concave probability
measure on such that

Then ; the isoperimetric function of ~c is bounded from below:

where a and ,~3 are universal constants.

This fact was proved for r = 1, 2 in [7]. Our proof follows the same lines.

Proof. Let A be a measurable subset of Set t = 

Since j1 is log-concave, inequality (2.4) in [7] is available; it provides
the following lower bound on the boundary measure of A:



where R > 0 is arbitrary. So by hypothesis, and provided  1, one
has

Choose R = d ~) ~, where ~ > 0 will be specified later. The condition
 1 is equivalent to  1. The possible values of t are [0,1/2],

so if 03B3 > log c/log 2, the previous condition is satisfied and one has

where v (t) == (1 - t) log + log(l - . When 03B3  1, the function v is
concave in t E [0,1/2]. Clearly v(0) = 0, whereas v(1/2) is non-negative if
and only (log c + log(2 + ~) / log 2. So, if one sets, = ( log c + log ( 2 +

all the previous requirements are satisfied and v is non-negative
on the range of t. In this case, one obtains

Next, we want an upper bound on the isoperimetric function of
the probability measure on II~ with density - 

, with

cr = T(1 + 1/r). Let = cpr. Recall that = = 0 and
for t E (o,1), _ Notice also that = t).

LEMMA 5. - There exists a positive constant K such that for all r E
~1, 2] and all t E [0, l~ , , one has

Proof. - Since we consider only re [1,2], we can make rough estimates.
By symmetry of the latter quantities with respect to 1/2, we may restrict our
attention to t E (0,1/2]. We make the change of variables t = x  0,
and rewrite the inequality we aim at as



Equivalently, let us prove for arbitrary ?/ ~ 0 that

Integration by parts easily yields, for ?/ ~ 0

From this relation, we deduce upper and lower estimates of 0,

and for ?/ ~ 1, one has

therefore

where we have used r  2. Combining these estimates, we obtain for ~/ ~ 1

where we have used y > 1 and rcr = 1 / r ) = T ( 1 / r ) > r ( 1 ) = 1. The
proof of (3) is complete for ~/ ~ 1 and K = 3. The existence of a K such
that (3) holds for r E [1,2] and y E [0,1] is easy by compactness arguments
(an explicit value of K can be obtained by elementary estimates.) D

Proof of Theorem 3. - The hypothesis on  and the previous two lem-
mas yield

because r > 1. By the transfer principle explained in the previous section,
inequality (2) holds with



Finally, Theorem 1 ensures, for k  1 and h ~ R with ~h~Lip  1,

Remark. If one is not interested in Sobolev inequalities but only in
concentration properties, one can follow another route, by combining the
results of Section 2 with Talagrand’s tensorisation Theorem 2.7.1 in [20].
The latter operates instead at the level of inf-convolution inequalities. For
example Proposition 2.7.4 in [20] provides a precise concentration inequality
for products of even log-concave densities on the real line. It ensures that
when 1 ~ r  2 and A c R" satisfies ~cr (A) > 1/2 then for t > 0 one has

where c, K > 0 are universal constants and Bp = {x E JRn; ~~i ~p  l~.
This is somewhat stronger than the concentration statement in [15] since
for r  2, t > 1, one has + C 2tB2. .
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