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Asymptotic properties of the Dulac map
near a hyperbolic saddle in dimension three(*)

PATRICK BONCKAERT (1), VINCENT NAUDOT (2)

Annales de la Faculté des Sciences de Toulouse Vol. X, n° 4, 2001
pp. 595-617

R,ESUME. - Dans cet article, nous etudions l’application de Dulac as-
sociée a un champ de vecteurs définie au voisinage d’une singularité de
type col, autrement dit l’application de passage de coin d’une section
transverse a la variété stable de dimension 2 a une section transverse à la
variété instable de dimension 1. Nous montrons, qu’ a une fonction (dite
de Mourtada) multiplicative pres, cette application s’ecrit comme si le

champ etait localement linéaire.

ABSTRACT. 2014 In this paper, we study the Dulac map associated to a
vector field defined in a neighborhood of a hyperbolic equilibrium point
of saddle type i.e the map from a section transverse to the 2-dimensional
stable manifold to another section transverse to the unstable one. We
give an asymptotic expression of this Dulac map. We show that, this
asymptotic expression has the same expression, up to some multiplication
by a function of Mourtada type, as in the case where the vector field is
linear.

v

1. Introduction 

In the study of the bifurcation of a heteroclinic or homoclinic orbit tend-
ing to a saddle point p of a vector field it is important to have a good control
of the Dulac map near p, that is roughly: the map describing the transition
of the trajectories along the saddle point. Throughout this paper we always
restrict to "a sufficiently small neighbourhood" of the saddle point.
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In the planar case this problem was furthermore encountered in the
context of the Hilbert 16th problem and it is discussed by authors such as
Dumortier and Roussarie ~3~(9), Il’yashenko and Yakovenko [4], Moussu, [8]
[9] and especially Mourtada [7].

Let us mention some facts about the planar case. Let p = (0, 0) E R~
be a saddle point of the vector field X, that is: the eigenvalues Ai and ~2
of the linear part dX(O,O) satisfy ~2  0  al. The number r = is

called the ratio of hyperbolicity. Using invariant manifolds we can assume,
up to a C°° change of variables, that X takes the expression

on some neighbourhood U of (0,0). Take 6 > 0 a small real number. Up to
a linear rescaling of the form (x, y) = b(x, y) , it is no restriction to assume
that the points (1,0) and (0,1) belong to U. For small eo > 0 we consider
a semi-transversal Ei =j o, ~o ~ x ~ 1 ~ to x = 0, parameterized by x; similarly
E2 is parameterized by y. The Dulac ~2 sends a
point (:r, 1) to (1, y) where the trajectory of the flow associated to X through
(x,1 ) hits for the first time ~2 . Denote y = D (.x} In [7] it is shown that

D(x) = g(x) } where for all n EN: = 0.

In dimension three the so called ’almost planar case’ was studied by
Roussarie and Rousseau [10]. More explicitly: suppose that the lineariza-
tion of the vector field X at the singular point (0,0,0) has real eigenvalues
~1, ~2, ~3 with the extra properties 0  Ai = -~2 > -~3. It is also as-
sumed that ~3 /~12 ~ Q. One chooses coordinates such that y = z = 0 be
the unstable manifold corresponding to the eigenvalue Ai, and x = 0 is

the stable manifold. Because a3/a2 ~ Q one may moreover assume that
the x = z = 0 is invariant. The Dulac map D is then defined on the sec-

tion Ei = {y = 1} to E2 = {x = 1} and maps a point (xo, yo ) to (yl , zl )
where (1, yl, z1) is the first point on the trajectory of the flow associated
to X through (xo, yo,1) hitting ~2. In order to describe D it is hence no
restriction to divide X by any appropriate strictly positive function. So the
eigenvalues may be assumed to be Ai = 1, À2 = -1, a3 - for some

positive /~ ~ Q. Using a smooth normal form, containing only the resonant
monomial u = xy it is then possible to compute a very explicit form of
the Dulac map, exhibiting properties similar to in the planar case. More in
particular: yi = xo(l + f(xo)), zi = z0x 0(1 + g(xo)) where for all integer
j ~ 0, the property = 0 holds.



In the more general case, where such an explicit form is not at hand, we
investigate whether a similar asymptotic behavior can be obtained. Let us
give an example showing what can happen.

Example 1. - Let X(x, y, z) = + ((-2 - + z2)8/ay - z~/~z
where 6; is a small parameter. The trajectory through (xo, yo,1 ) is easi-

ly calculated by quadrature and variation of constants; it hits the point
= (1, Yl, xo) where

if ~ ~ 0; for ~ = 0 we get

Note that we encounter the maps introduced in ~9~, i.e.

so yi = Observe that for e = 0 there is a resonance
- 2=0.1+0.(-2)-f-2.(-1) and a resonant monomial 

On the other hand not all resonances entail this ’bad’ behavior:

Example 2.- Let = x8/8~-~((-2~+1)y+xz2)8/ay-/~za/8z
where ,~ > 0. The Dulac map is easily calculated by hand: yo,1) -
(1,W , zi) _ 
satisfies

xj0djg/dx0(x0) = 0. On the other hand there is a resonant monomial
xz2~/~y since -203B2 + 1 = 1.1 + 0.(-203B2 + 1) + 2.(-03B2).

We are in position to present the main result of this paper. Let E

be a smooth family of vector field defined in a neighborhood of 0 =
(0, 0, 0) E R3 a hyperbolic equilibrium point, U C R2. Suppose that for all
q E U the eigenvalues of satisfy:

Up to a time rescaling, we can assume that = 1. We choose linear
coordinates (x, y, z) such that



We assume that the map

define a local diffeomorphism. From now on, we identify "y with the eigen-
values of This means that the eigenvalues (a, ,Q) E U represent
the parameters, U, the parameter space is now a small neighbourhood of
(ao, ~io ) For simplicity, we shall write X instead of ~. .

Let Ei, (respectively ~2) be a 2-dimensional cross sections transverse
to {x = y = 0 ~ (respectively transverse to {y = z = 0 ~ Ei intersects the
stable manifold of the equilibrium point along a curve that disconnect ~1
into two connected components S- and ,S+. Both Ei and ~2 are chosen
close enough to the origin in such a way that the Dulac map

is well defined.

Let E > 0. We say that a function f (0, l) x ( -E, l) is a Mourtada type
function if f is smooth and if for all integer ~ > 0,

uniformly in yo .

THEOREM 1. - Under the above notations, the following properties hold.
Suppose that there exists an integer mo > 1 and (ao, ~30) E U such that

Then, there exists a C°° coordinates such that

where satisfies (2), f y and f z are Mourtada type functions at 0 and

Suppose that for all (a, ~3) E U, then the above property holds with

pmo - 0.



Remark. We shall see that

The fact that those convergences are uniform with repect to yo will be
evident, we even will see that they are uniform in a and ,~. We therefore
avoid to mention the (a, ~i) or yo dependence when it is not necessary.

Obviously, f tends to 0 as (a, Q) tends to We also remark that
in the case where N the expression of the Dulac map satisfies the
following. We put

Both Dy and Dz are the coordinates of the the difference between the Dulac
maps associated to JE and the Dulac map associated to its linear part. Then,
for all integer i > 0,

This asymptotic expression holds in the case of dimension three, we
claim however that this is also true in higher dimension if we assume that
the dimension of the unstable manifold is 1. In a more general context, the
arguments developed in this paper do not work.

This result is also important for the following reason. Suppose that we
are studying the bifurcations that arise in the unfolding of some heteroclinic
cycle. In many cases authors usually assume (at least in dimension bigger
than 2) that there is no resonance so that one can linearize the vector field
at least C’’ (r bigger than 2, 3..etc..) and then the Dulac map is easily
expressed. We certainly believe that this argument is worth applying if we
need to work in thick topology like the CB even the C2 topology. However
(see for instance ~61 ) we some time need to work in thinner topology. In this
case, we cannot ignore the existence of resonance and therefore the Dulac
map hasn’t this nice expression anymore.

Acknowledgments. The authors would like to acknowledge Freddy Du-
mortier and Jiazhong Yang for all the discussions and comments given du-
ring the elaboration of this paper. Their remarks permit us to improve our
initial result.



2. Basic assumptions

Consider X be a C°° vector field near 0 E R3 with = 0. We suppose
that the linearization dX(0) at 0 is a saddle with three real eigenvalues
1, -~3, -a where 0  ~3  a. Using invariant manifolds we let x denote a
coordinate on the unstable manifold, and let ( y, z) be coordinates on the
stable manifold, y being the coordinate on the strong stable manifold. In
this chart the vector field takes the form

with (a, b, c, d, hx)(x, y, z ) = y, z ) ~ ) All these functions are defined on
a neighbourhood U of the origin; up to a 6-rescaling (as we mentioned in
the introduction), we may, and do, assume that (1,0,0) and (0,0,1) belong
to U and that for all integer r the non linear terms satisfy

Let S+ = (0, ~) x (-~, e) x {1~ for small 6’ > 0 and E2 = {1~ x (-~, e) x
(-~, e). It is our purpose to describe the Dulac map D : E1 --~ E2 sending
a point ~/0) 1) to the point (1, yl, where the trajectory of X through
(xo, yo,1) hits E2 for the first time. For (xo, yo) small enough this map is
well defined by the Hartman-Grobman theorem. We may divide the vector
field by a strictly positive function, so we may assume that hx == 0. We then
proceed to the normal form procedure. We get:

where Gy, By, Gz,Bz are smooth functions in x, y, z they satisfy

Moreover, = 0 if and the integers nl, ml, n2, m2 are such
that



are resonant terms of the intial system. This means that

Therefore, one can assume that for all (a, ~i) E U the following inequalities
hold.

Both Hy and Hz are the flat terms, this means that all their partial deriva-
tive vanish at (0,0). We apply Sternberg’s theorem (see [12], [13]): since 0
is a hyperbolic equilibrium point, we can eliminate the flat terms by conju-
gacy with a C°° local change of coordinates. To be more precise, Sternberg’s
theorem holds for a single vector field but we claim that this also holds even
if the vector field depends on some parameters and the conjugacy depends
smoothly with respect to the parameter. See [5] for a detailed proof or also
(I1~, [1], [2]. For instance Rychlik ~11~, in the appendix of his article, give a
very nice proof of this result using the so called Moser’s homotopy method.

We will therefore assume from now on that both functions Hy and Hz
vanish and we get the following ordinary differential equation.

In fact, we will call xyGy and xzGz the "good terms", and
xn2 z"z2 Bz will be called the "bad terms". These "bad terms’’ prevent {y =
0~ resp. {z = 0~ from being invariant under the flow. We remark that; in the
case of the dimension 2, the bad terms are inexistent. The integers ni , m1,
(respec. n2, m2) are such that

are the lowest order resonant terms that involve terms in x or z in the

8/8y direction (respectively terms in x or y in the 8/8z) direction. Up
to a rescaling, we have that for all integers r, ,

and [ are bounded by some K6 where K > 0. As suggested by
the examples and in the theorem, we need to distinguish two cases: for all
(o;, ~3) E U, rx/~3 ~ N or there exists (ao, ~30) E U such that EN. The

. paper is organized as follows. In the next section we give a series of technical



results we need later. We will then introduce the ring of smooth functions
.~1~I, and the ring of Mourtada type functions. In the last two sections, we
will prove theorem 1, we will treat separately the case (meaning
Pmo = 0) and the case where there exists (ao, 03B20) E U such that ao /03B20~N
(with 0) .

3. Some technical preliminaries

LEMMA 1. - Let a > 0, be a real number m be an integer. Let

be a smooth function. Assume that

and suppose that for all integers 0  n  m,

exists in R, then an = 0.

This lemma is proven in the appendix. We then get the following corollary.

COROLLARY 1. - Let m be an integer. Let

where (03C9) = and f as in the previous lemma. Assume that for all
integers 0  n  m

exists. Then

This result is useful for the following purpose. In order to show that a
function g satisfies



for some integer n > 0, it will suffice to show that the function g(w) =
g(e-w) is such that

just exists for the same integer n. Such a function will be called in the next
section, a function with converyent derivatives or a CD-function.

4. Some rings of functions

On the cross section S+ , xo and yo are the coordinates. It means that the
point (xo, yo,1 ) corresponds to initial condition of the flow Xt associated to
x. In this section, we give some estimation on the higher order derivative
of this flow with respect to the initial condition xo . Instead of using the
variable j:o? we shall use the variable w were Xo = e-W and we denote by

We remark that = and that the coordinates of the Dulac map
associated to X are such that

We now introduce some new rings of functions. Let h : R+ x R+ ~ R be a
smooth and bounded function. We say that h belongs to .M if there exists
v > 0 and if for all non-negative integer n and m there exists a function
9m,n such that

and such that gm,n is bounded on the triangle

We also say that go,o has bounded partial derivatives on T. Due to the
Leibniz rule, it is easy to see that the set M is a ring for the multiplication
law. Let h : : R+ --~ R be a smooth function. We say that h is a function
with convergent derivatives or is a CD-function if for all integer n,

exists. The set of CD-functions is also a ring for the multiplication law.



Remark. - If we go back to the variable j:o = e-’~ and if we use corollary
1, this means that g(xo) = h(- log zo) satisfies

for all integer n > 0 and of course

exists. In other words, if h is a CD-function then g is a Mourtada type
function.

Let v > 0 be close to 0. Then there exists A and ~u such that for all

(cx, ~i) ~ U, ,

LEMMA 2. - There exists smooth functions y(w, t) and z(w, t) such that

and such that j and z have bounded partial derivatives on

i. e for all non-negative integer integers n, m

are bounded on T. .

We give the proof of this lemma in the appendix. From lemma 2 we know
that both y and z as functions depending on 03C9 and t belong to M. Suppose
that , f = f(w, t) = where F is a smooth function, then

f b elongs to M. .

PROPOSITION 1.2014 Let f E M. Then there exists v > 0 and a smooth

function F with bounded partial derivatives on T such that



Moreover the functions

are CD-functions.

Proof. - Denote by g(w) = f(w, w). We then get

and since f E M there exits v > 0 such that

This implies that for all integer n

Now, since f E M , there exists a function f with bounded partial derivatives
on T such that

Therefore

where F is a smooth function with bounded partial derivatives on T. It
therefore turns out that = this implies that for all
non-negative integer n

for some kn > 0 and therefore A f is a CD-function. This ends the proof of
the proposition

The next two sections are devoted to prove theorem 1.



5. The case where 

In this case we have, = 0 in (6). Put

From (5) it turns out that there exist some smooth functions Gyy, Gyz, Gzy
and Gzz such that:

We now have

Since yGyy, zGyz, yGzy and zGzz belong to M, with proposition 1 and (10)
we know that there exists 0  v 1, some smooth functions (/? and 03C8 with
bounded partial derivatives on T such that

Let ’P2 and ~2 be such that

Here both cp2 and ~2 have bounded partial derivatives on T. We now put:



We obtain the following implicit solutions

With (13) we get

Furthermore, since

and since + a  -nl -~- v  0, + ~3  -n2 + v  0, there exists
functions Qy and Qz with bounded partial derivatives such that

With proposition 1, there exists smooth functions cp3 and ~3 with bounded
partial derivatives on T such that



where vi = mlÀ - Q > 0 and v2 = m2~, - ~3 > 0. From (18), (19), (16)
(17), (13), (22) and (23) there exists v4 fi inf{v, vl, v2} and some smooth
functions v(w, t) and u(w, t) with bounded partial derivatives such that

With proposition 1, the following functions

are CD-functions. Therefore, coming back to the previous coordinates i.e.
w = - log xo, we then get

we finally get

and as a consequence of corollary 1 we have that for all integer m,

We moreover remark that those convergence are uniform in yo, a and /3.



6. The case ao/,Qo E N

Put mo = In this case we have

We therefore have the following implicit solution

Following the same computation in the previous section we get

where both and u have bounded partial derivatives. With (31 ) we have

where v5 = inf ~ v, v4 ~ and where ~p4 has bounded partial derivatives. By
putting 6’ = a - and assume that ~  v5, we therefore have



where v6 = > 0. By integration we get

Now with (22) we get

where p6 has bounded partial derivatives. With (29), (18), (35) and (31),
we finally get

where 4’7 has bounded partial derivatives. We finally get

and as a consequence of corollary 1 we have that for all integer m,

This finally ends the proof of theorem 1.
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7. Appendix

We first start this appendix by writing the following sub-lemma about
vector fields defined in a vicinity of a hyperbolic equilibrium point for which
its unstable manifold is one-dimensional.

Sub-lemma 1. - Let n be an integer and X be a smooth vector field
defined in a neighborhood of 0 E Suppose that 0 is an hyperbolic
equilibrium point, and

where the are strictly positive. Up to some linear rescaling, X is equiv-
alent to the following ordinary differential equation.

where 6 > 0 is close to 0 and the functions ... , Hn are smooth, bounded
and they consist in the higher order terms. Without loss of generality, we
can assume that equation is valid in the following neighbourhood

Fix b > 0. We define the following sections ~5’1 , ... , ,S’n and £

We parameterize by (x, Pj) a point in Let w > - log b, and Xt be the
flow associated to X. For all integer j = 1... n, we denote by Tj (w, Pj) the
following piece of trajectory



that connects the point E sj to the point xw (e-w, Pj) E Eo and
the following transition maps associated to X

Recall that

Then for all integer i, j the following properties hold.

(i) For all point P~ E the sets T (w, Pj) and are bounded over

w,

This sub-lemma is a direct consequence of the Hartman-Grobman theorem.

PROOF OF LEMMA 1. - We prove this lemma by contradiction. Suppose
that the exists an integer i > 1 such that aj = 0 if j  z, and 0. Without
lost of generality we can assume that ai > 0. Fix 0  v  c~. . Therefore
there exists b > 0 such that for all 0  x  b,

This implies that for all 0  u  b,

We therefore get

This implies that

We now let u tend to 0. We know that



and anyway we have

Also for u close enough to 0,

This implies that

which contradicts (38). Now, if i = 1 we come to the following inequality

This implies that

and this will implies that f does not converge to 0 as x tends to 0. We then
get another contradiction and this ends the proof of the lemma.

PROOF OF COROLLARY 1.2014 We first remark that

Therefore, suppose that

we then have

and by using lemma 1, we have that ai = 0. Suppose now that there exists
an integer n  m such that for all integer 1  i fi n - 1

Now, one can easely show (by induction on n) that



where

and for all integer 1  i ~ j  n, we have

Now when w tends to 0o we have

Since ai = 0 for all integer n - 1 we therefore have

Since An,n #0, the proof of the corollary is therefore finished.

PROOF OF LEMMA 2. - We put:

Recall that

With (39) we get

By putting



we obtain the following equation

Now up to some linear rescaling we can assume that the conditions in sub-
lemma 1 are satisfied, then both y and z are bounded on the triangle T.
Take m > 0 and n  0. We put
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From (41) by successive derivations we get

where both Hy,m,n and are smooth functions. Again up to some
linear rescaling we can assume that the conditions in sub-lemma 1 are sa-
tisfied, and this shows that both and zm,n are bounded. This ends the
proof of the lemma.


