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RÉSUMÉ. - II est bien connu que les equations de Kirchhoff admet-
tent infinies modes simples, c’est-a-dire solutions periodiques avec seule-
ment un composant de Fourier dans les variables spatiales. Nous montrons
que, pour quelque choix de la non-linéarité, ces modes simples sont insta-
bles a, condition que leur energie soit assez grande. Ce resultat, enonce
dans le cadre abstrait des espaces de Hilbert, et prouve par reduction a
un systeme de deux equations differentielles ordinaires du deuxieme or-
dre, s’applique a equations différentielles ordinaires du deuxieme ordre,
s’applique a equations differentielles aux derivees partielles de type de
Kirchhoff sur domaines bornes de an.

ABSTRACT. - It is well known that Kirchhoff equations admit infinitely
many simple modes, i. e. time periodic solutions with only one Fourier
component in the space variables. We prove that, for some choices of the
nonlinearity, these simple modes are unstable provided that their energy
is large enough. This result, stated in an abstract Hilbert space setting,
and proved by reducing to a system of two second order ODEs, applies
to PDEs of Kirchhoff type on bounded domains of 

1. Introduction

Let H be a real Hilbert space, with norm ] . and scalar product ( ~, ~ ~ . Let
A be a self-adjoint linear positive operator on H with dense domain D(A)
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(i.e. (Au, u) > 0 for all u E D(A)). We consider the evolution problem

where m : [0, +oo) - (0, +00) is a Cl function.

Equation (1.1) is an abstract setting of the hyperbolic PDE with a non-
local non-linearity of Kirchhoff type

where n C Rn is an open set, Vtt is the gradient of u with respect to space
variables, and A is the Laplace operator.

If Q is an interval of the real line, this equation is a model for the small
transversal vibrations of an elastic string.

In the case where H admits a complete orthogonal system made by
eigenvectors of A (this is the case e.g. in the concrete situation of (1.2) if S2
is bounded), then (1.1) may be thought as a system of ODEs with infinitely
many unknowns, namely the components of u.

A lot of papers have been written on equation (1.1) and (1.2) after Kirch-
hoff’s monograph [6] : the interested reader can find appropriate references
in the surveys [1] and [7]. We just recall that, at the present, the existence
of global solutions for all initial data in C°° or in Sobolev spaces is still an
open problem.

In this paper we consider a particular class of global solutions of (1.1).
Let us assume that A is an eigenvalue of A, and ex is a corresponding
eigenvector, which we assume normalized so that = 1. If the initial data

are multiples of e À, say

then the solution of (1.1) remains a multiple of ea for every t E R, i.e. we
have that u(t) = w(t)ea, where w(t) is the solution of the ODE

Such solutions are called simple modes of equation (1.1), and are known
to be time periodic under very general assumptions on m.

In this paper we prove instability of high energy simple modes for par-
ticular choices of m.



To this end, we can limit ourselves to consider the two-mode system

where  is another eigenvalue of A, corresponding to an eigenvector e  such
that = 1, and u(t) = w(t)ea + 

It is clear that simple modes are particular solutions of this system,
corresponding to initial data with z(0) = z’(0) = 0. Moreover, if w(t) is
unstable as a solution of (1.3), then w(t)ea is an unstable simple mode of
(1.1).

In order to simplify the notation, let us set

so that (1.3) is equivalent to

This system (as well as (1.3) and (1.1)) is Hamiltonian, with conserved
energy

As far as we know, stability of simple modes was studied in at least three
papers.

. DICKEY [3] proved that simple modes are linearly stable provided
that their energy is small enough. Roughly speaking, linearly stable
means that v(t) = 0 is a stable solution for the linearization of the
second equation in (1.4).

. The authors proved in [4] that simple modes are orbitally stable (see
section 2.1 for precise definitions) provided that their energy is small
enough.



. CAZENAVE and WEISSLER [2] assumed that there exists a > 0 such
that 

, ,

uniformly on bounded intervals (for example m(r) = 1 + They
showed that if

then every simple mode of (1.4) with large enough energy is unstable.
If a = 1, and Q is an interval of the real line, this result implies the
instability of every simple mode of ( 1.2) with large enough energy.

The case we consider in this paper is, in a certain sense, the limit of [2]
as o: 2014~ +00. Our main result is the following.

THEOREM 1.1.2014 Let v > 1, and let m : : ~0, +oo) -i (0, -~-oo) be a C1
function such that

(m1) m is nondecreasing;

(m2) for every r E [0,1) we have that

Then there exists Eo such that, if H(uo, ul, 0, 0) > Eo, then the simple
mode of (1.4) with u(0) = uo, u’(O) = u1 is unstable.

A simple example of function statisfying (ml) and (m2) is m(r) = e’’.

We point out in particular that we have instability for every v > 1, which
in the original equation (1.1) corresponds to perturbing a simple mode with
any higher frequency mode. Therefore this results can be applied to the
n-dimensional PDE (1.2), obtaining the following.

COROLLARY 1.2. - Let m be as in Theorem 1.1, and let (2 C ~’~ be

any bounded open set.

Then every simple mode of (1.2) with large enough energy is unstable.

Let us make a few comments on our assumptions on m. What we actually
use are properties (m3), (m4), and (m5), which we deduce from (ml) and



(m2) in Lemma 3.1. It should be possible to deduce them also from weaker
versions of (ml) and (m2), but this would only complicate proofs without
introducing new ideas.

Assumption (m2) is also suggested by the following observation.

Remark 1.3. - Let ~n. be a continuous positive function such that

exists for every r E (0,1). Since this limit is a multiplicative function, then
there are only three possibilities:

. the limit is rex for some a > 0 (case considered in [2]);

. the limit is 0 for every r E (0,1) (case considered in this paper);

. the limit is 1 for every r E (0,1).

We conjecture that in this last case, simple modes with high energy are
always stable.

As in previous literature, our proof considers the limiting form (for high
energy) of the differential of the Poincaré map relative to a simple mode
(see section 2.2). It is well known that this differential can be characterized
(see section 2.3) using a Hill’s equation, i. e. a second order linear differential
equation z" + va(t)z = 0 with a time periodic coefficient a(t) depending on
the simple mode.

In previous works, this coefficient tends to a function as the energy
tends to +0oo. In our case, on the contrary, a(t) tends to a measure, which
concentrates in some points. Despite of this initial difficulty, the limit solu-
tions can be explicitly computed (see section 3). For this reason, we think
that this is a good situation where conjectures about high energy solutions
of Kirchhoff equations (not only simple modes) can be tested.

2. Definitions and preliminaries

In this section we recall the notion of stability, and then we describe
the Poincaré map Pk associated to a simple mode uk of (1.4). We also
characterize the differential Lk of Pk, and we recall how instability can be
reduced to an algebraic condition on L~ .

The only assumptions on m which we need in this section are those
required in order to have periodic simple modes: to this end, m E C1 and
m ( r ) > 0 for r > 0 are enough.



We refer to [5] for general facts about dynamical and Hamiltonian sys-
tems, and to [2, 4] for specific results related to the particular system (1.4).

2.1. Stability

In this section we recall some definitions of stability from the classical
theory of Hamiltonian systems. For the sake of simplicity, we adapt defini-
tions to the case of simple modes for system (1.4).

Given a real number k > 0, let us consider the simple modes uk of system
(1.4) which solve the problem

We recall that Uk is a periodic function, and so we can assume > 0

and u’k(0) = 0 without loss of generality. Moreover assuming that k is large
is equivalent to assuming that the energy of uk is large.

Now in the phase space we consider the energy level

and the orbit

DEFINITION 2.1. - The simple mode uk is called orbitally stable if, for
every £ > 0 there exists 6 > 0 such that for every solution (u(t), v(t)) of sys-
tem (1.4), the following property holds: if the initial datum (u(0), u’(0), v(0),
v’ (0) ) belongs to a b neighborhood of (k, 0, 0, 0), then for every t E 1I~ the

point (u(t), u’(t), v(t), v’(t)) lies in an ~ neighborhood of 0393k.

DEFINITION 2.2. - The simple mode uk is called isoenergetically or-
bitally stable if the condition of Definition 2.1 is satisfied with the restriction
that (u(0), u’(0), v(0), v’(0)) E 

It is obvious that orbital stability implies isoenergetical orbital stability.
When in this paper we write that simple modes are unstable, we mean that
they do not fulfil Definition 2.2.

We often use also that solutions of (1.4) are reversible: this means that if
(u(t) u(t)) is any solution, then (u(-t), v(-t)) is another solution. Thanks
to reversibility, istability of a simple mode can be proved by showing the
existence of a non-periodic trajectory in x~ which is asymptotic to uk as
t -~ +00.



2.2. The Poincaré map

Let uk be the simple mode of (1.4) which solves (2.1). Let us consider
the open set Uk C ]R2 defined by

For every (x, y) E Uk , let a(x, y) > 0 be the unique positive number such
that

Let (u(t),v(t)) be the solution of system (1.4) with initial data

Finally, let T := T(x, y) be the smallest t > 0 such that u’(t) = 0 and
u(t) > 0. The existence of such a T is classical up to restricting Uk .

The Poincaré map Pk : If~2, relative to the simple mode u~, is

defined by

We point out that both v and T depend on (x, y) and k.

When (x, y) = (0, 0), then u(t) = and v(t) = 0 for every t E R. It
follows that Pk(0,0) = (0, 0), i. e. (0, 0) is a fixed point of the Poincaré map.

The interested reader is referred to the quoted literature, and in partic-
ular to [4], for a heuristic description of the Poincaré map.

Now we recall the classical definition of stability of fixed points for planar
maps.

DEFINITION 2.3. - Let u C R2 be an open set containing (0, 0), and
let P : : Lf -; R2 be a map such that P(0, 0) = (0, 0). The fixed point (0, 0)
is said to be stable if for every e > 0 there exists 6 > 0 such that

where Pn denotes the n-th iteration of P.

The stability of uk as a periodic solution is clearly related to the sta-
bility of (0,0) as a fixed point of Pk . This relation is stated in (P5) of the
following Proposition, where we recall the main properties of the Poincaré
map associated to uk.



PROPOSITION 2.4 (PROPERTIES OF Pk). - For every k > 0, let u~ and
Pk be as above.

Then

Pk E , and Pk(O, 0) = (o, o>;

(P2) Pk i.s area-preserving;

(P3) if y) = (a, b), then Pk(a, -b) = (x, -y) ;

(P4) Pk(-x, -y) = y) ;

(P5) the simple mode uk is orbitally stable if and only if (0, 0) is a stable

fixed point of Pk.

We don’t give here a proof of such properties, since they are well known
in the literature on dynamical systems. We only remark that (P2) follows
from the Hamiltonian character of the system, (P3) is a consequence of

reversibility, while (P4) is a consequence of the following fact: if (u(t) v(t))
is a solution of (1.4), then (-v,(t), -v(t)) is also a solution.

Thanks to (P5), instability of simple modes can be proved by verifying
instability of a fixed point of a planar map. In next section, we see that this
can be reduced to an algebraic condition on the differential of Pk. .

2.3. Linearization of the Poincaré map

Let Lk : : It82 --~ JR2 be the differential of Pk at (0, 0). In the case of
system (1.4), the linear operator Lk can be characterized in the following
way. Given (~, y) E If82, let Vk (t) be the solution of the linear problem

which is the linearization of the second equation of system (1.4). Then we
have that

where Tk is the period of Uk. We point out that vk depends on x, y, and k,
while Tk depends only on k, and is given by the formula

We don’t give the proof of this characterization, since it is completely
analogous to the proof of [2, Proposition 2.1].



In the following Proposition, we state the main properties of Lk, and its
relations to stability.

PROPOSITION 2.5 (PROPERTIES OF Lk ). - For every k > 0, let P~
and Lk be as above. Then

(Ll) detLk=l;

(L2) if Lk are the entries of the matrix representing Lk in the canonical
basis, then L~~ = L~2;

(L3) if ~ L~1 ( > 1, , then (0, 0) is art unstable fixed point of Pk. .

Property (L 1) is typical of Hamiltonian systems, while (L2) follows from
(P3) (for the details, see the proof of [2, Lemma 3.3~ ).

If |L11k| > 1, then by (L2) the absolute value of the trace of Lk is > 2. To-
gether with (L1), this implies in particular that the eigenvalues of Lk are 6 ,
8-1 for some 8 E R with f8f > 1. In this case, in the literature the fixed point
(0, 0) of the Poincaré map is called hyperbolic, and it is known to be unsta-
ble. Indeed, one can prove that there exists a 2-dimensional submanifold M
of the 3-dimensional energy level x~ such that every trajectory with initial
data in tends to a simple mode in as t --~ +00, with an exponential
rate depending on ~b ~ . Due to reversibility, this implies instability.

In conclusion, Theorem 1.1 is proved, provided we verify that L~1 ~ > 1
for k large enough. This descends from the following result, which will be
proved in next section.

THEOREM 2.6. - Let m be as in Theorem 1.1, and let Lk be as above.

Then

In particular, this limit is > 1 for every v > 1. .

We point out that an estimate of L11 provides an estimate of the eigen-
values of Lk, hence an estimate on the "instability rate".

Remark 2. 7. - As we have seen, linearization is a useful tool in order
to prove instability of periodic trajectories. Just for completeness, we recall
that, on the contrary, linearization is in general inconclusive in stability
problems for Hamiltonian systems. In our case, for example, if for some k
we find that (  l, then we can conclude that uk is linearly stable (see



[3]), but if we want to prove that uk is orbitally stable, then further terms
in the Taylor expansion of Pk near (0, 0) must be kept into account.

3. Proofs

This section is devoted to the proof of Theorem 2.6. The result is achieved
in three steps: first we rescale problems (2.1) and (2.3), and then we pass
to the limit as k -> +00 in the two rescaled problems. When passing to
the limit, we use the following properties of m, which follow from (ml) and
(m2). .

LEMMA 3.1. - Let m : [0, +oo) --~ (0, be a continuous function
satisfying (ml) and (m2). Let M be as in (1.5).

Then the following properties hold:

(m3) if Tk is defined as in (2.4), then

(m4) as k --~ +oo we have that

for every b E (0,1);

(m5) if k is defined as in (2.4), then as k - +oo we have that

for every 6 E (0,1).

Proof. - With the substitution x = ky in (2.4), we have that

Now we show that the limit of the last integral is 1. Indeed, by de
l’Hopital’s Theorem and (m2) we have that



Moreover by Cauchy’s Theorem

for some ç E (0, k). By (ml) the last term is ~ y2, so that the integrand in
the last term of (3.1) is ~ (1 - y2)-1/2. Therefore we can apply Lebesgue’s
Theorem, and this proves (m3).

In order to prove (m4), we first remark that by (3.2) we have pointwise
convergence in [0,1). Since the functions are monotone in r, and the limit
is continuous, then convergence is uniform on compact subsets of [0,1).

By the same argument, (m5) is proved provided we show that -~

0 for every r E [0,1). To this end, let us fix p E (r, 1). Then by (ml) we
have that

Now the first factor in the last term tends to 16 by (m3). Moreover,
setting 03C3 = k2p, by (m2) we have that

This completes the proof of (m5). 0

3.1. Rescaling

Let uk be the simple mode which solves (2.1), and let vk be the solution
of (2.3) with (~, y) = (1, 0). Setting

it turns out that zuk and zk are solutions of



In the sequel we need the following properties of wk:

(wl) w~ is a 1-periodic function, and for every t E [0,1/4],

(w2) wk(0) = wk(1) = 1, and iuk(1/2) _ -1;

(w3) zvk is decreasing in [0,1/2] and increasing in [1/2,1];

(w4) for every t E [0,1] we have that

(w5) 1 for every t E [0,1];

(w6) Tk for every t E ~0,1~.

Property (wl) and (w3) follow from the simmetries of uk, while (w2) is
a particular case of (wl ) . Moreover, (w4) follows from the conservation of
the Hamiltonian for Uk, and (w5) and (w6) are consequences of (w4).

We also use the following properties of ak , which are trivial consequences
of (3.6) and (wl):

(al ) 0 for every t E ~0, l~;

(a2) for every t E [0,1/4] we have that



Remark 3.2. - Up to now, no particular properties of m have been
used. Indeed, (3.3) and (3.4) can be considered as the starting point for
every asymptotic investigation of Lk, both for k large and for k small.

Assumptions on m are crucial when one considers the limit of wk and
For example, using on m the assumptions of [2] (cf. the introduction of

this paper), it is possible to prove that wk and zk tends to functions w~
and z~ satisfying the system

where the constant 03B3 is choosen so that the period of w~ is 1.

The same system was obtained in [2] through another rescaling, which
doesn’t work under our assumptions on m.

3.2. Asymptotic behaviour of simple modes

In this section we pass to the limit as k - +oo in problem (3.3). The
final goal of this section is to prove that, for every ~ E (0,1/4),

Such estimates will be crucial in section 3.3, where we pass to the limit
in problem (3.4). In order to prove (3.7) and (3.8), we first compute several
limits involving .

3.2.1. . Asymptotic behaviour of wk

We prove that

Indeed, thanks to (w5), (w6), (m3), and Ascoli’s Theorem, we have that
w~ converges (up to subsequences) to a limit, which we denote by By



(w2) we know that

Moreover, passing to the limit in (w6) and using (m3), we find that
w~ is Lipschitz continuous, with Lipschitz constant  4. Together with
(3.11), this implies that w~ has the form given in (3.10). Finally, since the
limit doesn’t depend on the subsequence, we have that the whole family n;~
converges to .

3.2.2. Asymptotic behaviour of wk

We prove that

Indeed, from (w4), we have that

Now from (m3) we know that the first factor in the right hand side tends
to 16. Moreover, by (m4), (3.9), and (3.10) we have that

for every 8 E (0,1/4). Letting 8 --~ 0+, we have proved that ~ --~ 4 for
every t E (0,1/2). Since by (w3) the function is negative in (0,1/2),
convergence (3.12) is proved.

Remark 3. 3. - In the same way it can be proved that z,v~ (t) --~ 4 for
every t E ( 1 /2,1 ) .

An alternative (but a little technical) proof of (3.12) can be obtained
also without mentioning properties of m, but using only (3.9), and the fact
that w~ is concave in [0,1/4] and convex in [1/4,1/2]. .

3.2.3. Asymptotic behaviour of ak

We first prove that for every £ E (0,1/4) we have that



which in particular proves (3.8). By definition of ak, (3.13) follows from
(3.9) and (m5).

Now it remains to prove (3.7). To this end, since 0 ~ 1 in

~0,1/4~, then we have that

Letting 1~ -~ +oo and using (3.12), we find that

In order to obtain the opposite inequality, we fix o- E (o, ~). By (3.13)
we have that ak converges to 0 uniformly in ~~, ~J, hence

In order to estimate the last term, we recall that w~ is decreasing in
[0 , a] , hence

so that by (3.9), (3.10), and (3.12),

Letting o~ -~ 0+, thesis is proved.

3.3. Asymptotic behaviour of linearized Poincaré map

In this section we consider the asymptotic behaviour (as k - +oo) of the
solution zk of the Cauchy problem (note that this problem is exactly (3.4) )



where the coefficients ak(t) satisfy (al), (a2), (3.7), and (3.8). We prove that

In particular, setting t = 1, we have that

which by (3.5) is exactly the conclusion of Theorem 2.6.

3.3.1. Compactness of zk

We show that there exists ko > 0, and constants C1 and C2 such that,
for every k > ko,

By Ascoli’s Theorem, this proves in particular that zk uniformly con-
verges, up to subsequences, to a limit, which we denote by If we prove
that can be characterized as in (3.16), then we have that the whole
family zk converges to 

In order to prove these estimates we first remark that from (3.7), (3.8),
and (a2), it follows that, for every ~ E (0,1/4),

Moreover, there exists a constant C3 such that



Now let us set

With simple calculations, we find that

hence, by Gronwall’s Lemma and (3.21),

By definition of Ek, inequalities (3.17) and (3.18) are proved.

3.3.2. Characterization of for t E [0,1/2]

We prove that

In order to compute the first limit, we fix e such that
0  ~  min {t, 1/2 - t}. By (3.4) we have that

Now let us compute the limit of the second summand. From (3.17) we
have that



for every fixed e.

In order to estimate the first summand in (3.24), from Zk(O) = 1 and
(3.18) we deduce that

Since e is arbitrary, (3.22) follows letting e -~ 0+ .

In order to prove (3.23) we remark that

and then we pass to the limit in the integral (we can apply Lebesgue’s
Theorem by (3.18) and (3.22)). .

3.3.3. Characterization of Zoo for t E [1/2,1]

We prove that

In order to compute the first limit, we fix c such that
0  e  min {t - 1/2,1 - t}. By (3.4) we have that



From (3.22) we know that the limit of the first summand is -4v. More-
over, arguing as in the proof of (3.25), we can show that the limit of the
third summand is 0.

In order to estimate the second summand in (3.28), from (3.18) we de-
duce that 

, ,

By (3.19) and (3.28), we therefore have that

By (3.23), (3.26) follows letting e - 0+.

In order to prove (3.27), we remark that

and then we pass to the limit using the convergence for t = 1 /2 proved in
(3.23), and Lebesgue’s Theorem.
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