Hélène Maugendre Françoise Michel

Fibrations associées à un pinceau de courbes planes

Annales de la faculté des sciences de Toulouse 6^e série, tome 10, n° 4 (2001), p. 745-777

http://www.numdam.org/item?id=AFST_2001_6_10_4_745_0

© Université Paul Sabatier, 2001, tous droits réservés.

L'accès aux archives de la revue « Annales de la faculté des sciences de Toulouse » (http://picard.ups-tlse.fr/~annales/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Vol. X, n° 4, 2001 pp. 745–777

Fibrations associées à un pinceau de courbes planes^(*)

HÉLÈNE MAUGENDRE⁽¹⁾, FRANÇOISE MICHEL⁽²⁾

RÉSUMÉ. — Soient f et g deux germes de fonctions analytiques à l'origine dans \mathbb{C}^2 et $N \in \mathbb{N}^*$. Nous calculons explicitement l'ensemble B des valeurs atypiques du pinceau { $f_a = f + ag^N$, $a \in \mathbb{C}$ }. Avec notre description de B, nous pouvons déterminer les valeurs irrégulières à l'infini des applications polynômiales de \mathbb{C}^2 dans \mathbb{C} (voir les exemples du chapitre 5). Nous comparons les fibrations de Milnor des germes f_a du pinceau et nous exhibons un facteur commun aux polynômes caractéristiques de leurs monodromies. Lorsque g = x, nous montrons que la répartition de la multiplicité par dicritique est indépendante du paramètre a et nous décrivons la topologie des membres génériques en fonction de la résolution minimale de $f \cdot x$.

ABSTRACT. — Let f and g be two holomorphic germs at the origin in \mathbb{C}^2 , and let N be in \mathbb{N}^* . We explicitly determine the set B of atypical values of the pencil $\{f_a = f + ag^N, a \in \mathbb{C}\}$. In section 5 we use our definition of Bto calculate the irregular values at infinity of a polynomial map from \mathbb{C}^2 to \mathbb{C} . We compare the Milnor fibrations of the germs $f_a, a \in \mathbb{C}$. We give a common factor of the characteristic polynomials of the corresponding monodromies. When g = x, we describe the topology of a generic germ of the pencil in terms of the minimal resolution of $f \cdot x$.

1. Introduction

NOTATIONS ET DÉFINITIONS. — Si g_1 et g_2 sont deux germes de fonctions analytiques à l'origine de \mathbb{C}^2 , la multiplicité d'intersection à l'origine entre g_1 et g_2 est notée $(g_1, g_2)_0$.

^(*) Reçu le 26 mars 2001, accepté le 30 avril 2002

⁽¹⁾ Institut Fourier, Université de Grenoble I, BP 74, 38402 Saint-Martin d'Hères, courriel : Helene.Maugendre@ujf-grenoble.fr

⁽²⁾ Laboratoire de mathématiques Émile Picard, Université Paul Sabatier, 118 route de Narbonne, 31 062 Toulouse Cedex 4, courriel : fmichel@picard.ups-tlse.fr

La multiplicité à l'origine de g_1 est notée $(g_1)_0$.

Les germes g_1 et g_2 sont topologiquements équivalents s'il existe un germe d'homéomorphisme $G : (\mathbb{C}^2, 0) \longrightarrow (\mathbb{C}^2, 0)$ de degré +1 tel que $g_1 \circ G = g_2$.

Si g_1 est un germe irréductible différent de x, une paramétrisation de g_1 est la donnée de $m \in \mathbb{N}^*$ et $\varphi(t) \in \mathbb{C}\{t\}$ tel que $\{g_1 = 0\} = \{(t^m, \varphi(t)), t \in \mathbb{C}\}$, de plus on choisit m minimum. Le théorème de Puiseux montre l'existence d'une telle paramétrisation.

La valuation en t de $g_2(t^m, \varphi(t))$ est notée val $_t(g_2(t^m, \varphi(t)))$. On rappelle que, lorsque $(t^m, \varphi(t))$ est une paramétrisation du germe irréductible g_1 , val $_t(g_2(t^m, \varphi(t))) = (g_1, g_2)_0$.

D'autre part une composante irréductible d'un germe de courbe est appelée "branche" de la courbe.

On note D_{ε}^{2n} les boules de \mathbb{C}^n de rayon ε et S_{ε}^{2n-1} leur bord.

Soient f et g deux germes de fonctions analytiques à singularité, non nécessairement isolée, à l'origine de \mathbb{C}^2 , tels que f et g n'aient aucune composante irréductible commune. Soient N un entier strictement positif et a un nombre complexe. Nous définissons $f_a : (\mathbb{C}^2, 0) \longrightarrow (\mathbb{C}, 0)$ par $f_a(x, y) = f(x, y) + a(g(x, y))^N$. Nous considérons le germe d'application analytique $\Phi_a = (g, f_a) : (\mathbb{C}^2, 0) \longrightarrow (\mathbb{C}^2, 0)$ défini par :

$$\Phi_a(x,y) = (g, f_a)(x,y) = (g(x,y), f_a(x,y)).$$

Le germe Φ_a est fini car g et f_a n'ont aucune composante commune.

Le lieu des zéros D du déterminant $\dot{D} = (\partial g/\partial x)(\partial f/\partial y) - (\partial g/\partial y)(\partial f/\partial x)$ de la matrice jacobienne de Φ_a est le lieu critique de Φ_a .

Le rôle de l'entier N, qui paraît arbitraire dans la définition de f_a , deviendra naturel dans l'étude détaillée des pinceaux de la forme $f(x, y) + ax^N$ (voir chapitre 4). De tels pinceaux déterminent le comportement à l'infini des applications polynômiales P, de \mathbb{C}^2 dans \mathbb{C} . L'entier N est alors égal au degré du polynôme P.

Par convention, nous choisissons des coordonnées dans \mathbb{C}^2 pour que $\{x = 0\}$ ne soit pas une composante de $D \cup f^{-1}(0)$.

ÉNONCÉ DES PRINCIPAUX RÉSULTATS. — Traditionnellement, l'ouvert d'équisingularité du pinceau $f + ag^N$ est le plus grand ouvert U de \mathbb{C} tel que, quels que soient $a, b \in U$, f_a et f_b ont même type topologique.

Ici nous construisons explicitement un ensemble fini B, de nombres complexes, de la façon suivante.

Considérons l'ensemble (éventuellement vide) des branches γ_j de $D, 1 \leq j \leq k$ paramétrées par $(t^{m_j}, \varphi_j(t))$ telles que val_t $f((t^{m_j}, \varphi_j(t))) = N(g, \gamma_j)_0$. Nous obtenons :

$$f((t^{m_j},\varphi_j(t))) = b_j t^{N(g,\gamma_j)_0} + \sum_{i \ge N(g,\gamma_j)_0+1} c_i t^i$$
$$g((t^{m_j},\varphi_j(t))) = d_j t^{(g,\gamma_j)_0} + \sum_{i \ge (g,\gamma_j)_0+1} d'_i t^i.$$

Posons $B_1 = \{-b_j d_j^{-N}, 1 \leq j \leq k\}.$

Si f est non réduite ou s'il existe au moins une branche γ de D paramétrée par $(t^m, \varphi(t))$ telle que val $_t f((t^m, \varphi(t))) > N(g, \gamma)_0$, alors $B = B_1 \cup \{0\}$, sinon $B = B_1$.

Dans le chapitre 2 nous démontrons :

THÉORÈME 1. — L'ouvert $\mathbb{C}\backslash B$, est l'ouvert U d'équisingularité du pinceau $f + ag^N$.

L'existence d'un tel ouvert est connue depuis O. Zariski (voir [Z] mais aussi [T1]). Dans [L-W], D.T. Lê et C. Weber donnent une caractérisation de l'ensemble fini $\mathbb{C}\setminus U$ en fonction de la résolution minimale du pinceau.

Le théorème 1 présente l'avantage de déterminer B algorithmiquement à partir de f et g sans référence au paramètre a. Il fournit aussi la caractérisation implicite suivante de U: "le paramètre a appartient à U si et seulement si la multiplicité d'intersection de f_a avec chaque branche de Dest minimale."

Ensuite nous comparons les fibrations de Milnor des membres du pinceau $f + ag^N$ et nous déterminons un facteur commun aux polynômes caractéristiques des monodromies associées.

Plus précisément, pour $a \in \mathbb{C}^*$ et ε suffisamment petit, nous considérons la décomposition minimale de Waldhausen $\bigcup_{\text{finie}} V_S \text{ de } S^3_{\varepsilon}$ admettant les comfinie

posantes de l'entrelacs de ff_ag pour feuilles de Seifert. À chaque variété de Seifert V_S nous associons l'invariant topologique q(S) (voir définition 5 paragraphe 3.1).

- 747 -

THÉORÈME 2. — Pour tout $a \in \mathbb{C}^*$, si $N > \min q(S)$, la variété de Waldhausen $W^N = \bigcup_{q(S) < N} V_S$ satisfait les propriétés suivantes :

- 1. $\varphi_a = f_a/|f_a|_{|} : W^N \longrightarrow S^1$ et $\varphi = f/|f|_{|} : W^N \longrightarrow S^1$ sont des fibrations isomorphes;
- 2. si F_a^N est une fibre de φ_a , alors $\chi(F_a^N) = (g, f_a)_{\circ} (f_a, \Gamma^N)_{\circ}$ où $\chi(F_a^N)$ est la caractéristique d'Euler de F_a^N , et Γ^N est le produit des composantes γ de D telles que $(f, \gamma)_{\circ}/(g, \gamma)_{\circ} < N$;
- la résolution minimale de f ⋅ g définit un ensemble fini I_N et des entiers positifs r_N, v_i(f_a), et val_{E_i} (f_a) où i ∈ I_N, tels que le polynôme Λ^N_a(t) défini par :

$$\Lambda_a^N(t) = (t^{r_N} - 1) \prod_{i \in I_N} (t^{val_{E_i}(f_a)} - 1)^{v_i(f_a) - 2}$$

soit le polynôme caractéristique de la monodromie de f_a^N . De plus, Λ_a^N divise le polynôme caractéristique de la monodromie de f et celui de la monodromie de f_a .

La variété W^N est construite (3.2 et 3.3) à l'aide du carrousel de Lê (voir [L1]). Le théorème 3 (3.3) montre que φ_a est une "sous-fibration de Milnor" commune à tous les membres du pinceau et entraîne les points 1 et 2 du théorème 2. Le point 3 du théorème 2 est démontré au paragraphe 4.1 (proposition 6).

En toutes dimensions, C. Caubel ([C1], [C2] et [C3]) étudie les fibrations de Milnor des pinceaux de germes d'hypersurfaces et retrouve, en particulier, les résultats de I.N. Iomdine, D.T. Lê, D. Siersma, M. Tibar (voir [I], [L2], [S], [Ti]) qui concernaient les pinceaux de la forme $f(z_0, ..., z_n) + az_0^N$ avec N "grand". Pour d'autres familles voir aussi [Sc].

Lorsque l'on considère les valeurs atypiques à l'infini des applications polynômiales de \mathbb{C}^2 dans \mathbb{C} , on est amené à regarder des pinceaux de la forme $f(x, y) + ax^N$. C'est pourquoi, au chapitre 4, nous faisons une étude détaillée de ce pinceau au moyen de la résolution minimale de $f \cdot x$. Les résultats de ce chapitre 4 se généralisent directement aux pinceaux $f + ag^N$ lorsque g est irréductible. Au chapitre 5 (exemple 3) nous donnons des exemples de détermination des valeurs atypiques à l'infini d'une application polynômiale de \mathbb{C}^2 dans \mathbb{C} .

Pour les pinceaux $f(x, y) + ax^N$, $\{q(S)\}$ est l'ensemble des quotients polaires de f pour la direction x (voir [LMW1]). En 4.2 et 4.3, nous supposons $N > \min\{q(S)\}$. Pour tout $a \in \mathbb{C}^*$, nous considérons la résolution minimale π du germe produit $f \cdot f_a \cdot x$. Nous notons $\mathcal{A}(f \cdot f_a \cdot x)$ l'arbre orienté qui représente π . Étant donné un sommet dicritique S de $\mathcal{A}(f \cdot f_a \cdot x)$ (voir le corollaire 7 du paragraphe 4.2), nous notons ε l'arête qui arrive en S. Pour tout $b \in \mathbb{C}$, $f_{b,\varepsilon}$ désigne le produit (avec multiplicité) des composantes de f_b dont la géodésique passe par ε (voir le paragraphe 4.3). Nous montrons (proposition 9) :

$$(f_{b,\varepsilon}, x)_0 = (f_{a,\varepsilon}, x)_0$$
, quel que soit $b \in \mathbb{C}$.

Cette égalité est non trivale si *b* appartient à *B*. Elle montre que la "répartition de la multiplicité" par dicritique est indépendante de la valeur du paramètre *a* de la déformation $f(x, y) + ax^N$. Ceci limite les variations de la topologie des fibres spéciales et s'applique en particulier aux singularités à l'infini des applications polynômiales de \mathbb{C}^2 dans \mathbb{C} .

Ensuite, pour tout $a \in U$, nous déterminons, dans les théorèmes 4 et 5 du paragraphe 4.4, l'arbre de la résolution minimale de $f_a \cdot x$ et de $f \cdot f_a \cdot x$ à partir de celui de $f \cdot x$.

Les pinceaux $f(x, y) + ax^N$ lorsque $N \leq \min\{q(S)\}$ sont dits dégénérés. Ils sont étudiés au paragraphe 4.5.

2. Caractérisation des valeurs atypiques

Considérons l'ensemble fini B et l'ouvert d'équisingularité $U = \mathbb{C} \setminus B$ définis dans l'introduction.

DÉFINITION 1. — Si $a \in U$, a est une valeur régulière du pinceau et f_a est un germe générique du pinceau.

Si $b \in B$, b est une valeur atypique du pinceau et f_b est un germe spécial du pinceau.

DÉFINITION 2. — La courbe jacobienne de (g, f_a) est l'adhérence du lieu critique de Φ_a auquel on enlève les éventuelles branches de $(f_a \cdot g)^{-1}(0)$.

On obtient donc, pour tout $a \in \mathbb{C}$, $\Gamma_a = \overline{D \setminus (\{f_a \cdot g = 0\} \cap D)}$.

La courbe discriminante Δ_a est l'image de Γ_a par l'application Φ_a .

REMARQUE 1. — Pour $a \in U$, f_a est à singularité isolée à l'origine et Γ_a est alors constituée de la réunion de la courbe jacobienne Γ_0 de (g, f) et des éventuelles composantes non réduites de $f^{-1}(0)$.

Hélène Maugendre, Françoise Michel

Soient (u, v) les coordonnées complexes de $\Phi_a((\mathbb{C}^2, 0))$ et δ une branche de Δ_a . Alors il existe un nombre rationnel q_{δ}/p_{δ} strictement positif $(\operatorname{pgcd}(q_{\delta}, p_{\delta})=1)$, un entier m > 0 tels qu'un développement de Puiseux de δ soit donné par :

$$u = v^{q_{\delta}/p_{\delta}} \left(\alpha + \sum_{k \in \mathbb{N}^{\star}} \beta_k v^{k/m} \right)$$

avec $\alpha \in \mathbb{C}^*$ (car $\{u = 0\}$ n'est pas une branche de Δ_a) et $\beta_k \in \mathbb{C}$.

DÉFINITION 3. — L'ensemble des quotients jacobiens de (g, f_a) est l'ensemble Q_a des nombres rationnels p_{δ}/q_{δ} associés aux branches δ de Δ_a .

Si g est une forme linéaire, Q_a est l'ensemble des quotients polaires de f_a pour la direction g.

Cet ensemble est un invariant du type topologique de la paire de germes (g, f_a) . Lorsque g est une forme linéaire transverse à f voir [L-M-W1], sinon voir [Ma2]. La proposition suivante qui nous sera utile pour les démonstrations se vérifie facilement (voir [L-M-W1] ou [Ma2]) :

PROPOSITION a. — L'ensemble Q_a est égal à l'ensemble constitué des nombres rationnels $q_{\gamma}(f_a) = (f_a, \gamma)_0/(g, \gamma)_0$, où γ est une branche de Γ_a .

REMARQUE 2. — Si une branche γ de Γ_a $(a \neq 0)$ n'est pas une branche de Γ_0 , alors γ est une branche de $f^{-1}(0)$ et correspond à un quotient jacobien égal à N pour (g, f_a) .

PROPOSITION 1. — Si p/q appartient à Q_0 et p/q < N alors p/q appartient à Q_a quel que soit a dans \mathbb{C} . De plus, si $a \in U$, alors max $Q_a \leq N$.

Démonstration. — Comme p/q < N, toute branche γ de Γ_0 de quotient p/q est une branche de Γ_a . On doit vérifier que le quotient est le même pour Γ_0 et Γ_a .

On a $f_a(x, y) = f(x, y) + a(g(x, y))^N$. Si $(t^m, \varphi(t))$ est une paramétrisation de γ , on a $(f_a, \gamma)_0/(g, \gamma)_0 = \operatorname{val}_t(f_a(t^m, \varphi(t)))/\operatorname{val}_t(g(t^m, \varphi(t)))$ et

$$(f_a, \gamma)_0/(g, \gamma)_0 = \operatorname{val}_t(f(t^m, \varphi(t)) + a(g(t^m, \varphi(t)))^N)/\operatorname{val}_t(g(t^m, \varphi(t))).$$

Si val_t $(f(t^m, \varphi(t)))/val_t(g(t^m, \varphi(t))) < N$, c'est-à-dire si le quotient jacobien de f associé à γ est strictement plus petit que N, alors le quotient jacobien pour f_a associé à γ est le même que celui de f.

Un calcul analogue montre que si $a \in U$ alors $\max Q_a \leq N$. \Box

Nous appelons Q_a^N le sous-ensemble de Q_a défini comme suit :

 $Q_a^N = \{ p_\delta/q_\delta \in Q_a \text{ tels que } p_\delta/q_\delta < N \}.$

Nous notons Δ_a^N l'ensemble des branches de Δ_a dont le quotient jacobien associé appartient à Q_a^N . La proposition 1 implique :

COROLLAIRE 1. — Si N est strictement supérieur au plus petit quotient jacobien de (g, f), alors, pour tout $a \in \mathbb{C}$, l'ensemble Q_a^N n'est pas vide, de plus, $Q_a^N = Q_0^N$.

On va relier l'ensemble des valeurs atypiques B, défini dans l'introduction, à la courbe jacobienne et aux quotients jacobiens de (g, f).

REMARQUE 3. — 1. Les définitions de B et de Q_0 impliquent que si N n'appartient pas à Q_0 , alors, soit B est vide, soit $B = \{0\}$.

2. S'il existe $b \in \mathbb{C}$ tel que f_b soit non réduite, alors $b \in B$. En effet, si b = 0 et si f_b n'est pas réduite, c'est par définition ; si $b \neq 0$ et si f_b n'est pas réduite, alors $f_b^{-1}(0)$ et D ont une branche commune paramétrée par $(t^m, \varphi(t))$, et $f_b(t^m, \varphi(t)) = 0$, donc $f(t^m, \varphi(t)) + b(g(t^m, \varphi(t)))^N = 0$, ce qui implique $b \in B$.

PROPOSITION 2. — Il existe $b \in \mathbb{C}$ tel que max $Q_b \ge N$ si et seulement si $B \neq \emptyset$. Dans ce cas on a $Q_a = Q_0^N \cup \{N\}$ quel que soit $a \in U$.

Démonstration. — Supposons qu'il existe $b \in \mathbb{C}$ avec max $Q_b \ge N$, alors il existe une branche γ de Γ_b paramétrée par $(t^m, \varphi(t))$ telle que val_t $f_b(t^m, \varphi(t)) \ge N(g, \gamma)_0$. On a aussi val_t $f(t^m, \varphi(t)) \ge N(g, \gamma)_0$. On a ainsi $f_b(t^m, \varphi(t)) = ct^n + \sum_{i\ge n+1} c_i t^i, c \ne 0$.

On développe $g(t^m, \varphi(t)) = dt^{(g,\gamma)_0} + \sum_{i \ge (g,\gamma)_0+1} d_i t^i.$

Deux cas sont à considérer :

1. Si
$$n > N(g, \gamma)_0$$
, alors $f(t^m, \varphi(t)) = -bd^N t^{N(g,\gamma)_0} + ...$ et donc $b \in B$.
2. Si $n = N(g, \gamma)_0$, alors $f(t^m, \varphi(t)) = (c - bd^N)t^{N(g,\gamma)_0} + ...$
Si $c \neq bd^N$, alors $b - cd^{-N} \in B$.

Enfin si $c = bd^N$, alors $0 \in B$ car, soit on a $f(t^m, \varphi(t)) = 0$ et f est non réduite, soit val_t $(f(t^m, \varphi(t))) > N(g, \gamma)_0$ et max $Q_0 > N$; dans tous les cas $0 \in B$ par définition.

On vient de montrer que s'il existe b tel que max $Q_b \ge N$, on a $B \neq \emptyset$.

Si $B_1 \neq \emptyset$, alors max $Q_a \ge N$ pour tout $a \notin B_1$. Dans ce cas la proposition 1 et le corollaire 1 impliquent $Q_a = Q_0^N \cup \{N\}$ pour tout $a \in U$.

Sinon, $B = \{0\}$, et alors, soit f n'est pas réduite et donc $Q_a = Q_0^N \cup \{N\}$ pour tout $a \neq 0$, soit max $Q_0 > N$ et alors il existe une branche γ de Γ_0 paramétrée par $(t^m, \varphi(t))$ telle que val_t $(f(t^m, \varphi(t))) > N(g, \gamma)_0$. Par conséquent pour tout $a \neq 0$, val_t $(f_a(t^m, \varphi(t))) = N(g, \gamma)_0$ et $Q_a = Q_0^N \cup \{N\}$. \Box

La proposition 2 implique en particulier :

COROLLAIRE 2. — Si
$$B = \emptyset$$
 alors $Q_a = Q_0 = Q_0^N$ quel que soit $a \in \mathbb{C}$.

Démonstration du théorème 1. — Comme $a \notin B$, f_a est réduite. Si f_b n'est pas réduite, alors $b \in B$ (d'après la remarque 3) et f_b n'est pas topologiquement équivalent à f_a .

Maintenant il suffit donc de considérer le cas où f_b est réduite. Si $c \in \mathbb{C}$, le germe jacobien $\hat{\Gamma}_c$ de (g, f_c) est le produit des composantes de \hat{D} qui ne divisent pas $g \cdot f_c$. Si f_a et f_b sont réduites on a $\hat{\Gamma}_a = \hat{\Gamma}_b = \prod_{i=1}^n \hat{\gamma}_i^{k_i}$, où les germes irréductibles $\hat{\gamma}_i$ et $\hat{\gamma}_j$ sont distincts pour $i \neq j$.

Dans [Ma2], on montre que pour tout $c \in \mathbb{C}$, il existe $\varepsilon, \theta, \eta, 0 < \eta \ll \theta \ll \varepsilon$ suffisamment petits tels que la restriction $f_{c|}$ de f_c à $X_c = f_c^{-1}(S_{\eta}^1) \cap g^{-1}(D_{\theta}^2) \cap D_{\varepsilon}^4$ soit (à isotopie près) la fibration de Milnor de f_c . C'est une version particulière de la fibration de Milnor construite à partir du carrousel de Lê. On note F_c une fibre de $f_{c|}$. Comme dans [L1] on a :

$$\chi(F_a) = (g, f_a)_0 - (\hat{\Gamma}_a, f_a)_0,$$
$$\chi(F_b) = (g, f_b)_0 - (\hat{\Gamma}_b, f_b)_0.$$

Comme $f_a(x, y) = f_b(x, y) + (a - b)(g(x, y))^N$, on a $(g, f_a)_0 = (g, f_b)_0$ quel que soit $b \in \mathbb{C}$.

D'autre part,

$$(\hat{\Gamma}_a, f_a)_0 = \sum_{i=1}^n k_i (\hat{\gamma}_i, f_a)_0 \text{ et } (\hat{\Gamma}_b, f_b)_0 = (\hat{\Gamma}_a, f_b)_0 = \sum_{i=1}^n k_i (\hat{\gamma}_i, f_b)_0.$$

$$-752 -$$

Soit $(t^{m_i}, \varphi_i(t))$ une paramétrisation de $\hat{\gamma}_i$. On a :

$$(*) \begin{cases} q_{\gamma_i}(f_a) = \frac{\operatorname{val}_t(f_a(t^{m_i},\varphi_i(t)))}{(g,\hat{\gamma}_i)_0} \\ q_{\gamma_i}(f_b) = \frac{\operatorname{val}_t(f_a(t^{m_i},\varphi_i(t)) + (b-a)g(t^{m_i},\varphi(t))^N)}{(g,\hat{\gamma}_i)_0} \end{cases}$$

Comme $a \in U$, max $Q_a \leq N$ (voir la proposition 1). Si $q_{\gamma_i}(f_b) \leq N$, par (*), on a $(\hat{\gamma}_i, f_a)_0 = (\hat{\gamma}_i, f_b)_0$.

Par conséquent :

- 1. si $b \notin B$, max $Q_b \leq N$ et $(\hat{\Gamma}_a, f_a)_0 = (\hat{\Gamma}_b, f_b)_0$. De plus, f_a et f_b sont à singularité isolée et en particulier F_a et F_b sont connexes. Donc $\chi(F_a) = \chi(F_b)$ implique rang $_{\mathbb{Z}}H_1(F_a, \mathbb{Z}) = \operatorname{rang}_{\mathbb{Z}}H_1(F_b, \mathbb{Z})$. Le théorème de μ -constant pour les germes de courbes ([L1]) implique alors que f_a et f_b sont topologiquement équivalentes ;
- 2. si $b \in B$ et f_b est réduite, il existe des composantes irréductibles $\hat{\gamma}_{i_1}, ..., \hat{\gamma}_{i_s}$ de $\hat{\Gamma}_a = \hat{\Gamma}_b$ telles que $q_{\hat{\gamma}_{i_j}}(f_b) > N = q_{\hat{\gamma}_{i_j}}(f_a)$. Alors $(\hat{\gamma}_i, f_a)_0 = (\hat{\gamma}_i, f_b)_0$ si $i \notin \{i_j, j = 1, ..., s\}$ et $(\hat{\gamma}_i, f_a)_0 = N(g, \hat{\gamma}_i)_0 < (\hat{\gamma}_i, f_b)_0$ si $i \in \{i_j, j = 1, ..., s\}$. Donc $\chi(F_b) < \chi(F_a)$, ce qui implique que f_a et f_b ne sont pas topologiquement équivalentes. \Box

Commentaires. — On peut montrer topologiquement, sans utiliser le théorème μ -constant, que si $b \notin B$ alors f_a et f_b sont topologiquement équivalentes. Au paragraphe 3.2, la construction de la décomposition minimale de Waldhausen pour f_a et f_b donne, entre autre, une telle preuve topologique directe.

3. Fibration commune aux germes du pinceau $f(x,y) + a(g(x,y))^N$

3.1. Graphe coloré de la décomposition minimale de Waldhausen de S^3_{ε} pour $f \cdot f_a \cdot g$

Soit ℓ un germe de fonction analytique à l'origine de \mathbb{C}^2 .

DÉFINITION 4. — Une décomposition de Waldhausen de S_{ε}^3 pour ℓ est une décomposition de S_{ε}^3 en une réunion finie de variétés de Seifert (variétés connexes qui sont munies d'un feuilletage orienté en cercles) telle que les composantes de l'entrelacs orienté et pondéré $K_{\ell} = \ell^{-1}(0) \cap S_{\varepsilon}^3$ soient des feuilles de certaines de ces variétés. **REMARQUE 4.** — Deux variétés de Seifert d'une telle décomposition s'intersectent en au plus un tore.

Le graphe de Waldhausen associé à une décomposition de Waldhausen de S_{ε}^{3} pour ℓ , noté $G(\ell)$ se construit comme suit.

Chaque sommet S de l'arbre correspond à une variété de Seifert V_S de la décomposition de Waldhausen de S_{ε}^3 pour ℓ considérée. Deux sommets sont reliés par une arête si les variétés de Seifert qui leur correspondent s'intersectent (toujours suivant un unique tore).

REMARQUE 5. — Comme le graphe $G(\ell)$ représente une décomposition de Waldhausen de S^3_{ε} , $G(\ell)$ est un arbre.

Soit $a \in \mathbb{C} \setminus \{0\}$. Pour la construction de $G(f \cdot f_a \cdot g)$, on met autant de flèches rouges (respectivement bleues, respectivement noires) à un sommet S qu'il existe de feuilles de la variété de Seifert V_S (correspondant à ce sommet) qui sont des composantes de K_{f_a} (respectivement K_f , respectivement K_g).

DÉFINITION 5. — Si S est un sommet de $G(f \cdot f_a \cdot g)$, le quotient topologique de S pour f_a (respectivement f), noté $q_a(S)$ (respectivement q(S)) est égal à $\mathcal{L}(K_{f_a}, \rho)/\mathcal{L}(K_g, \rho)$, (respectivement $\mathcal{L}(K_f, \rho)/\mathcal{L}(K_g, \rho)$), où ρ est une feuille de la variété de Seifert V_S et $\mathcal{L}(,)$ désigne le nombre d'enlacement dans S_{ε}^3 .

3.2. Obtention de la décomposition minimale de Waldhausen de S^3_{ε} pour $f \cdot f_a \cdot g$ via le carrousel

Dans ce paragraphe, $N > \min Q_0$ et $a \in \mathbb{C} \setminus \{0\}$. Le cas $N \leq \min Q_0$ est dégénéré et traité au paragraphe 4.5.

D'après [Ma2], nous savons qu'il existe des réels strictement positifs $\eta, \theta, \varepsilon$ vérifiant $0 < \eta \ll \theta \ll \varepsilon$, tels que pour $\Sigma_a = [(f_a^{-1}(S_\eta^1) \cap g^{-1}(D_\theta^2)) \cup (f_a^{-1}(D_\eta^2) \cap g^{-1}(S_\theta^1))] \cap D_{\varepsilon}^4$ on a le résultat suivant :

THÉORÈME **b**. — Il existe $\varepsilon, \theta, \eta$ des réels suffisamment petits, avec $0 < \eta \ll \theta \ll \varepsilon$, tels qu'il existe un difféomorphisme (à coins) Ψ de $\Sigma_a \ sur \ S^3_{\varepsilon}$ tel que $\Psi(K_{f^a}^{\Sigma_a}) = K_f, \ \Psi(K_{f_a}^{\Sigma_a}) = K_{f_a}$ et $\Psi(K_{g^a}^{\Sigma_a}) = K_g$ où $K_f^{\Sigma_a} = f^{-1}(0) \cap \Sigma_a, \ K_{f_a}^{\Sigma_a} = f_a^{-1}(0) \cap \Sigma_a$ et $K_g^{\Sigma_a} = g^{-1}(0) \cap \Sigma_a$.

Par conséquent, établir la décomposition minimale de Waldhausen de S_{ε}^{3} pour $f \cdot f_{a} \cdot g$ revient à isotopie près à construire la décomposition minimale de Waldhausen de Σ_{a} pour $f \cdot f_{a} \cdot g$.

Quitte à diminuer $\eta, \theta, \varepsilon$, nous pouvons les choisir de sorte que l'intersection de Δ_a avec le bord de $D_{\theta}^2 \times D_{\eta}^2$ soit contenue dans $D_{\theta}^2 \times S_{\eta}^1$.

Par ailleurs, soit $\Delta_{a,i}$ la réunion des composantes irréductibles de Δ_a qui admettent p_i/q_i pour quotient jacobien, $1 \leq i \leq k$. Il est facile de constater, à l'aide des développements de Puiseux des branches de Δ_a , que, plus le quotient jacobien augmente, plus la tresse $K_{\Delta_{a,i}} = \Delta_{a,i} \cap (D^2_{\theta} \times S^1_{\eta})$ s'éloigne de l'âme de $(D^2_{\theta} \times S^1_{\eta})$.

Par conséquent, il existe un réel strictement positif $\theta',\, 0<\theta'<\theta$ tel que :

$$(\Delta_a \cup \Phi_a(\{f=0\})) \cap (D^2_{\theta'} \times S^1_{\eta}) = \Delta^N_a \cap (D^2_{\theta'} \times S^1_{\eta}).$$

REMARQUE 6. — La courbe $\{au^N = v\}$ est une branche de Δ_a si et seulement si f est à singularité non isolée à l'origine.

On écrit

$$\{N\} \cup Q_a = \{p_i/q_i, i = 1, \dots, k, (p_i/q_i) < (p_{i+1}/q_{i+1}), \text{ p.g.c.d.} (p_i, q_i) = 1\}.$$

REMARQUE 7. — Il existe $m, 1 \leq m < k$, tel que $p_{m+1}/q_{m+1} = N$.

D'après [L-M-W1], chapitre 2, nous avons le résultat suivant :

LEMME **c**. — Il existe des réels α et θ_i , $1 \leq i \leq k$, avec $0 < \alpha \ll \theta_1 < \theta_2 < \cdots < \theta_k$ tels que si :

$$\begin{split} &Z_1 = (D^2_{\theta_1} \times S^1_{\eta}) \backslash (\overset{\circ}{D^2_{\alpha}} \times S^1_{\eta}) \\ &Z_i = (D^2_{\theta_i} \times S^1_{\eta}) \backslash (\overset{\circ}{D^2_{\theta_{i-1}}} \times S^1_{\eta}), 2 \leqslant i \leqslant k, \end{split}$$

alors $K_{\Delta_a} \cap Z_i = \Delta_a \cap (D^2_{\theta} \times S^1_{\eta}) \cap Z_i = K_{\Delta_{a,i}}$, pour tout $i \neq m+1$, et $(K_{\Delta_a} \cup \{au^N = v\}) \cap Z_{m+1} = (\Delta_a \cup \Phi_a(\{f = 0\})) \cap (D^2_{\theta} \times S^1_{\eta}) \cap Z_{m+1} = K_{\Delta_{a,m+1}} \cup \Phi_a(K_f^{\Sigma_a}).$

Les Z_i sont appelées les zones jacobiennes.

On peut choisir θ' tel que $D^2_{\theta'} \times S^1_{\eta} = (\bigcup_{i=1}^m Z_i) \cup (D^2_{\alpha} \times S^1_{\eta}).$

Construction

Le moyen d'obtenir la décomposition minimale de Waldhausen de Σ_a pour $f \cdot f_a \cdot g$ est le suivant. Nous savons que la restriction $\Phi_{|\Sigma_a}$ de Φ_a à Σ_a est un revêtement ramifié qui admet $\Gamma_a \cap \Sigma_a$ et les éventuelles composantes non réduites de K_{f_ag} pour lieu de ramification et $K_{\Delta_a} = \Delta_a \cap (D^2_{\theta} \times S^1_{\eta})$, union $\{0\} \times S_{\eta}^{1}$ (respectivement $S_{\theta}^{1} \times \{0\}$) si g (respectivement f_{a}) est non réduite, pour valeurs de ramification. Nous construisons la décomposition minimale de Waldhausen de $(D_{\theta}^{2} \times S_{\eta}^{1}) \setminus (D_{\alpha}^{2} \times S_{\eta}^{1})$ qui admet les composantes de $K_{\Delta_{a}} \cup \Phi_{a}(K_{f}^{\Sigma_{a}}) = K_{\Delta_{a}} \cup (\{au^{N} = v\} \cap (D_{\theta}^{2} \times S_{\eta}^{1}))$ pour feuilles. Par prolongement des feuilletages aux tores pleins $D_{\alpha}^{2} \times S_{\eta}^{1}$ et $S_{\theta}^{1} \times D_{\eta}^{2}$, on obtient la décomposition minimale de Waldhausen de $(D_{\theta}^{2} \times S_{\eta}^{1}) \cup (S_{\theta}^{1} \times D_{\eta}^{2})$ qui admet $K_{\Delta_{a}} \cup (\{au^{N} = v\} \cap (D_{\theta}^{2} \times S_{\eta}^{1})) \cup (\{0\} \times S_{\eta}^{1}) \cup (S_{\theta}^{1} \times \{0\})$ pour feuilles. Comme les valeurs de ramification de $\Phi_{|\Sigma_{a}}$ constituent une réunion de feuilles, le pull-back de la décomposition minimale de Waldhausen de $(D_{\theta}^{2} \times S_{\eta}^{1}) \cup (S_{\theta}^{1} \times D_{\eta}^{2})$, qui a $K_{\Delta_{a}} \cup (\{au^{N} = v\} \cap (D_{\theta}^{2} \times S_{\eta}^{1})) \cup (\{0\} \times S_{\eta}^{1}) \cup (\{0\} \times S_{\eta}^{1}) \cup (S_{\theta}^{1} \times Q_{\eta}^{2})$ pour feuilles, le pull-back de la décomposition minimale de Waldhausen de $(D_{\theta}^{2} \times S_{\eta}^{1}) \cup (S_{\theta}^{1} \times D_{\eta}^{2})$, qui a $K_{\Delta_{a}} \cup (\{au^{N} = v\} \cap (D_{\theta}^{2} \times S_{\eta}^{1})) \cup (\{0\} \times S_{\eta}^{1}) \cup (S_{\theta}^{1} \times S_{\eta}^{1}) \cup (S_{\theta}^{1} \times Q_{\eta}^{2})$ pour feuilles, fournit une décomposition de Waldhausen (non nécessairement minimale) de Σ_{a} pour $f \cdot f_{a} \cdot g \cdot \Gamma_{a}$, à partir de laquelle il est facile d'obtenir une décomposition minimale de Waldhausen de Σ_{a} pour $f \cdot f_{a} \cdot g$, comme décrit dans [Ma2] (ou [L-M-W1] pour g forme linéaire transverse à f).

REMARQUE 8. — Étant donné une variété de Seifert Σ_S de la décomposition minimale de Waldhausen de Σ_a pour $f \cdot f_a \cdot g$ décrite ci-dessus, nous posons $V_S = \Psi(\Sigma_S)$. Les variétés de Seifert V_S ainsi obtenues fournissent une décomposition minimale de Waldhausen de S_{ε}^3 pour $f \cdot f_a \cdot g$. Notons $G(f \cdot f_a \cdot g)$ le graphe de Waldhausen de cette décomposition.

COROLLAIRE 3. – 1. $Q_a \cup \{N\} = \{q_a(S) \text{ où } S \text{ parcourt les sommets de } G(f \cdot f_a \cdot g)\}$;

2. $Q_0 \cup \{N\} = \{q(S) \text{ où } S \text{ parcourt les sommets de } G(f \cdot f_a \cdot g)\};$

3. Si S est un sommet de $G(f \cdot f_a \cdot g)$ tel que q(S) < N alors $q(S) = q_a(S)$.

Démonstration. — Soit ρ une feuille régulière de V_S . Il existe $i \in \{1, \ldots, k\}$ tel que $\Psi^{-1}(\rho)$ appartienne à Z_i . Compte-tenu des propriétés du difféomorphisme Ψ et du fait que Φ_a induit un revêtement fini de $\Psi^{-1}(\rho)$ sur $\Phi_a(\Psi^{-1}(\rho))$, on a : $\mathcal{L}(K_{f_a}, \rho)/\mathcal{L}(K_g, \rho) = \overline{\mathcal{L}}(S_{\theta}^1 \times \{0\}, \Phi_a(\Psi^{-1}(\rho)))/\overline{\mathcal{L}}(\{0\} \times S_{\eta}^1, \Phi_a(\Psi^{-1}(\rho))) = p_i/q_i$, où $\overline{\mathcal{L}}(,)$ est le nombre d'enlacement dans la sphère $(D_{\theta}^2 \times S_{\eta}^1) \cup (S_{\theta}^1 \times D_{\eta}^2)$. D'où le 1 et par symétrie le 2.

Le 3 est conséquence de 1 et 2 et du fait que si q(S) < N alors V_S rencontre au moins une composante γ commune à Γ_0 et Γ_a , de sorte que $q(S) = q_a(S)$ par la proposition 1 et la proposition a. \Box

3.3. Résultats

Comme au paragraphe 3.2, nous supposons ici que $N > \min Q_0$ et $a \in \mathbb{C}\setminus\{0\}$. Ceci implique que la variété Σ^N , définie ci-dessous, contient $\Phi_{|\Sigma_a|}^{-1}(Z_1)$, et comme dans [Ma1], on peut voir que Σ^N n'est pas une réunion de tores pleins, voisinage tubulaire de K_a dans Σ_a .

DÉFINITION 6. — On appelle Σ^N la réunion des variétés de Seifert Σ_S de la décomposition minimale de Waldhausen de Σ_a pour $f \cdot f_a \cdot g$ (obtenues en 3.2) qui sont telles que q(S) < N et on pose $W^N = \Psi(\Sigma^N)$.

THÉORÈME 3. — Les fibrations $\varphi_a = f_a/|f_a|_{|} : W^N \longrightarrow S^1$ et $\varphi = f/|f|_{|} : W^N \longrightarrow S^1$ sont isomorphes.

Démonstration. — Le carrousel de Lê (voir [L1]) implique que les fibrations de Milnor pour f et f_a se restreignent à W^N . Donc φ_a et φ sont des fibrations.

Notons τ_j , $1 \leq j \leq l$, les composantes de bord des morceaux seifertiques de W^N .

La fibration φ_a (resp. φ) induit un homomorphisme $\psi_{a,j}$ (resp. ψ_j) de $H_1(\tau_j, \mathbb{Z})$ sur \mathbb{Z} et un homomorphisme ψ_a (resp. ψ) de $H_1(W^N, \mathbb{Z})$ sur \mathbb{Z} . Si C est une courbe fermée simple sur τ_j , alors $\psi_{a,j}(C)$ (resp. $\psi_j(C)$) est le nombre d'enlacement dans S^3_{ε} de C et de K_{f_a} (resp. de C et de K_f) noté $\mathcal{L}(C, K_{f_a})$ (resp. $\mathcal{L}(C, K_f)$).

Comme W^N est une variété de Waldhausen dans S^3_{ε} , si $\psi_{a,j} = \psi_j$ pour tout j dans $\{1, \dots, l\}$, alors $\psi_a = \psi$ et les fibrations φ_a et φ sont isomorphes (voir [E-N], p. 34).

Le théorème 3 se déduit donc du lemme suivant :

LEMME 1. — On a l'égalité $\psi_{a,j} = \psi_j$.

Démonstration. — Dans la décomposition de Waldhausen de S_{ε}^3 pour $f \cdot f_a \cdot g$, construite (en 3.2) à partir du carrousel, τ_j est l'intersection de deux variétés de Seifert V_{j_1} et V_{j_2} telles que $q_a(S_{j_1}) < q_a(S_{j_2}) \leq N$. D'après le 3 du corollaire 3 et la définition de W^N , on a $q_a(S_{j_1}) = q(S_{j_1}) < q_a(S_{j_2}) = q(S_{j_2}) \leq N$. Sur τ_j soient ρ_1 une feuille de Seifert de V_{j_1} et ρ_2 une feuille de Seifert de V_{j_2} .

On obtient alors $\psi_{a,j}([\rho_1]) = q_a(S_{j_1}) \cdot \mathcal{L}(\rho_1, K_g) = q(S_{j_1}) \cdot \mathcal{L}(\rho_1, K_g) = \psi_j([\rho_1])$ et de même $\psi_{a,j}([\rho_2]) = \psi_j([\rho_2])$.

Comme $\Phi_a(\Psi^{-1}(\rho_1))$ et $\Phi_a(\Psi^{-1}(\rho_2))$ sont des feuilles de Seifert qui appartiennent à des zones jacobiennes différentes, leurs classes engendrent un sous-groupe d'indice fini dans $H_1(\Phi_a(\Psi^{-1}(\tau_j)),\mathbb{Z})$; il en est de même pour les classes de ρ_1 et ρ_2 dans $H_1(\tau_j,\mathbb{Z})$, d'où le lemme. \Box

On choisit une fibre F_a de la fibration de Milnor $f_a / |f_a| : S^3_{\varepsilon} \setminus K_{f_a} \longrightarrow S^1$. On rappelle que $F^N_a = F_a \cap W^N$.

PROPOSITION 3. — Le morphisme $H_1(F_a^N, \mathbb{Z}) \longrightarrow H_1(F_a, \mathbb{Z})$ induit par l'inclusion est injectif.

 $D\acute{e}monstration.$ — Par construction $\Psi^{-1}(F_a^N)$ est un morceau de la filtration de la fibre de Milnor obtenue par le carrousel de Lê. Par conséquent (voir [L1]), il existe une monodromie $h : F_a \longrightarrow F_a$ de $f_a / | f_a |$ qui se restreint en une monodromie de φ_a sur F_a^N , et F_a est obtenue (à type d'homotopie près) à partir de F_a^N en ajoutant des anses d'indice un. \Box

Notons $\Lambda_a^N(t)$ (resp. $\Lambda_a(t)$) le polynôme caractéristique de l'endomorphisme induit par la monodromie de φ_a sur $H_1(F_a^N, \mathbb{Z})$ (resp. par la monodromie de $f_a/|f_a|$ sur $H_1(F_a, \mathbb{Z})$).

COROLLAIRE 4. — Pour tout $a \in \mathbb{C}$, $\Lambda_a^N(t) = \Lambda_0^N(t)$ divise $\Lambda_a(t)$ et $\Lambda_0(t)$.

Dans la section 4.1, on obtient une formule explicite pour $\Lambda_a^N(t)$ à partir de la résolution minimale de $f_a \cdot g$ (voir la proposition 6). Au paragraphe 4.1 nous utiliserons la proposition suivante pour calculer $\Lambda_a^N(t)$.

PROPOSITION 4. — Soit A une composante connexe de $\overline{\Sigma_a \setminus \Sigma^N}$ et soit U_A un voisinage tubulaire de $A \cap (K_f^{\Sigma_a} \cup K_{f_a}^{\Sigma_a})$. Alors $\stackrel{\circ}{A} = A \setminus U_A$ n'est ni un tore plein ni un tore épaissi.

Démonstration. — Comme A se surjecte par Φ_a sur $(\cup_{j=m+1}^k Z_j) \cup (S_{\theta}^1 \times D_{\eta}^2)$, A a une composante de bord commune avec Σ^N , et A contient au moins une composante de $K_{f^a}^{\Sigma_a}$ et au moins une composante de $K_{f_a}^{\Sigma_a}$. Par conséquent, \mathring{A} a au moins trois composantes de bord. \Box

COROLLAIRE 5. — Si une variété de Seifert V_S de la décomposition minimale de Waldhausen de S^3_{ε} pour $f \cdot f_a \cdot g$ rencontre K_f ou K_{f_a} , alors $q(S) \ge N$ et $q_a(S) \ge N$.

Démonstration. — La décomposition minimale de Waldhausen de A est non triviale et ne contient que des variétés de Seifert $V_{S'}$ telles que $q(S') \ge N$ et $q_a(S') \ge N$. \Box COROLLAIRE 6. — Si N est strictement supérieur au plus grand quotient jacobien de (g, f) alors, pour tout $a \in \mathbb{C}$, $\Lambda_a^N(t) = \Lambda_0(t)$ divise $\Lambda_a(t)$.

Démonstration. — Soit \mathring{A} comme dans la proposition 4. Notons \overline{A} la variété de Waldhausen obtenue en ajoutant à \mathring{A} les composantes connexes de U_A qui contiennent une composante de $K_{f_a}^{\Sigma_a}$; \overline{A} a au moins deux composantes de bord donc ce n'est pas un tore plein.

Si \overline{A} n'était pas un tore épaissi, \overline{A} contiendrait un morceau seifertique essentiel V dont le quotient topologique serait supérieur ou égal à N. Par [Ma2] ce quotient serait un quotient jacobien pour (g, f), ce qui contredit l'hypothèse ; \overline{A} est donc un tore épaissi. Donc Σ^N a le type d'homotopie de $\Sigma_a \setminus K_f^{\Sigma_a}$. La fibration φ est alors homotope à la fibration de Milnor de f.

4. Point de vue de la résolution minimale

4.1. Résolution et calcul de $\Lambda_a^N(t)$

Appelons π la résolution minimale de $f \cdot f_a \cdot g$ à l'origine de \mathbb{C}^2 , $a \neq 0$. Le diviseur exceptionnel $\pi^{-1}(0)$ est constitué d'une réunion finie de composantes irréductibles notées $E_i, i \in \mathbb{N}$. La transformée totale de $\mathcal{C} = (f \cdot f_a \cdot g)^{-1}(0)$ est $\pi^{-1}(\mathcal{C})$ et la transformée stricte de \mathcal{C} est l'adhérence de $\pi^{-1}(\mathcal{C}\setminus\{0\})$. Une composante irréductible de la transformée stricte intersecte une unique composante E_i du diviseur exceptionnel en un unique point.

On définit l'arbre de la résolution minimale de $f \cdot f_a \cdot g$, noté $\mathcal{A}(f \cdot f_a \cdot g)$, comme suit.

Chaque E_i fournit un sommet S_i de l'arbre. Si deux composantes E_i et E_j s'intersectent alors on relie les sommets S_i et S_j par une arête. On attache autant de flèches à un sommet S_i qu'il existe de composantes irréductibles de la transformée stricte de C qui rencontrent E_i .

On factorise en produit de facteurs irréductibles premiers entre eux $f \cdot f_a \cdot g = \prod_{j=1}^r \ell_j^{s_j}$ et on pondère par s_j la flèche qui représente la transformée stricte de ℓ_j .

DÉFINITION 7. — La valuation $val_{E_i}(\ell)$ de la composante irréductible E_i pour un germe ℓ à l'origine de \mathbb{C}^2 est l'ordre de $\ell \circ \pi$ le long de E_i .

Pour calculer $\operatorname{val}_{E_i}(\ell)$, on considère un germe de courbe lisse c_i transverse à E_i passant par un point générique p de E_i . Un tel germe de courbe

est appelé une *curvette* de E_i . On paramétrise $\pi(c_i)$ par $(t^m, \varphi(t))$. La valuation val_{E_i}(ℓ) est la valuation en t de $\ell(t^m, \varphi(t))$.

Chaque sommet S_i de l'arbre $\mathcal{A}(f \cdot f_a \cdot g)$ est pondéré par les deux quotients suivants : $q_{S_i}(f) = \operatorname{val}_{E_i}(f)/\operatorname{val}_{E_i}(g)$ et $q_{S_i}(f_a) = \operatorname{val}_{E_i}(f_a)/\operatorname{val}_{E_i}(g)$. Notons $Q(f) = \{q_{S_i}(f) \text{ où } S_i$ est un sommet de $\mathcal{A}(f \cdot f_a \cdot g)\}$ (resp. $Q(f_a) = \{q_{S_i}(f_a) \text{ où } S_i$ est un sommet de $\mathcal{A}(f \cdot f_a \cdot g)\}$).

PROPOSITION 5. — Si $q_{S_i}(f) < N$ alors $q_{S_i}(f_a) = q_{S_i}(f) < N$, et de même, si $q_{S_i}(f_a) < N$ alors $q_{S_i}(f) = q_{S_i}(f_a) < N$.

Démonstration. — Soit c_i est une curvette de E_i dont une paramétrisation de Puiseux de $\pi(c_i)$ est donnée par $(t^m, \varphi(t))$. On a $q_{S_i}(f) = \operatorname{val}_t (f(t^m, \varphi(t)))/\operatorname{val}_t(g(t^m, \varphi(t))) < N$, d'où :

(*)
$$\operatorname{val}_t(f(t^m,\varphi(t))) < \operatorname{val}_t(g(t^m,\varphi(t)))N.$$

On calcule $q_{S_i}(f_a) = \operatorname{val}_t(f_a(t^m, \varphi(t)))/\operatorname{val}_t(g(t^m, \varphi(t)))$, i.e $q_{S_i}(f_a) = \operatorname{val}_t(f(t^m, \varphi(t)) + a(g(t^m, \varphi(t)))^N)/\operatorname{val}_t(g(t^m, \varphi(t)))$.

D'après (*) on obtient $q_{S_i}(f_a) = \text{val}_t(f(t^m, \varphi(t)))/\text{val}_t(g(t^m, \varphi(t)))$, d'où le résultat.

Même résultat lorsque l'on suppose $\operatorname{val}_t(f_a(t^m, \varphi(t))) < \operatorname{val}_t(g(t^m, \varphi(t)))N$. \Box

DÉFINITION 8. — La valence v_i d'un sommet S_i de $\mathcal{A}(f \cdot f_a \cdot g)$ est égale à la somme du nombre d'arêtes et de flèches qui rencontrent S_i . De plus, $v_i(f)$ (resp. $v_i(f_a)$) est égal à la somme du nombre d'arêtes et de flèches qui représentent des composantes la transformée stricte de f (resp. f_a) et qui rencontrent S_i .

REMARQUE 9. — On rappelle que la décomposition minimale de Waldhausen de S^3_{ε} pour $f \cdot f_a \cdot g$ peut être obtenue à partir de l'arbre pondéré $\mathcal{A}(f \cdot f_a \cdot g)$. À chaque sommet S_i de $\mathcal{A}(f \cdot f_a \cdot g)$ de valence $v_i \ge 3$ correspond un sommet S(i) de $G(f \cdot f_a \cdot g)$ et on a $q_a(S(i)) = q_{S_i}(f_a)$ et $q(S(i)) = q_{S_i}(f)$. De plus, si un sommet S_i de $\mathcal{A}(f \cdot f_a \cdot g)$ est tel que $v_i \ge 3$ et $q_{S_i}(f) < N$, on a, par le 3 du corollaire 3, $q_{S_i}(f_a) = q_{S_i}(f) < N$ et, par le corollaire 5, $v_i(f_a) = v_i(f)$. De plus $Q_0 \subset Q(f)$ et $Q_a \subset Q(f_a)$. Donc $\min Q(f_a) \le \min Q_a$. À partir de maintenant et jusqu'à la fin de 4.4, on étudie les pinceaux avec $N > \min Q(f)$. Vu que $\min Q(f) \le \min Q_0$, le cas $N \le \min Q(f)$ fait partie des cas dégénérés traités en 4.5.

PROPOSITION 6. — Supposons $N > minQ(f_a)$. Appelons I_N l'ensemble des indices i des sommets S_i de $\mathcal{A}(f \cdot f_a \cdot g)$ tels que $q_{S_i}(f_a) < N$ et D_N l'ensemble des indices i des sommets S_i tels que $q_{S_i}(f_a) = N$.

Le polynôme $\Lambda_a^N(t) = (t^{r_N} - 1) \prod_{i \in I_N} (t^{val_{E_i}(f_a)} - 1)^{v_i(f_a)-2}$, où $r_N = ppcm_{i \in I_N \cup D_N}(val_{E_i}(f_a))$, est un facteur commun aux polynômes caractéristiques de la monodromie de f et de f_a .

 $\begin{array}{l} D\acute{e}monstration. \label{eq:statistical} D\acute{e}monstration. \label{eq:statistical} - {\rm Soit}\ \tilde{\Sigma} = (f_a \circ \pi)^{-1}(S^1_\eta) \cap U$ où η est suffisamment petit et U est un "bon" voisinage de $\pi^{-1}(0).$ Soit \tilde{F}_a une fibre de Milnor de la fibration $f_a \circ \pi_{|\tilde{\Sigma}}: \tilde{\Sigma} \longrightarrow S^1_\eta.$ À tout sommet S_i de $\mathcal{A}(f \cdot f_a \cdot g)$ correspond un morceau F_i de \tilde{F}_a défini comme dans [D-M] section 1.8. On construit une monodromie $h_a: \tilde{F}_a \longrightarrow \tilde{F}_a$ qui se restreint en un difféomorphisme $h_i: F_i \longrightarrow F_i.$ On considère maintenant $\tilde{F}_a^N = \bigcup_{i \in I_N} F_i. \end{array}$

La remarque 9 implique que \tilde{F}_a^N est isotope à la fibre F_a^N considérée dans la proposition 3 du paragraphe 3.3. Donc le polynôme $\Lambda_a^N(t)$ est le polynôme caractéristique de l'endomorphisme de $H_1(\tilde{F}_a^N,\mathbb{Z})$ induit par la restriction de h_a à \tilde{F}_a^N .

On a la suite exacte suivante de Mayer-Vietoris :

$$\begin{array}{ll} (1) & \dots \longrightarrow 0 = H_2(\tilde{F}_a^N) \longrightarrow \\ \oplus_{\substack{i < j \\ i, j \in I_N}} H_1(F_i \cap F_j) \longrightarrow \oplus_{i \in I_N} H_1(F_i) \longrightarrow H_1(\tilde{F}_a^N) \longrightarrow \\ \oplus_{\substack{i < j \\ i, j \in I_N}} H_0(F_i \cap F_j) \longrightarrow \oplus_{i \in I_N} H_0(F_i) \longrightarrow H_0(\tilde{F}_a^N) \longrightarrow 0 \end{array}$$

On note respectivement $P_0(t)$, $\lambda_a^N(t)$, $P_1(t)$ et $\Lambda_a^N(t)$ les polynômes caractéristiques de la monodromie sur $\bigoplus_{i \in I_N} H_0(F_i)$, $H_0(\tilde{F}_a^N)$, $\bigoplus_{i \in I_N} H_1(F_i)$ et $H_1(\tilde{F}_a^N)$.

On a donc :

$$1 = \frac{\Lambda_a^N(t) \cdot P_0(t)}{P_1(t) \cdot \lambda_a^N(t)} \text{ soit } \Lambda_a^N(t) = \frac{P_1(t) \cdot \lambda_a^N(t)}{P_0(t)}.$$

Or
$$\lambda_a^N(t) = (t^{r_N} - 1), P_0(t) = \prod_{i \in I_N} (t^{r_i} - 1)$$
 et

$$P_1(t) = \prod_{i \in I_N} (t^{\operatorname{val}_{E_i}(f_a)} - 1)^{v_i(f_a) - 2} (t^{r_i} - 1).$$

On utilise la proposition 1.7 de [D-M] et le fait que dans [D-M], D_i est obtenu à partir de F_i en collant un disque à toutes les composantes de bord de F_i .

De plus, les valences v_i de [D-M] sont les valences $v_i(f_a)$ de l'énoncé de la proposition 6.

LEMME 2 . Si $i \in I_N$ alors : 1. $val_{E_i}(f_a) = val_{E_i}(f)$; 2. $v_i(f_a) = v_i(f)$.

La construction de la monodromie h_a décrite ci-dessus est valable pour a = 0. D'autre part, d'après la proposition 3, $\Lambda_0^N(t)$ divise $\Lambda_0(t)$. Par ailleurs, en échangeant le rôle de a et 0, nous obtenons $\Lambda_a^N(t) = \Lambda_0^N(t)$ divise $\Lambda_0(t)$ et $\Lambda_a(t)$; donc le lemme implique la proposition 6.

REMARQUE 10. — D'après le lemme 2, l'arbre $\mathcal{A}(f_a \cdot g)$ permet de déterminer $\Lambda_a^N(t)$ avec la formule de la proposition 6.

Démonstration du lemme 2. — La définition de $q_{S_i}(f_a)$ et $q_{S_i}(f)$ et la proposition 5 impliquent le 1 du lemme.

Si $v_i \ge 3$, comme $i \in I_N$, alors, d'après la remarque 9, $v_i(f_a) = v_i(f)$.

Si $v_i = 2$, et si $v_i(f_a) = 1$, alors une composante irréductible de la transformée stricte de f ou de g rencontre E_i . Si c'est une composante de f, on a $q_{S_i}(f_a) = N$, ce qui est exclu. Si c'est une composante de g, on a $v_i(f_a) = v_i(f) = 1$.

De même, $v_i(f) = 1$ implique $v_i(f_a) = 1$.

Sinon, $v_i(f_a) = v_i(f) = 2$.

Si $v_i = 1$ alors $v_i(f_a) = v_i(f) = 1$. \Box

4.2. Sommets dicritiques

Le cas g(x, y) = x est particulièrement important puisqu'il s'applique à l'étude des valeurs atypiques à l'infini des applications polynômiales de \mathbb{C}^2 dans \mathbb{C} . C'est pourquoi nous établissons des formules précises pour de telles familles de pinceaux. Elles se généralisent facilement lorsque g est irréductible. On suppose de plus $N > \min Q(f)$. Le cas $N \leq \min Q(f)$ sera traité en 4.5.

On convient de noter S_0 le sommet de $\mathcal{A}(f \cdot f_a \cdot x)$ où s'accroche la flèche qui représente la transformée stricte de x. On oriente les arêtes de $\mathcal{A}(f \cdot f_a \cdot x)$ à partir du sommet S_0 . On colorie en rouge (resp. bleu) les géodésiques orientées qui vont de S_0 à l'extrémité des flèches qui représentent les composantes de la transformée stricte de f_a (resp. f). L'arbre $\mathcal{A}(f \cdot f_a \cdot x)$ ainsi obtenu est pondéré, orienté et coloré.

Un sommet S_i de $\mathcal{A}(f \cdot f_a \cdot x)$ est de rupture pour f_a (resp. f) si $v_i(f_a)$ (resp. $v_i(f)$) est supérieur ou égal à trois lorsque $i \neq 0$, et S_0 est un sommet de rupture pour f_a (resp. f) si $v_0(f_a)$ (resp. $v_0(f)$) est supérieur ou égal à deux.

Notons $R(f_a)$ (resp. R(f)) l'ensemble des indices i de S_i qui sont tels que S_i est un sommet de rupture pour f_a (resp. f).

Pour une démonstration des deux résultats suivants on pourra consulter [L-M-W2] dans le cas où x est transverse à f ou [Ma1] pour le cas général.

PROPOSITION d. — L'ensemble des quotients $q_{S_i}(f_a), i \in R(f_a)$ (resp. $q_{S_i}(f), i \in R(f)$) est l'ensemble des quotients polaires de f_a (resp. f) pour la direction x.

THÉORÈME DE CROISSANCE. — Il y a croissance stricte de $q_{S_i}(f_a)$ (resp. $q_{S_i}(f)$) le long des géodésiques de f_a (resp. f) et constance sur les arêtes incolores ou unicolores bleues (resp. incolores ou unicolores rouges). En particulier $q_{S_0}(f) = \min Q(f)$ (resp. $q_{S_0}(f_a) = \min Q(f_a)$).

Comme on a supposé $N > \min Q(f)$, on a donc $q_{S_0}(f) < N$, et $q_{S_0}(f_a) = q_{S_0}(f) < N$.

PROPOSITION 7. — Soit S_i un sommet bicolore de $A(f \cdot f_a \cdot x)$ dont au moins une arête (ou flèche) unicolore est issue. Alors aucune arête sortante de S_i n'est bicolore et $q_{S_i}(f_a) = q_{S_i}(f) = N$.

Démonstration. — On suppose que S_i est un sommet bicolore auquel est attachée une arête (ou une flèche) unicolore bleue. Choisissons une curvette c qui passe par le point singulier de la transformée totale de C symbolisé par l'arête ou la flèche bleue. Cette curvette est générique pour $f_a \cdot x$. Soit $(t^m, \varphi(t))$ une paramétrisation de $\pi(c)$.

Soit c_1 une curvette de S_i générique pour $f \cdot x$ et pour f_a . Soit $(t^{m_1}, \varphi_1(t))$ une paramétrisation de $\pi(c_1)$. Notons que $m = m_1$ car c et c_1 sont les curvettes d'un même sommet, génériques pour x.

Par choix de c et c_1 on a :

$$\begin{aligned} \operatorname{val}_t(f(t^m,\varphi(t))) &> \operatorname{val}_t(f(t^m,\varphi_1(t))) \text{ et} \\ \operatorname{val}_t(f_a(t^m,\varphi(t))) &= \operatorname{val}_t(f_a(t^m,\varphi_1(t))). \end{aligned}$$

Donc $\operatorname{val}_t(f(t^m, \varphi(t)) + at^{mN}) = \operatorname{val}_t(f(t^m, \varphi_1(t)) + at^{mN})$ et par conséquent on obtient :

$$\operatorname{val}_t(f_a(t^m,\varphi_1(t))) = mN$$
 et

$$\operatorname{val}_t(f(t^m,\varphi_1(t))) \ge mN.$$

Ainsi on a $q_{S_i}(f_a) = N$ et $q_{S_i}(f) \ge N$.

Choisissons désormais une curvette c_2 passant par le point singulier de la transformée totale de C symbolisé par une arête (ou flèche) rouge (unicolore ou bicolore). Soit $(t^m, \varphi_2(t))$ une paramétrisation de $\pi(c_2)$. On a forcément $\operatorname{val}_t(f_a(t^m, \varphi_2(t))) > mN$ i.e. $\operatorname{val}_t(f(t^m, \varphi_2(t)) + at^{mN}) > mN$, ce qui implique $f(t^m, \varphi_2(t)) = -at^{mN} + \cdots$ et par conséquent $\operatorname{val}_t(f(t^m, \varphi_2(t)) = mN$ donc $q_{S_i}(f) = N$. Ceci prouve également que c_2 est générique pour f et par conséquent que l'arête rouge est unicolore, ce qui achève la démonstration. \Box

PROPOSITION 8. — Si S_j est un sommet de $\mathcal{A}(f \cdot f_a \cdot x)$ tel que $q_{S_j}(f_a) = q_{S_j}(f) = N$, alors aucune arête sortante de S_j n'est bicolore.

Démonstration. — Supposons qu'une arête bicolore sorte par S_j . On choisit une géodésique, par exemple bleue, qui passe par cette arête. Elle aboutit à une flèche bleue. Soit S_i le dernier sommet bicolore sur cette géodésique. La géodésique choisie sort de S_i par une arête (ou flèche) unicolore bleue. Par la proposition 7, on a donc $q_{S_i}(f_a) = q_{S_i}(f) = N$. Comme S_i se trouve après S_j , ceci contredit le théorème de croissance.

Voici désormais quelques conséquences de ces résultats.

COROLLAIRE 7. — Dans $\mathcal{A}(f \cdot f_a \cdot x)$, sur toute géodésique de f, il existe un unique sommet S_{i_0} de quotient N qui est un sommet bicolore dont toutes les arêtes sortantes sont unicolores, et tel que $q_{S_{i_0}}(f_a) = q_{S_{i_0}}(f) = N$. Un tel sommet S_{i_0} est dit "dicritique".

Sur cette géodésique, les sommets précédant S_{i_0} sont bicolores et de quotient strictement inférieur à N pour f et f_a . Les sommets succédant à S_{i_0} sont unicolores de quotient égal à N pour f_a , et de quotient strictement supérieur à N pour f.

COROLLAIRE 8. — Si S_i est un sommet de $\mathcal{A}(f \cdot f_a \cdot x)$ avec $q_{S_i}(f) < N$, alors (on a $q_{S_i}(f) = q_{S_i}(f_a)$) aucune arête ou flèche unicolore ne rencontre S_i .

DÉFINITION 9. — On définit $\mathcal{A}_N(f \cdot f_a \cdot x)$ (respectivement $\mathcal{A}_N(f \cdot x)$) le sous-graphe de $\mathcal{A}(f \cdot f_a \cdot x)$ (respectivement $\mathcal{A}(f \cdot x)$) constitué des sommets S_i de $\mathcal{A}(f \cdot f_a \cdot x)$ (respectivement $\mathcal{A}(f \cdot x)$) qui sont tels que $q_{S_i}(f) < N$, de toutes les arêtes attachées à ces sommets et de la flèche qui représente la transformée stricte de x.

REMARQUE 11. — Une flèche privée de sa pointe est considérée comme une arête.

COROLLAIRE 9. — Dans $\mathcal{A}(f \cdot f_a \cdot x)$ on a :

(i) $A_N(f \cdot f_a \cdot x)$ est connexe ; c'est donc un sous-arbre.

(ii) $\mathcal{A}_N(f \cdot x)$ est un sous-arbre de $\mathcal{A}_N(f \cdot f_a \cdot x)$.

Démonstration. — La croissance stricte des quotients polaires sur les géodésiques colorées et leur constance sur les arêtes incolores prouve que $\mathcal{A}_N(f \cdot f_a \cdot x)$ est connexe.

Comme $\mathcal{A}_N(f \cdot f_a \cdot x)$ ne contient aucune arête ou flèche unicolore et que $\mathcal{A}(f \cdot f_a \cdot x)$ est l'arbre de la résolution minimale de $f \cdot f_a \cdot x$, on a (*ii*). \Box

4.3. Multiplicité sortante pour un dicritique

Préliminaires. — Soit ℓ un germe de fonction analytique, $\mathcal{A}(\ell)$ un arbre d'une résolution de ℓ à l'origine de \mathbb{C}^2 , et soit x un axe qui n'est pas une composante de ℓ . Comme précédemment, on note S_0 le sommet où s'accroche la transformée stricte de x. On oriente $\mathcal{A}(\ell)$ à partir de S_0 . Soit S_i un sommet de $\mathcal{A}(\ell)$ et soit ε une arête issue de S_i . On note S_{i+1} l'autre extrémité de ε .

Soit c_i (respectivement c_{i+1}) une curvette de la composante irréductible du diviseur exceptionnel correspondant à S_i (respectivement S_{i+1}); on dira que c_i est associée à S_i . Soit z un axe transverse à $x \cdot \ell$. Un développement de Puiseux de $\pi(c_i)$ est donné par :

$$z = \sum_{j=1}^{k} a_j x^{m_j/n_1...n_j} + b_i x^{m_i/n_1...n_k n_i}.$$

Un développement de Puiseux de $\pi(c_{i+1})$ est :

cas I:

$$z = \sum_{j=1}^{k} a_j x^{m_j/n_1...n_j} + b x^{m_i/n_1...n_k n_i} + b_{i+1} x^{m_{i+1}/n_1...n_k n_i n_{i+1}},$$

cas II :

$$z = \sum_{j=1}^{k} a_j x^{m_j/n_1...n_j} + b_{i+1} x^{m_{i+1}/n_1...n_k n_{i+1}}, \text{ avec}$$

- 765 -

$$\frac{m_j}{n_1...n_j} < \frac{m_{j+1}}{n_1...n_{j+1}} < ... < \frac{m_i}{n_1...n_k n_i} < \frac{m_{i+1}}{n_1...n_k n_i n_{i+1}} \text{ pour le cas I et}$$
$$\frac{m_j}{n_1...n_j} < \frac{m_{j+1}}{n_1...n_{j+1}} < ... < \frac{m_i}{n_1...n_k n_i} < \frac{m_{i+1}}{n_1...n_k n_{i+1}} \text{ pour le cas II,}$$

les n_j , n_i , n_{i+1} pouvant être égaux à un et a_j , b_i , b, b_{i+1} étant des nombres complexes non nuls.

DÉFINITION 10. — Le sommet S_i est caractéristique pour $\pi(c_{i+1})$ si et seulement si $n_i > 1$ et $b \neq 0$, i.e. dans le cas I et $n_i > 1$. Sinon S_i n'est pas caractéristique pour $\pi(c_{i+1})$.

DÉFINITION 11. — Si c'_i est une autre curvette associée à S_i , on pose :

$$l_i = \frac{(\pi(c_i), \pi(c'_i))_0}{n_i}$$

Le couple d'entiers (l_i, n_i) $(p.g.c.d(l_i, n_i) = 1)$ est la paire associée au sommet S_i .

REMARQUE 12. — Nous rappelons que les l_i satisfont les formules suivantes (pour plus de détails voir [M-W] chapitre 5) :

(i) Si aucun sommet caractéristique pour $\pi(c_i)$ ne précède S_i sur la géodésique de $\pi(c_i)$, alors $l_i = m_i$.

(ii) Sinon, $l_i = m_i + n_i(ln - m)$, où (l, n) est le couple associé au dernier sommet caractéristique pour $\pi(c_i)$ qui précède S_i sur la géodésique de $\pi(c_i)$.

Rappelons la proposition 5.4.1 du chapitre 5 de [M-W] qui nous sera utile pour ce qui suit.

PROPOSITION e. — Soient ℓ_1 et ℓ_2 deux composantes irréductibles d'un germe de fonction analytique ℓ à l'origine de \mathbb{C}^2 . Désignons par (l_i, n_i) , le couple d'entiers associé au sommet S_i où se séparent les géodésiques de ℓ_1 et ℓ_2 . Avec les notations précédentes nous avons :

$$(\ell_1,\ell_2)_0=(\ell_1,x)_0\cdot(\ell_2,x)_0\cdotrac{l_i}{(n_1\cdots n_k)^2n_i}.$$

Notation. — On factorise ℓ en $\ell = \ell_{\varepsilon} \cdot \ell_{\bar{\varepsilon}}$ où les géodésiques des facteurs de ℓ_{ε} (respectivement $\ell_{\bar{\varepsilon}}$) passent par l'arête ε (respectivement ne passent pas par ε).

DÉFINITION 12. — La multiplicité sortante de ℓ par l'arête ε , notée $m_{\varepsilon}(\ell)$ est égale à :

$$rac{(\ell_{arepsilon},\pi(c_i))_0}{l_i n_i}$$
 pour le cas I et $rac{(\ell_{arepsilon},\pi(c_i))_0}{l_i}$ pour le cas II.

PROPOSITION 9. — Soit S_i un sommet de $\mathcal{A}(f \cdot f_a \cdot x)$. Si $q_{S_i}(f) < N$ et si ε est une arête de $\mathcal{A}(f \cdot f_a \cdot x)$ qui a pour origine S_i et pour extrémité S_{i+1} , alors $m_{\varepsilon}(f) = m_{\varepsilon}(f_a)$ et $(x, f_{\varepsilon})_0 = (x, f_{a,\varepsilon})_0$.

Démonstration. — Comme pour tout $b \in \mathbb{C}$ on a $(x, f_{b,\varepsilon})_0 = m_{\varepsilon}(f_b)n_1...n_k$, il suffit de vérifier que pour tout $a \in \mathbb{C}$ on a $m_{\varepsilon}(f) = m_{\varepsilon}(f_a)$.

D'après la proposition 5, on a $q_{S_i}(f) = q_{S_i}(f_a)$. Par conséquent, si c_i désigne une curvette de S_i , on obtient pour le cas I :

$$\frac{(\pi(c_i), f_{\varepsilon})_0 + (\pi(c_i), f_{\bar{\varepsilon}})_0}{(\pi(c_i), x)_0} = \frac{(\pi(c_i), f_{a,\varepsilon})_0 + (\pi(c_i), f_{a,\bar{\varepsilon}})_0}{(\pi(c_i), x)_0}, \text{ soit}$$
$$\frac{m_{\varepsilon}(f) \cdot l_i \cdot n_i + (\pi(c_i), f_{\bar{\varepsilon}})_0}{(\pi(c_i), x)_0} = \frac{m_{\varepsilon}(f_a) \cdot l_i \cdot n_i + (\pi(c_i), f_{a,\bar{\varepsilon}})_0}{(\pi(c_i), x)_0}, \text{ d'où}$$
$$m_{\varepsilon}(f) \cdot l_i \cdot n_i + (\pi(c_i), f_{\bar{\varepsilon}})_0 = m_{\varepsilon}(f_a) \cdot l_i \cdot n_i + (\pi(c_i), f_{a,\bar{\varepsilon}})_0 \quad (1).$$

Par ailleurs comme $q_{S_i}(f) < N$, d'après le corollaire 7, on sait que le sommet S_{i+1} est tel que $q_{S_{i+1}}(f) = q_{S_{i+1}}(f_a) \leq N$. Pour ce sommet, $q_{S_{i+1}}(f) = q_{S_{i+1}}(f_a)$, donc d'après la proposition e, ceci équivaut à $m_{\varepsilon}(f) \cdot l_{i+1} + n_{i+1}(\pi(c_i), f_{\varepsilon}) = m_{\varepsilon}(f_a) \cdot l_{i+1} + n_{i+1}(\pi(c_i), f_{a,\varepsilon})$ (2).

Avec (1) on a : $(\pi(c_i), f_{\bar{\varepsilon}})_0 - (\pi(c_i), f_{a,\bar{\varepsilon}})_0 = (m_{\varepsilon}(f_a) - m_{\varepsilon}(f))l_i \cdot n_i$, et avec (2), $n_{i+1} \cdot l_i \cdot n_i(m_{\varepsilon}(f_a) - m_{\varepsilon}(f)) = l_{i+1}(m_{\varepsilon}(f_a) - m_{\varepsilon}(f))$. Ainsi on obtient $n_{i+1} \cdot l_i \cdot n_i = l_{i+1}$ (*).

Ceci implique que n_{i+1} divise l_{i+1} et donc n_{i+1} divise m_{i+1} . Par conséquent $n_{i+1} = 1$. Considérons désormais deux cas : celui où $n_i = 1$ puis celui où $n_i > 1$.

Dans le premier cas (*) devient $m_{i+1} + (ln-m) = m_i + (ln-m)$, où (l, n)est le couple associé au sommet caractéristique pour $\pi(c_i)$ qui précède S_i (s'il n'existe pas de tel sommet de rupture, dans les formules cela revient à prendre l = m et n = 1). On obtient alors $m_i = m_{i+1}$, ce qui est impossible.

Dans le second cas, (*) devient : $m_{i+1} + (l_i n_i - m_i) = l_i n_i$. On obtient encore $m_i = m_{i+1}$, ce qui est absurde.

Pour le cas II nous avons $m_{\varepsilon}(f) \cdot l_i + (\pi(c_i), f_{\varepsilon})_0 = m_{\varepsilon}(f_a) \cdot l_i + (\pi(c_i), f_{a,\varepsilon})_0$ (1') et

$$m_{\varepsilon}(f) \cdot l_{i+1} + \frac{n_{i+1}}{n_i} (\pi(c_i), f_{\bar{\varepsilon}})_0 = m_{\varepsilon}(f_a) \cdot l_{i+1} + \frac{n_{i+1}}{n_i} (\pi(c_i), f_{a,\bar{\varepsilon}})_0 \quad (2').$$

Avec (1') et (2') on obtient alors l'égalité suivante : $l_{i+1} \cdot n_i = l_i \cdot n_{i+1}$ (**).

Nous allons considérer deux cas, suivant qu'il existe un sommet caractéristique pour $\pi(c_i)$ qui précède S_i ou pas.

S'il n'existe pas de tel sommet, on a $l_{i+1} = m_{i+1}$ et $l_i = m_i$. L'égalité (**) devient alors $m_i n_{i+1} = m_{i+1} n_i$, ce qui équivaut à $m_i/n_i = m_{i+1}/n_{i+1}$, ce qui est impossible.

S'il existe un sommet de rupture qui précède S_i , avec les notations qui précèdent, (**) s'écrit : $(m_i + n_i(ln - m))n_{i+1} = (m_{i+1} + n_{i+1}(ln - m))n_i$, soit $m_i/n_i = m_{i+1}/n_{i+1}$, ce qui est impossible.

Avec les mêmes notations que dans la proposition 9 nous avons :

COROLLAIRE 10. — (i) $(f_{a,\tilde{\varepsilon}},\pi(c_i))_0 = (f_{\tilde{\varepsilon}},\pi(c_i))_0$;

(ii) $(x, f_{\tilde{\varepsilon}})_0 = (x, f_{a,\tilde{\varepsilon}})_0$;

Démonstration. — (i) est une conséquence directe de la proposition 9 et de la définition de $m_{\varepsilon}(f)$ et $m_{\varepsilon}(f_a)$. Pour (ii) on utilise le fait que $q_{S_0}(f) = q_{S_0}(f_a) < N$, ce qui implique que $(x, f)_0 = (x, f_a)_0$. On conclut en utilisant la proposition 9. \Box

4.4. Détermination de $\mathcal{A}(f \cdot f_a \cdot x)$ en fonction de $\mathcal{A}(f \cdot x)$

THÉORÈME 4. — Lorsque a est régulière, $\mathcal{A}(f_a \cdot x)$ s'obtient à partir de $\mathcal{A}(f \cdot x)$ comme suit.

(i) On ajoute à $\mathcal{A}_N(f \cdot x)$ tous les sommets de quotient N de $\mathcal{A}(f \cdot x)$. On note $\mathcal{A}'_N(f \cdot x)$ l'arbre ainsi obtenu.

(ii) Pour chaque arête semi-ouverte ε sortante de $\mathcal{A}_N(f \cdot x)$, on note S_{ε} son sommet origine.

- a Si l'extrémité de ε dans $\mathcal{A}(f \cdot x)$ est une pointe de flèche de poids un, alors on ajoute cette pointe.
- b Si l'extrémité de ε dans $\mathcal{A}(f \cdot x)$ est un sommet S de quotient N pour f et de paire (l_S, n_S) , on accroche $m_{\varepsilon}(f)/n_S$ flèches de poids un à S dans $\mathcal{A}'_N(f \cdot x)$.
- c Si l'extrémité de ε dans $\mathcal{A}(f \cdot x)$ est une pointe de flèche de poids strictement supérieur à un ou un sommet S de quotient strictement supérieur à N pour f, alors on raccroche à ε une zone possédant exactement un sommet de rupture S' de quotient N pour f_a , et on

ajoute $m_{\varepsilon}(f)/n_{S'}$ flèches à S'. La paire $(l_{S'}, n_{S'})$ associée à S' est obtenue comme suit. Posons :

$$\omega = \frac{N \operatorname{val}_{E_{\varepsilon}}(x) - \operatorname{val}_{E_{\varepsilon}}(f_{\tilde{\varepsilon}})}{m_{\varepsilon}(f)}$$

(a) Si S_{ε} est un sommet caractéristique pour les branches de f_{ε} , on a $l_{S'}/n_{S'} = \omega$.

(β) Sinon, $l_{S'}/n_{S'} = \omega/n_{S\varepsilon}$.

(iii) On efface la couleur bleu et on colorie en rouge les géodésiques des composantes irréductibles de f_a .

THÉORÈME 5. — Lorsque a est régulière, on construit l'arbre $\mathcal{A}(f \cdot f_a \cdot x)$ comme suit. On prend l'arbre $\mathcal{A}(f_a \cdot x)$ et les composantes connexes de $\mathcal{A}(f \cdot x) \setminus \mathcal{A}'_N(f \cdot x) = \coprod_{i=1}^p A_i.$

a Si A_i est une pointe de flèche de poids un, dans $\mathcal{A}(f_a \cdot x)$ on remplace l'arête ε et la pointe de flèche accrochée à ε par une zone de la forme

où le sommet S' est dicritique, de paire associée $(l_{S'}, n_{S'})$ avec $n_{S'} = 1$ et $l_{S'} = \omega$, et le nombre de sommets ajoutés sur la géodésique issue de S_{ε} est égal à $l_{S'} - l_{S_{\varepsilon}} n_{S_{\varepsilon}}$.

- b Si A_i a une arête origine ε_i semi-ouverte, alors son sommet origine S dans $\mathcal{A}(f \cdot x)$ est tel que $q_S(f) = N$, et alors dans $\mathcal{A}(f_a \cdot x)$ on raccroche A_i au sommet S de $\mathcal{A}(f_a \cdot x)$.
- c (1) Si A_i est une pointe de flèche de poids r_i strictement supérieur à un, on ajoute dans $\mathcal{A}(f_a \cdot x)$ une flèche de poids r_i à S' si $n_{S'} = 1$ (où S' est le sommet de quotient N défini au (c) du théorème 4) ou au sommet de valence un, extrémité de la zone de rupture associée à S' si $n_{S'} > 1$.

(2) Sinon, A_i a un sommet origine $S^{"}$ et $q_{S^{"}}(f) > N$. Si $n_{S'} = 1$, on raccroche A_i à $\mathcal{A}(f_a \cdot x)$ en mettant une arête entre S' et S" (où S'

est le sommet de quotient N défini au (c) du théorème 4). Si $n_{S'} > 1$, on insère dans A_i la partie incolore de $\mathcal{A}(f_a \cdot x)$ qui s'accroche à S' en tenant compte de la résolution des composantes de f_{ε} .

On colorie en rouge et bleu en suivant les géodésiques des composantes irréductibles de f_a et de f respectivement.

REMARQUE 13. — (i) Dans le cas a des théorèmes 4 et 5, on a $m_{\varepsilon}(f) =$ 1. Si S_{ε} n'est pas caractéristique pour la composante de f_{ε} , on a $n_{S_{\varepsilon}} = 1$ car ε est un support pour la flèche qui représente f_{ε} .

(ii) Le cas $n_{S'} > 1$ du c(2) du théorème 5 se fait explicitement en utilisant les paires de Zariski des branches de $f_{\varepsilon}^{-1}(0)$ comme dans [M-W] chapitre 6. Avec les arbres topologiques de satellisation, on raccrocherait directement le bout d'arbre correspondant à A_i à la fourche correspondant à S' (voir [M-W] chapitre 3).

Démonstration des théorèmes 4 et 5. — Nous avons l'inclusion $\mathcal{A}_N(f \cdot x) \subset \mathcal{A}(f \cdot f_a \cdot x)$.

Soit ε une arête sortante de $\mathcal{A}_N(f \cdot x)$.

Si l'extrémité S de ε dans $\mathcal{A}(f \cdot x)$ est un sommet de quotient N, alors $f_{a,\varepsilon}$ correspond à des curvettes de S, et les b des théorèmes 4 et 5 sont évidents.

Si l'extrémité S de ε dans $\mathcal{A}(f \cdot x)$ est une pointe de flèche de poids un, alors on a $m_{\varepsilon}(f) = 1 = m_{\varepsilon}(f_a)$, et donc $f_{a,\varepsilon}$ (et f_{ε}) est irréductible et sa géodésique dans $\mathcal{A}(f \cdot f_a \cdot x)$ ne contient pas de sommet caractéristique après S_{ε} (d'après la remarque 13 (i)).

Par conséquent le a du théorème 4 est clair.

Pour le a du théorème 5, on a ajouté le sommet S' de quotient N, de paire $(l_{S'}, n_{S'})$ avec $n_{S'} = 1$ (par la remarque 13 (i)), et $f_{a,\varepsilon}$ et f_{ε} sont des curvettes de S'. D'après la définition 11, on a donc $l_{S'} = (f_{a,\varepsilon}, f_{\varepsilon})_0$, et on obtient :

$$N = \frac{(f_a, f_{\varepsilon})_0}{(x, f_{\varepsilon})_0} = \frac{(f, f_{a,\varepsilon})_0}{(x, f_{\varepsilon})_0} = \frac{(f_{\varepsilon}, f_{a,\varepsilon})_0 + (f_{\widetilde{\varepsilon}}, f_{a,\varepsilon})_0}{(x, f_{\varepsilon})_0},$$

 $\begin{array}{l} \operatorname{car} \ (x,f_{\varepsilon})_0 = (x,f_{a,\varepsilon})_0 = \operatorname{val} \ _{E'}(x), \ \mathrm{d'où} \ \mathrm{l'on \ tire} \ N(x,f_{\varepsilon})_0 - (f_{\varepsilon},f_{a,\varepsilon})_0 = \\ (f_{\varepsilon},f_{a,\varepsilon})_0 = l_{S'}. \end{array}$

Soit c une curvette associée à S_{ε} . Comme $n_{S'} = 1$, on a : $(x, \pi(c))_0 = (x, f_{\varepsilon})_0$ et $(f_{\tilde{\varepsilon}}, \pi(c))_0 = (f_{\tilde{\varepsilon}}, f_{a,\varepsilon})_0$.

Le calcul de $(f_{\varepsilon}, f_{a,\varepsilon})_0$ exprimé à l'aide de $l_{S_{\varepsilon}}$ montre que le nombre de sommets à ajouter est $m_{S'} - m_{S_{\varepsilon}} = l_{S'} - l_{S_{\varepsilon}} n_{S_{\varepsilon}}$.

Les points c des théorèmes 4 et 5 se démontrent comme suit.

Si $m_{\varepsilon}(f) > 1$ et si $q_{S_{\varepsilon}}(f) < N$, alors on considère la géodésique d'une composante de $f_{a,\varepsilon}$ dans $\mathcal{A}(f \cdot f_a \cdot x)$. Elle contient exactement un sommet S' de quotient N, et les branches de $f_{a,\varepsilon}^{-1}(0)$ sont résolues en des curvettes de S'. De plus, ε est une arête de $\mathcal{A}(f \cdot f_a \cdot x)$ et toutes les géodésiques de f_{ε} passent par S' dans $\mathcal{A}(f \cdot f_a \cdot x)$ (d'après la proposition 7).

On calcule la paire $(l_{S'}, n_{S'})$ associée à S'. Soit c' une curvette associée à S' et c une curvette associée à S_{ε} . On obtient :

$$N = \frac{(f, \pi(c'))_0}{(x, \pi(c'))_0} = \frac{(f_a, \pi(c'))_0}{(x, \pi(c'))_0}.$$

Par conséquent on a : $N(x, \pi(c'))_0 = (f_a, \pi(c'))_0 = (f, \pi(c'))_0$, ou encore $N(x, \pi(c'))_0 = (f_{\tilde{\varepsilon}}, \pi(c'))_0 + (f_{\varepsilon}, \pi(c'))_0 = (f_{a,\tilde{\varepsilon}}, \pi(c'))_0 + (f_{a,\varepsilon}, \pi(c'))_0$.

Comme $(f_a, \pi(c))_0 = (f_{a,\varepsilon}, \pi(c))_0 + (f_{a,\tilde{\varepsilon}}, \pi(c))_0$ et $(f, \pi(c))_0 = (f_{\varepsilon}, \pi(c))_0 + (f_{\tilde{\varepsilon}}, \pi(c))_0$, par le corollaire 10 on a $(f_{a,\tilde{\varepsilon}}, \pi(c))_0 = (f_{\tilde{\varepsilon}}, \pi(c))_0$.

Dans le cas I on obtient alors $Nn_{S'}(x, \pi(c))_0 = n_{S'}(f_{\tilde{\varepsilon}}, \pi(c))_0 + l_{S'}m_{\varepsilon}(f)$, d'où $l_{S'}/n_{S'} = \omega$.

Dans le cas II nous avons $N \frac{n_{S'}}{n_{S_{\epsilon}}} (x, \pi(c))_0 = \frac{n_{S'}}{n_{S_{\epsilon}}} (f_{\tilde{\epsilon}}, \pi(c))_0 + l_{S'} m_{\epsilon}(f),$ d'où $l_{S'}/n_{S'} = \omega/n_{S_{\epsilon}}.$

Ceci démontre le c du théorème 4 et la remarque 13 (ii) permet de conclure au c du théorème 5 . $\hfill\square$

4.5. Cas dégénérés

Les cas dégénérés concernent les valeurs de N qui sont inférieures ou égales au plus petit quotient polaire de f. On trouve l'ensemble B des valeurs atypiques du pinceau $f(x, y) + ax^N$ comme nous l'avons expliqué dans l'introduction. Ici on décrit le type topologique d'une fibre régulière en fonction du type topologique de $f \cdot x$.

THÉORÈME 6. — Pour a régulière, lorsque N est inférieur ou égal au plus petit quotient polaire de f, alors le complémentaire dans S^3_{ε} d'un voisinage tubulaire de l'entrelacs $f^{-1}_a(0) \cap S^3_{\varepsilon}$ est une variété de Seifert.

Ce théorème est une conséquence directe du lemme suivant :

- 771 -

LEMME 3. — Pour a régulière, lorsque N est inférieur ou égal au plus petit quotient polaire de f, on a $Q_a = \{N\}$.

Démonstration. — La vérification de ce résultat est identique à la démonstration de la proposition 1 du paragraphe 2. \Box

Ce lemme peut aussi être obtenu à partir de résultats de B. Teissier ([T2]). Dans ce cas $f + ag^N = 0$ apparaît comme l'intersection de $f + az^N = 0$ avec la surface z = g(x, y).

Démonstration du théorème 6. — Le fait que Q_a soit égal à $\{N\}$ se traduit par l'existence d'une unique zone polaire Z_1 . Le lemme 2.5.2 de [L-M-W1] nous dit alors que $\Sigma_a \cap \Phi_a^{-1}(Z_1)$ est connexe par arcs ; donc Σ_a est connexe et par conséquent le complémentaire dans Σ_a d'un voisinage tubulaire de l'entrelacs $(f_a \cdot x)^{-1}(0) \cap \Sigma_a$ est une variété de Seifert. \Box

COROLLAIRE 11. — Pour a régulière, l'arbre $A(f_a \cdot x)$ possède un unique sommet de rupture et les flèches qui représentent la transformée stricte de $f_a^{-1}(0)$ s'accrochent à ce sommet de rupture. En particulier f_a a le type topologique de $x^n - y^m$ où $m = (f, x)_0$ et $n = \min(N, (f, y)_0)$.

 $D\acute{e}monstration.$ — Nous venons de démontrer que le complémentaire dans S^3_{ε} d'un voisinage tubulaire de l'entrelacs $(f_a \cdot x)^{-1}(0) \cap S^3_{\varepsilon}$ est une variété de Seifert. La correspondance biunivoque entre les variétés de Seifert de la décomposition minimale de Waldhausen du complémentaire dans S^3_{ε} d'un voisinage tubulaire de l'entrelacs $(f_a \cdot x)^{-1}(0) \cap S^3_{\varepsilon}$ et les sommets de rupture de $A(f_a \cdot x)$ prouve la première partie du corollaire.

Soit *b* une autre valeur régulière. L'image par Φ_a de $f_b^{-1}(0)$ est la courbe d'équation $v = (a - b)u^N$. C'est une feuille régulière. Par conséquent elle se relève par Φ_a en un nombre fini de feuilles régulières. Les composantes de $f_b^{-1}(0) \cap S_{\varepsilon}^3$ sont donc des feuilles régulières ; par conséquent leurs transformées strictes dans $\mathcal{A}(f_a \cdot x)$ sont symbolisées par des flèches du sommet de rupture. Comme *a* et *b* sont régulières, les types topologiques de f_a et f_b sont les mêmes, d'où le résultat. \Box

5. Exemples

5.1. Exemple 1

Dans la suite la flèche blanche représente la transformée stricte de $\{x = 0\}$, les flèches noires les transformées strictes des composantes de $\{f = 0\}$ et les flèches grises celles de $\{f_a = 0\}$.

Considérons Φ_0 donné par $\Phi_0(x, y) = (x, (x^5 - y^3)^2)$. Dans l'arbre $\mathcal{A}(f \cdot x)$, chaque sommet S_i est pondéré par le quotient de contact $q_{S_i}(f) = \operatorname{val}_{E_i}(f)/\operatorname{val}_{E_i}(x)$ (voir figure 1).

On a $D(x, y) = -6y^2(x^5 - y^3)$; $D^{-1}(0)$ possède donc deux branches. Pour $(x^5 - y^3)$, dont une paramétrisation de Puiseux est donnée par (t^3, t^5) , on obtient $f(t^3, t^5) = 0$; pour $\{y = 0\}$, dont une paramétrisation de Puiseux est donnée par (t, 0), on obtient $\operatorname{val}_t(f(t, 0)) = 10$ et $(x, y)_0 = 1$.

L'ensemble Q_0 est constitué du singleton $\{10\}$.

a) Pour N = 20, l'arbre $\mathcal{A}_{20}(f \cdot x)$ est représenté figure 2.

Dans ce cas $B_1 = \emptyset$ et $B = \{0\}$ car f n'est pas réduite.

Nous obtenons $Q_a = \{10; 20\}$ et en utilisant les théorèmes 4 et 5 nous trouvons que la zone de rupture créée est de paire (30, 1), ce qui nous permet de construire l'arbre $\mathcal{A}(f \cdot f_a \cdot x)$, où chaque sommet est pondéré par $q_{S_i}(f_a) = \operatorname{val}_{E_i}(f_a)/\operatorname{val}_{E_i}(x)$ (voir figure 3).

b) Pour N = 10 (voir l'arbre $\mathcal{A}_{10}(f \cdot x)$ figure 4), on a val_t $(f(t, 0)) = N(x, y)_0$. Par conséquent, $B_1 = \{-1\}$ et $B = \{0, -1\}$ car f n'est pas réduite.

Si $a \in \mathbb{C} \setminus B$, $Q_a = \{10\}$ et la zone de rupture ajoutée est du type (5,3), d'où la construction de $\mathcal{A}(f \cdot f_a \cdot x)$ (figure 5).

c) Pour N = 8, $B_1 = \emptyset$ et $B = \{0\}$ car $Q_0 = \{10\}$. Par définition ce cas est dégénéré, et pour a régulière l'arbre $\mathcal{A}(f_a \cdot x)$ est représenté figure 6.

5.2. Exemple 2

Considérons $f = \prod_{i=1}^{r} f_i^{e_i}$ où $r \ge 2$ et les f_i sont lisses et transverses deux à deux. La multiplicité à l'origine de f est donc égale à $\sum_{i=1}^{r} e_i$. On étudie $f(x, y) + ax^N$ avec $N > \sum_{i=1}^{r} e_i$. On a $q_{S_1}(f) = \sum_{i=1}^{r} e_i$ où S_1 est le sommet de $\mathcal{A}(f \cdot x)$ représentant le diviseur obtenu en éclatant l'origine dans \mathbb{C}^2 .

LEMME 4 . Si $N > \sum_{i=1}^{r} e_i$ alors 0 est la seule valeur atypique éventuelle du pinceau $f + ax^N$.

Démonstration. — Si x est transverse à f alors $Q_0 = \{\sum_{i=1}^r e_i\}$ et N est strictement supérieur à l'unique quotient polaire de f pour la direction x.

Dans le cas où x n'est pas transverse à f, le quotient associé à S_0 est un quotient polaire de f pour la direction x. Par le théorème de croissance, il est strictement inférieur à $\sum_{i=1}^{r} e_i$, donc à N. De plus, si $r \ge 3$, $\sum_{i=1}^{r} e_i$ est un deuxième quotient polaire pour f. Dans tous les cas N est strictement supérieur aux quotients polaires de f pour la direction x.

La remarque 3 permet alors de conclure : si f est réduite B est vide, sinon $B = \{0\}$.

En appliquant le théorème 4, a et c, on construit $A(f_a \cdot x)$ à partir de $A(f \cdot x)$ x). Dans le cas c, on remplace chaque pointe de flèche correspondant à une composante irréductible f_i de f de poids $e_i > 1$ par une zone possédant un unique sommet de rupture, de paire associée $(l_{(i)}, n_{(i)})$, auquel on accroche $e_i/n_{(i)}$ flèches et pour lequel on a :

$$l_{(i)}/n_{(i)} = \omega_{(i)} = \frac{N(x, f_i)_0 - \sum_{j \neq i} e_j}{e_i}.$$

5.3. Exemple 3

Comme dit dans l'introduction, notre caractérisation des valeurs atypiques d'un pinceau permet de déterminer les valeurs irrégulières à l'infini d'une application polynômiale de \mathbb{C}^2 dans \mathbb{C} associée à un polynôme de $\mathbb{C}[x, y]$. Voici des exemples qui illustrent la méthode.

a) Supposons que Q(x,y) est de la forme $\prod^N(x-a_i),$ les a_i non nécessairement distincts. Les fibres de l'application polynômiale Q sont des droites parallèles. Les valeurs irrégulières de Q sont les valeurs $c \in \mathbb{C}$ telles que Q(x) = c est non réduite. On les détermine de la façon suivante.

Soit $P(X,Z) = \prod_{i=1}^{N} (X - a_i Z)$ l'homogénéisée de Q. Le pinceau associé est $P(X,Z) + aZ^N = P_a(X,Z)$, et $P_a(X,Z) \cap \{Z = 0\} = (0:1:0) =$ $\{A\}$. On localise au point A et on calcule les valeurs atypiques du pinceau local $P(x, z) + az^N$. Le germe D défini dans l'introduction est le lieu des zéros de $\prod_{j=1}^{N-1} (x - c_j z)$, où les c_j sont les racines de la dérivée du polynôme $\prod_{i=1}^{n} (x-a_i).$

Quel que soit j on a : $P(c_j z, z) = (\prod_{i=1}^{N} (c_j - a_i)) z^N$. On pose $b_j =$ $\prod_{i=1}^{n} (c_j - a_i).$ L'ensemble des valeurs atypiques de Q est $B = \{-b_j, j = 1, ..., N-1\}$ (les b_j ne sont pas forcément distincts).

b) En appliquant la même méthode qu'en a), on montre que $R(x, y) = y^q + \prod_{i=1}^N (x - a_i)$ est régulier à l'infini si $q \ge 1$ et $q \ne N$.

c) Soit $S(x, y) = x + x^{\alpha}y^{\beta}$ avec $\alpha \ge 1$ et $\beta \ge 1$. Les fibres de S intersectent la droite à l'infini en A = (0 : 1 : 0) et A' = (1 : 0 : 0). Après localisation en A (resp. A') on obtient les pinceaux : $xz^{\alpha+\beta-1} + x^{\alpha} + az^{\alpha+\beta}$ (resp. $z^{\alpha+\beta-1} + y^{\beta} + az^{\alpha+\beta}$).

En A' le germe \hat{D} est $\beta y^{\beta-1}$ et alors $B = \emptyset$.

En A le germe \hat{D} est $z^{\alpha+\beta-1} + \alpha x^{\alpha-1}$. Les branches de \hat{D} ont une paramétrisation de la forme $(z = t^{\alpha-1}, x = \sigma t^{\alpha+\beta-1})$ avec $1 + \alpha \sigma^{\alpha-1} = 0$. Alors $B = \{0\}$. Donc la seule valeur atypique de S à l'infini est 0.

Bibliographie

- [C1] CAUBEL (C.). Sur La topologie d'une famille de pinceaux de germes d'hypersurfaces complexes, thèse de doctorat de l'université Paul Sabatier, Toulouse (1998).
- [C2] CAUBEL (C.). Sur La topologie d'une famille de pinceaux de germes d'hypersurfacés complexes, C.R. Acad. Sci. Paris, t. 328, Série 1, (1999), 501-504.
- [C3] CAUBEL (C.). Variation of the Milnor fibration in pencils of hypersurface singulartities, Proceedings of the London Math. Soc. Vol. 83, Part 2 (2001), 330-350.
- [D-M] DU BOIS (P.), MICHEL (F.). The integral Seifert form does not determine the topology of plane curve germs, Journal of algebraic geometry, vol. 3, n°1, (1994),1-38.
- [E-N] EISENBUD (D.), NEUMANN (W.). Three-dimensional link theory and invariants of plane curves singularities, Annals of Math. Studies 110, (1985), Princeton University Press.
- IOMDINE (I.N.). Complex surfaces with a 1-dimensional set of singularities, Sibirian Math. J. (15) (1974), 1061-1082.
- [L1] LÊ (D.T.). Calcul du nombre de cycles évanouissants d'une hypersurface complexe, Annales de l'Institut Fourier, t.23, n°4, (1973), 261-270.
- [L2] LÊ (D.T.). Ensembles analytiques complexes avec lieu singulier de dimension un (d'après I.N. Iomdine), Séminaire sur les singularités, Université Paris VII, (1976-1977), Publications Mathématiques de l'université Paris VII, (1980).
- [L-W] LÊ (D.T.), WEBER (C.). Équisingularité dans les pinceaux de germes de courbes planes et C⁰-suffisance, L'enseignement mathématique, t. 43 (1997), 355-380.
- [L-M-W1] LÊ (D.T.), MICHEL (F.), WEBER (C.). Courbes polaires et topologie des courbes planes, Ann.Scien.E.N.S., 4ième série, T 24, (1991), 141-169.

- [L-M-W2] LÊ (D.T.), MICHEL (F.), WEBER (C.). Sur le comportement des courbes polaires associées aux germes de courbes planes, Compositio Mathematica 72, (1989), 87-113.
- [Ma1] MAUGENDRE (H.). Discriminant d'un germe $\Phi : (\mathbb{C}^2, 0) \longrightarrow (\mathbb{C}^2, 0)$ et résolution minimale de $f \cdot g$, Annales de la Faculté des Sciences de Toulouse, vol. VII, n⁰ 3, (1998), 497-525.
- [Ma2] MAUGENDRE (H.). Discriminant of a germ $\Phi : (\mathbb{C}^2, 0) \longrightarrow (\mathbb{C}^2, 0)$ and Seifert fibered manifolds, Journal of the London Mathematical Society (2) 59 (1999), 207-226.
- [M-W] MICHEL (F.), WEBER (C.). Topologie des germes de courbes planes à plusieurs branches, Prépublication de l'Université de Genève, (1985).
- [Sc] SCHRAUWEN (R.). Topological series of isolated plane curves singularities, l'Enseignement Mathématique (36) (1990), 115-141.
- [S] SIERSMA (D.). The monodromy of a series of hypersurface singumarities, Comment. Math. Helv. 65, (2), (1990), 181-197.
- [T1] TEISSIER (B.). Introduction to equisingularity problems, Proc. A.M.S., Conference on algebraic geometry, Arcata 1974, A.M.S. Providence R.I. (1975).
- [T2] TEISSIER (B.). Variétés polaires I, Inv. Math. 40 (1977), 267-292.
- [Ti] TIBAR (M.). Embedding non isolated singularities into isolated singularities, The Brieskorn Anniversary Volume, Birkhauser, Progress in Math., vol. 162, (1998), 103-115.
- [Z] ZARISKI (O.). Contributions to the problem of equisingularity, CIME notes (1969); Complete works vol.4, 159-237.