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R,ESUME. - On calcule les moments entiers positifs de certains processus
de Markov auto-similaires évalués en un temps fixe, ainsi que les moments
entiers negatifs des fonctionnelles exponentielles de certains processus de
Levy. Lorsque le processus de Levy sous-jacent n’a pas de saut positif,
ces moments entiers determinent la loi de la variable et conduisent a

d’interessantes identites en distribution. Le cas du processus de Poisson
donne un nouvel exemple simple qui montre que la loi log-normale n’est
pas determinee par ses moments entiers.

ABSTRACT. - We compute the positive entire moments of certain self-
similar Markov processes evaluated at fixed time, and the negative entire
moments of the exponential functional I of certain Levy processes. When
the Levy process has no positive jumps, this determines the aforemen-
tioned distributions and yields several interesting identities in law. The
case of the Poisson process yields yet another simple example showing
that the log-normal distribution is moment-indeterminate.

1. Introduction and main results

Lamperti [16] proposed the following simple construction of so-called
self-similar Markov processes. Let ~ - > 0) be a real-valued Levy
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process which does not drift to -oo, i.e. lim ~t = a.s. We may
define first implicitly T = (Tt, t > 0) by the identity

and then for an arbitrary x > 0, the process started from x at time t = 0

The family of processes (X (., x), x > 0) is Markovian and self-similar, since
there is the obvious scaling identity X(t, x) - xX {t/x,1 ) . Conversely, any
Markov process on ]0, oo[ with the scaling property can be constructed like
this.

The question of the asymptotic behavior in distribution of the process
X (~, x) when x tends to 0 was raised by Lamperti [16], and settled in [3, 4]
in the case when m := > 0. The starting point of this work lies in
the observation that this question can be investigated by the method of
moments whenever the Levy process ~ has finite exponential moments of
arbitrary positive order. Recall (e.g. from Theorem 25.3 in Sato [21]) that
this is equivalent to assuming that the Levy measure v of ~ fulfills

this condition holds for instance when the jumps of ~ are bounded from
above by some fixed number, and in particular when ~ has only negative
jumps. We then have

In this direction, note that the assumption that ~ does not drift to -oo, is
equivalent to

We are now able to state our first result (we stress that the zero mean
case, i.e. when the Levy process ~ oscillates, is allowed here whereas it was
excluded in [4]).

PROPOSITION 1. - Suppose that (1~ and (2) hold.

(i) For every t > 0, we have



(ii) If moreover ~ has no positive jumps, then the processes X ( ~, x) con-
verge in the sense of finite dimensional distributions to X(., 0) . More
precisely, the entire moments of X(t, 0) determine its law and are

given by

Remark. - We conjecture that the requirement of absence of positive
jumps is not only sufficient, but also necessary for the distribution of X (t, 0)
to be determined by its entire moments. In this direction, see the forthcom-
ing section 4 in the simple case of the Poisson process.

Example 1. - Suppose ~ = 2B where B is a standard Brownian motion,
i.e. = 2q2. We get _ (2t)k k! for k = 1, ..., so X(t,O) has
the exponential distribution with parameter 1/2t. This agrees with the well-
known fact that the self-similar Markov process associated with 2B is the

square of a two-dimensional Bessel process.

Example 2. - In the case when ~ is a Poisson process with positive drift,
the self-similar Markov process is closely related to a so-called Emery’s mar-
tingale with parameter 03B2  -2. See [10] and Section 15.4 and in particular
the subsection 15.4.4 on page 93 in [28]. In the setting, the existence of a
limit when the starting point tends to 0 was established in [10] ; and the cal-
culation of the entire moments of X ( l, 0) and the question of determinacy
were discussed on page 90 in [28].

Next, we assume that ~ drifts to +0oo, i.e. a.s., or

equivalently that the mean in (2) is m > 0. We then may define the so-

called exponential functional

which appears for instance in the pricing of so-called asian options in mathe-
matical finance, and in the study of diffusion in random Levy environment,
and has motivated several recent works [4, 5, 6, 7, 8, 27, 29]. In particular,
Carmona et al. [7] considered the special case when ~ is a subordinator, i.e.
has increasing paths. Specifically, they showed that the entire moments of
I determine its distribution and can be expressed in the form

where ~ is the so-called Laplace exponent of the subordinator i.e.



~Ve now point at a related formula for the negative moments of I which
is closely connected to Proposition 1. .

PROPOSITION 2. - Assume that (1) and (2) hold with m > 0. For every
integer k > l, we have

with the convention that the right-hand side equals rrz for k = 1. If moreover
fl has no positive jumps, then 1/ I admits some exponential moments, hence
the distribution of I is determined by its negative entire moments.

Example 3. - Take ~t = 2(Bt + at), where B is a standard Brownian
motion and a > 0. Then m = 2a, - 2q(q + a) and we get for every
integer k > 1

The right-hand side can be identified as the k-th moment of 2-ya, where 03B3a
is a gamma variable with index a. Hence Proposition 2 enables us to recover
the identity in distribution

which has been established by Dufresne [9] (see also Proposition 3 in Pollak-
Siegmund [20], example 3.3 on page 309 in Urbanik [25], Yor [27], ...). A
further discussion of (4) in relation with DNA is made in [17].

Example .~. - Suppose ~ has bounded variation with drift coefficient --~ 1
and Levy measure

with 0  a  1  a -~ b. Then, = q(q + 1 - q), m = (1 - a)jb,
and we get for every integer 1~ > 1



In the right-hand side, we recognize the k-th moment of a beta variable
with parameter ( 1 - a, a + b - 1 ) . thus recover the identity in law
I which is due to Gjessing and Paulsen ~12~.

Let us now explain the connection between Propositions 1 and 2. In this
direction, we just suppose that the Levy process has a finite positive mean
m = > 0, in particular ~ drifts to +0oo. It is convenient to introduce
another random variable J, whose distribution is related to the exponential
functional via the simple identity

where f :]0, oo ~--~ [0, oo[ denotes a generic measurable function. It has been
shown recently by the authors [4] (see also [3] in the special case when ~
is a subordinator) that whenever the Levy process 03BE is non-arithmetic, the
self-similar Markov process X(., x) converges in the sense of finite dimen-
sional distributions when :r 2014~ 0+ towards a process denoted by X(., 0),
and X(l, 0) has the same law as J . . Observe that when the conditions of
Proposition 2 are fulfilled, then the (positive) entire moments of J are given
by

which are precisely the limit moments in Proposition 1. Moreover (6) deter-
mines the distribution of J whenever ~ has no positive jumps.

The rest of this note is organized as follows. Propositions 1 and 2 will be
established in the next section. In section 3, we shall focus on the case when
~ has no positive jumps and derive several identities in distribution based
on moment calculations, in the spirit of [5]. Finally, we discuss in section 4
the case when ~ = N is a standard Poisson process, and in particular point
at a striking relation with the moments of the log-normal law.

2. Proofs

Proof of Proposition 1. - (i) Let (Pt , t > 0) be the semigroup of the Levy
process, so we have for every q > 0 and f(x) = that Pt f = .

As a consequence, if we denote the infinitesimal generator of ~ by A, then
Af = 

Next we set = f(logx) - xq, and deduce from the well-known
result (see e.g. Section 111.38 in Williams [26]) on the transformation of the
infinitesimal generator of a Markov process after a time-substitution that
the infinitesimal generator 9 of the self-similar Markov process fulfills



Applying Kolmogorov’s backwards equation now yields

Taking q = k integer, we deduce by induction the first assertion in Propo-
sition 1.

(ii) By an application of the Markov property, it suffices to establish
the convergence for one-dimensional distributions. Since ~ has no positive
jumps, the bound

is readily seen from the Lévy-Khintchine formula. As a consequence, there
is some finite constant c > 0 such that

Using the binomial identity in the second line below, we deduce that

and this quantity is finite whenever a > 0 is sufficiently small.

By dominated convergence, we deduce from part (i) that for every b E
~-a, a~

which entails the second assertion. 0

Proof of Proposition 2. - Set



for every t > 0. On the one hand, we have for every integer k > 0 the
identity

On the other hand, we may express Is in the form Is = where

From the independence of the increments of the Levy process, we see that
To has the same law as Io = I and is independent of Plugging this in (7)
and taking expectations, we get using (1) that

and finally

The formula of Proposition 2 follows by induction, using the fact that
E(1/I) = m = ~’(0+), which is seen e.g. from (5).

Let us now check that the distribution of 1/I is determined by its (posi-
tive) entire moments when 03BE has no positive jumps . In that case, the Levy-
Khintchine formula readily yields the bound w(q) = O(q2) as q ~ oo. As a
consequence, there is some finite constant c > 0 such that

This entails that

hence the distribution of 1/7 is characterized by its entire moments. 0

3. Some identities in absence of positive jumps

Throughout this section, we will assume that the Levy process ~ has
no positive jumps and fulfils (2). Our purpose here is to point at several
identities in distribution deriving from Propositions 1 and 2. As certain
subordinators naturally arise in this setting, in order to avoid possible con-
fusion we write here J = J’It for a variable distributed as X(I,O) (so its
law is characterized by (6)), and in the case when m > 0, I = for the

exponential functional of ~.



To start with, we recall that the function

is the Laplace exponent of an important subordinator, namely the so-called
ladder height process  of the dual Levy process  = -03BE. See Theorem
VII.4(ii) in [1]. In this direction, note the identity

In [5], we observed that for any Laplace exponent 9 of a subordinator, the
right-hand side in (9) can be viewed as the k-th moment of some positive
random variable, denoted by Ro. Hence Proposition 1 provides us with a
natural representation of Ro in the case when 9 is given in the form (8).
Specifically, we get from (6) and (9) that

In particular, if we denote by I8 == fo the exponential func-
tional of subordinator H, then by Proposition 1 of [5], we see that when
I8 and are independent, then there is a factorization of the standard
exponential variable e:

Next, recall also that when m > 0, the overall maximum of a dual Levy
process

which is a.s. finite by assumption that ç drifts to +00, has Laplace transform

See Equation (VII.3) and also Theorem VII.8 in [1]. By moments identifi-
cation, we derive from Proposition 2 that there is the factorization

where in the right-hand side Jw and M are assumed to be independent.
Applying (11), we may also observe that

where as usual, the variables in the left (respectively, right) hand side are
assumed to be independent.



In the same vein, we also mention that another interesting identity arises
when ~ has no Gaussian component and the left-tail of its Levy measure,

fulfills the following requirement:

which holds e.g. when ~ is stable with index a E~ 1, 2~. Specifically, an in-
tegration by parts in the Levy-Khintchine formula for 03A8 shows that the
subordinator with Laplace exponent O(q) = has no drift and its

Levy measure is absolutely continuous with respect to the Lebesgue mea-
sure on ]0, oo[ with density According to Theorem 2.1 of Hawkes [13],
condition (14) ensures the existence of a continuous monotone decreasing
function g :]0, oo ~~ [0, oo ~ such that

Integrating by parts, we get that

where _ -dg(x) is a Stieltjes measure on ]0, oo~ with f (1 n x)-y(dx)
 oo. We conclude that

is the Laplace exponent of some subordinator and deduce from (3), (6) and
(10) that, in the obvious notation

4. The Poisson case

Throughout this section, we assume ~ = N is a standard Poisson process.
Our purpose is to point at a situation of moment-indeterminacy within this
Poissonian set-up; a more developed discussion involving connections with
the so-called q-series and q-integrals will be undertaken in [2].

As a particular instance of (3), we obtain for every integer k > 1,



On the other hand, the combination of Proposition 2 and (5) yields

Multiplying term by term the identities (16) and (17) and taking I and J
independent, we arrive at the remarkable formula

where J1~ is a standard normal variable. This suggests that

IJ and exp(N + 1/2) might be identical in law. (19)

However this derivation is not legitimate as it is well-known that the log-
normal law is not determined by its entire moments (see e.g. Feller [11] on
page 227, but this goes back to Stieltjes [23]), and in fact, (19) fails! Indeed,
if it were true, then J1f + 1/2 would be decomposed (in law) as log I + log J,
i.e. as the sum of two independent variables which would then be Gaussian
according to the Levy-Cramer theorem (see e.g. Theorem XV.8.1 on page
525 in Feller [11]).

Because the law of I is determined by its entire moments (see Carmona
et al. [7]), this suggests that the law of J is not. This is indeed the case;
here is a precise statement.

PROPOSITION 3. - In the Poisson case ~ = N, the distribution of I is
absolutely continuous, P(I E dx) = i(x)dx, and its density fulfills

As a consequence, neither the distribution of J, nor that of 1/I, is deter-
mined by its entire moments.

More generally, the argument below shows that for any a E R, the law
of J a; defined via P( J a; E dx) = 1 /I E dx) is moment indeterminate.

Proof. - Taking for a moment the estimate (20) for granted, the inde-
terminacy for J and 1/7 follows from a refinement of Krein’s theorem due



to Pedersen [19] ; see also Proposition 1 in [18] (we further refer to the sur-
vey of Barry Simon [22] and to Stoyanov [24] for some recent literature in
this area). More precisely, it is shown in [19] that a distribution on [0, oo[ is
Stieltjes-indeterminate whenever it possesses a bounded density f with

Since the density j of J is related to i by the identity x j (x) = i ( 1 /x), (20)
shows that (21 ) holds for f = j . The same argument applies for the density
of 1/I.

We now turn our attention to (20); and in this direction we first aim at
estimating the distribution function of the exponential functional I. Note
that in the Poissonian setting, the latter can be expressed in the form

where Eo, E1, ... is an i.i.d. sequence of standard exponential variables. It
follows readily that I is self-decomposable, and as a consequence, I has an
infinitely divisible distribution that possesses a unimodal density i(x) =
P(I E dx)/dx. See Theorem 53.1 in Sato [21].

On the other hand, one gets that the Laplace transform of I is given by

Using the easy estimate

we deduce

This enables us to apply the large deviation estimates (e.g. Jain and
Pruitt [14]) for the distribution of I, and specifically one has log P(I  
- + as ~ ~ 0+, where 03BB is the unique solution to the equation
cp’ ( ~ ) _ ~ . One finds and finally



Recall that the density i of I is unimodal and thus increases on some neigh-
borhood of 0, so (20) derives from the preceding estimate, which completes
the proof of our claim. D

Krein’s genuine theorem [15] (see also, e.g., Proposition 1.7 in [22]) states
that (21) with xo = 0 is a sufficient condition for indeterminacy. It may
be interesting to point out that this more stringent condition fails for the
density j of J. Indeed if we had

then by a change of variables, we would also have

where i (x) = is the density of the exponential functional I. Hence
the distribution of I would be indeterminate, which is wrong: as a conse-
quence of (16), it admits exponential moments of order A  1; see Carmona
et al. [7] for a more general discussion. In other words, the indefinite integral
(21) for f = j converges at oo, but diverges at 0.
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