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Semilinear wave equation on manifolds (*)

F. D. ARARUNA, G. O. ANTUNES AND L. A. MEDEIROS (1)

Annales de la Faculté des Sciences de Toulouse Vol. XI, n° 1, 2002
pp. 7-18

Dedicated to M. Milla Miranda in the
occasion of his 60th. anniversary.

R,ESUME. - Dans ce travail nous étudions un probleme pour les equations
des ondes non linéaire définies dans une variete. Ce probleme a etc motive
par J.L.Lions [8], p. 134. Pour l’existence de solutions nous avons applique
la méthode de Galerkin. Le comportement asymptotique des solutions a
ete examine aussi.

ABSTRACT. - In this paper, we study a type of second order evolution
equation on the lateral boundary £ of the cylinder Q = n x ]0, T[, with Q
an open bounded set of 1R n. In this problem is fundamental that the un-
known function solves an elliptic problem on SZ. This results are motivated
by Lions [8], pg. 134 where he works with another type of nonlinearity.

1. Introduction

Let Q be a bounded open set of jRn (n > 1) with smooth boundary r.
Let v be the outward normal unit vector to F and T > 0 a real number. We
consider the cylinder Q x ]0, T[ with lateral boundary E = r x ]0, T[ .

We investigate existence and asymptotic behaviour of weak solution for
the problem
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where the prime means the derivative with respect to t, ’ normal deriva-

tive of w and F : Il~ -~ R is a function that satisfies

F continuous and sF (s) > 0, Vs E I~. (1.2)

It is important to call the attention to the reader that the idea employed
in this work comes from Lions [8], pg. 134. The main point consists in adding
to (1.1) an elliptic equation in 03A9 to reduce the problem to a canonical model
of Mathematical Physics, but in this case on a manifold which is the lateral
boundary £ of the cylinder Q . A Similar type of problem, also motivated
by Lions [8], can be seen in Cavalvanti and Domingos Cavalcanti [2].

The plan of this article is the following: In the section 2, we give nota-
tions, terminology and we treat the linear case associated to (1.1). In the
section 3, we prove existence for weak solution when F satisfies the condi-
tion (1.2), approximating F by Lipschtz functions. In this Lipschitz case, we
employ Picard’s successive approximations and then we apply the Strauss’
method [9]. Finally in the section 4, we obtain the asymptotic behaviour by
the method of pertubation of energy as in Zuazua [10].

2. Notations, Assumptions and Results

Denote by ] . ] , (., .) and ]] . ]] , ((., .)) the inner product and norm, respec-
tively, of L2 (r) 

For 
_

we will denote a primitive of F.

We consider the following assumption on ~3 in (1.1) :

fl E L°° (F) such that /3 (x) ~ ~30 > 0, a.e. on F. (2.1)

As was said in the introduction, for A > 0, let us consider the problem

From elliptic theory, we know that for cp E H 2 (F), the solution ~ of
the boundary value problem



belongs to H1 (S2, 0) _ ~ u E H1 (~) ; Du E L~ (SZ) ~ . By the trace theorem,
it follows that ~~ E H- 2 (r) .

Formally, we have by (2.3) that

We take B11 E Hl (S~, A) and we define

Thus, by (2.4)

where ~yo and 1’1 are the traces of order zero and one, respectively, and (-, -~
represents the duality pairing between H- 2 (F) and (F). .

We consider the scheme

Thus

Therefor e A is self-adjoint and A E £ (r) (r) .
Moreover, we have

and so by (2.4) we get

proving that A is positive.



We formulate now the problem on E. For this, we define

In this way, the problem (1.2) is reduced to find a function u. : ~ -~ R

such that 
,

which will be investigated in the section 3.

Firstly we will state a result that guarantees the existence and unique-
ness of solution for the linear problem associated the ( 1.1 ) .

THEOREM 2.1. 2014 Given (uo,ul,f) E H 2 (r) x L2 (h) x L2(03A3), there

exists a unique function u : ~ -~ I~ such that

Moreover we have the energy inequality

Proof. In the proof of this linear case, we employ the Faedo-Galerkin’s
method. D

3. Existence of Solution

The goal of this section is to obtain existence of solutions for the problem
(1.1).

THEOREM 3.1.2014 Consider F satisfying (1.2) and suppose

Then there exists a function u : ~ ~ IE~ such that



To prove the Theorem 3.1, the following Lemma will be used:

LEMMA 3.1. - Assume that (uo, u1 ) E H 2 (r) x L2 (r) and suppose that
the function F satisfies

F -~ II~ be Lipschitz function such that sF (s) > 0, ds E R. (3.5)

Then there exists only one function u : ~ -~ II~ satisfying the conditions

Furthermore

Proof of Lemma ~.1. - The proof will be done employing the Picard
successive approximations method. Let us consider the sequence of succes-
sives approximations

defined as the solutions of the linear problems

Using that F is Lipschitz and from Theorem 2.1, one can prove, using
induction, that (3.12) has a solution for each n E N with the regularity
claimed in the Theorem 2.1. We will prove now that the sequence (3.11)
converges to a function u : 03A3 ~ R in the conditions of the Lemma 3.1.



For this end, we define vn = un - un-i which is the unique solution of the
problem

By the energy inequality (2.9), we have

Set

Thus, since F is Lipschitz, we have

We have also

Combining (3.14) - (3.17), we get

and, by interation, we obtain, for n = 1, 2, ..., that

00

hence, we conclude that the series (t) is uniformly convergent on
~=1

]0,r[. By the definition of en (t), see (3.15), it follows that the series
00 00

y~ (t~ 2014 1~-1) and y~ (i~ 2014 are convergents in the norms of L~
?~=i

(0,r;L~ (F)) and Z~ (o,r;~~ (r)) , respectively. Therefore, there exists
U E -~ R such that



Since F is Lipschitz, we have by (3.18) that

Then, by the convergences (3.18) - (3.20) , we can pass to the limit in
(3.12) and we obtain, by standard procedure, a unique function u satisfying
(3.6) - (3.10) . 0

We will prove now the main result.

Proof of Theorem 3.1. - By Strauss ~9~, there exists a sequence of func-
tions , such that each Fv . lI~ -~ I~ is Lipschitz and 
approximates F uniformly on bounded sets of Since the initial data uo is
not necessarily bounded, we have to approximate uo by bounded functions
of H 2 (F). We consider the functions çj : II~ -~ R defined by

Considering ~~ (uo ) = uoj, , we have by Kinderlehrer and Stampacchia [5]
that the sequence E~ C H 2 (r) is bounded a.e. in rand

Thus, for E H 2 (r) x L2 (r) , the Lemma 3.1 says that there
exists only one solution : ~ -~ R satifying (3.6) - (3.9) and the energy
inequality

We need an estimate for the term Gv (uoj (x) ) dh. Since uo~ is bounded
a.e. in r, Vj E N, it follows that

So



From (3.21), there exists a subsequence of (u.p~)~E~ which will still be
denoted by (~oj’L~ ~ such that

Hence, by continuity of G, we have that G -~ G (uo) a.e. in r. We also
have that G (uoj) x G (uo) E ~1 (r). Thus, by the Lebesgue’s dominated
convergence theorem, we get

Then, by (3.23) and (3.24), we obtain that

where C is independent of j and v. In this way, using (3.21) and (3.25) , we
have from (3.22) that

where C is independent of j, v and t.

From (3.26), we obtain that

is bounded in L°° (0, Tj (F)) , (3.27)

is bounded in Loo (0,T;L2 (r) ) . (3.28)
We have that (3.27) and (3.28) are true for all pairs ( j, v) E I~‘ 2 , in particular,
for (i, i) E ~12. Thus, there exists a subsequence of (ui2), which we denote
by (Ui) , and a function u : 03A3 ~ R, such that

We also have by (3.8) that

From (3.29), (3.30) and observing that the injection of H1 (E) in L~ (E) is
compact, there exists a subsequence of (~ci), which we still denote by (ui) ,
such that



Since F is continuous

Furthermore, since ui (x, t) is bounded in R,

Therefore, we conclude

Taking duality between (3.31) and ui we obtain

Using (2.1) , (3.6) and (3.7), we have by (3.33) that

where C is independent of z.

Thus, from (3.32) and (3.34), it follows by Strauss’ theorem, see Strauss
~9~ , that

By (3.29), (3.30) and (3.35) it is permissible to pass to the limit in (3.31)
obtaining a R satisfying (3.1) - (3.4). . D

4. Asymptotic Behaviour

In this section we study the exponential decay for the energy E (t) as-
sociated to the weak solution u given by the Theorem 3.1. This energy is
given by

We consider the followings additional hypothesis:



THEOREM 4.1. - Let F satisfying ( 1.2) and (4.2) . Then the energy (4.1 )
satisfies

where E is a positive constant.

Proof. For an arbitrary E > 0, we define the perturbed energy

where Ev (t) is the energy similar to (4.1) associated to the solution obtained
in the Lemma 3.1 and

Note that

where C2 = Ci, 2014 ~, and Ci is the immersion constant of (r) into

L’(r). .

Then,

or

Taking 0  6 ~ 20142014, 
we get

202

Multiplying the equation in (3.8) for uv, using (2.1) and the fact of A
to be positive, we obtain

Differentiating the function ~ (t) and using (3.8), (4.2) and the fact of A
to be positive comes that

where ~31 == and ~c > 0 to be chosen.



It follows by (4.4), (4.6) and (4.7) that

Taking  = 

Qi 
and 0  E  

2a/?o 
we et

Choosing ~  min { 20142014, 203B103B20 303B1+03B221C1} then (4.5) and (4.9) occur simul-
taneously., therefore

that is,

From (3.29), (3.30) and since Gv is continuous, we have

But we know that Fv -~ F uniformly on bounded sets of R. Then

Thus, by (4.11) and (4.12)

Moreover, we have, by (4.10), that

Therefore, using (3.21) , (3.23) and (3.24) , we get
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By (4.13), (4.14) and Fatou’s lemma, we have

Hence, passing lim inf in (4.10), we get (4.3). . D
voo

Remark. - In the existence we can take ~ = 0. For this end, we define
in H1 (S2) the norm

obtaining now the positivity of operator A + (7, for ( > 0 arbitrary, like in
Lions [8]. For the asymptotic behaviour, we need the additional hypothesis
/3o>0
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