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RÉSUMÉ. - On s’intéresse aux proprietes de stabilite de certains semi-
groupes non-lineaires, de type Feynman-Kac renormalises, agissant sur
l’ensemble des probabilites d’un espace mesure donne. Cette etude se
base notamment sur l’utilisation du coefficient ergodique de Dobrushin
dans l’esprit d’articles precedents de A. Guionnet et de l’un des auteurs.
La seconde partie de ce travail porte sur des applications des resultats
obtenus. Tout d’abord nous donnons des criteres assurant qu’une particule
sous-markovienne conditionnee a ne pas mourir oublie exponentiellement
vite sa condition initiale. Nous analysons egalement des proprietes de sta-
bilite d’une classe de processus interagissant par le biais de leur intensite
de sauts. Enfin, nous etudions des proprietes de stabilite d’equations de
filtrage non-lineaire dont les signaux sont des diffusions generales, en exa-
minant le comportement asymptotique de leur solutions robustes.

ABSTRACT. - The stability properties of a class of nonlinear Feynman-
Kac semigroups in distribution space is discussed. This study is based on
the use of semigroup techniques and Dobrushin’s ergodic coefficient in the
spirit of previous articles by A. Guionnet and one of the authors.
The second part of this paper is devoted to the applications of these re-
sults. First we give conditions underwhich a killed Markov particle condi-
tioned by non-extinction forgets exponentially fast its initial condition.
We also analyze the stability properties of a class of interacting processes
in which the interaction goes through jumps. Finally we investigate the
asymptotic stability properties of the nonlinear filtering equation associa-
ted to a general Markov signal with continuous paths and we examine the
limiting behavior of its robust version.
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1. Introduction

Let X = (Xt)tEI be a Markov process with time space I = or I = N
and taking values in a measurable space (E, ~). Let Z = s,t be
a collection of multiplicative bounded positive functions such that for any
s x t, is a r  t)-measurable random variable. Starting
from the pair (X, Z) one associate a nonlinear semigroup 03A6 = {03A6s,t : 0 
s  t~ on the set M 1 (E) of all probability measures on E by setting for any
distribution p E M1 (E) and for any bounded and £-measurable function

where denotes the Markov process X on starting
with initial distribution tc. The paper concerns the large time behavior and
the stability properties of nonlinear Feynman-Kac semigroups 03A6. A concise

statement of one of our main results is the following.

THEOREM 1.1. - If the transition semigroup of X is sufficiently mixing
and Z is sufficiently regular then there exists some 03B3 > 0 such that for any
t ~ I

where the supremum is taken over all pair distributions and is the

total variation norm.

This result will be reformulated in more details later in the paper, where

in particular we shall specify several mixing and regularity conditions un-
derwhich the semigroup 03A6 is asymptotically stable. Our expressions for the
exponential rates (2) will also be constructive.

To motivate our work and to get a flavor of our results let us present
already and in more details a particular situation which can be handled in
our framework. Let I = R+ and Z be given by

where X is a time-homogeneous Markov process with semigroup 
and is a collection of measurable functions with bounded

oscillations, that is for any t ~ I



COROLLARY 1 .2. - 1. If the oscillations are integrable in the sense that

then for any p > 1, u > 0 and t > p.u the Lyapunov exponent ~y given
in (2) satisfies

with

2. If the oscillations are uniformly bounded in the sense that

and if the semigroup ~Pt ; satisfies the following mixing type
condition

for some constants 0  a, b  oo, then for any p > 1, u > 0 and
t > p.u the Lyapunov exponent ~y given in (2) satisfies

As announced and strictly speaking the latter is not a corollary of Theo-
rem 1.1 but rather a consequence of our constructive approach. The precise
description of Theorem 1.1 will be given in section 3.

The discrete time version of Theorem 1.1 and Corollary 1.2 was first
obtained by A. Guionnet and one of the authors in [6]. Our objective is to
extend this study to continuous time semigroups. For a precise discussion on
the origins of this problem the reader is referred to the introduction of [6].

To motivate our work let us present what is new here comparative with
the previous chain of published papers.



In the first place and up to our knowledge, the unified treatment of
continuous and discrete time space with general multiplicative functions Z

presented here has never been covered in the literature. In contrast to pre-
viously referenced papers our approach is context free, its simply relies on
semigroup techniques and Dobrushin’s ergodic coefficient and it is applica-
ble to a large class of Feynman-Kac type semigroups. In addition the new
integrability condition (3) on the oscillations of V allows us to weaken the
mixing type condition (4) usually made in the literature.

In the second part of this paper we discuss the applications of the above
results. First we show how our framework can be used to study the limiting
behavior of the distribution of a Markov killed particle. We also indicate
how the previous stability properties can be used to study the asymptotic
behavior of a class of genetic type interacting processes with continuous
time space. In this connection our approach complements the study of the
stability properties of McKean-Vlasov diffusions of Tamura [19] to a class
of interacting processes in which the interaction goes through jumps. In

addition, as noticed in [8], the semigroup 03A6 can be associated to a simple
generalized and spatially homogeneous Boltzmann equation. Therefore our
results also complements the convergence analysis for Maxwellian molecules
of Carlen [2] and Carlen and al. [3] to a class equations with Feynman-Kac
representations.
Finally we investigate the stability properties of the filtering equation for

general Markov signals with continuous paths. We also provide explicit cal-
culations and conditions underwhich the robust version of the filtering equa-
tion is asymptotically stable. To our knowledge the asymptotic stability
properties of the robust filtering equation have not been covered by the
literature on the subject.

The structure of the paper is as follows: In a preliminary section 2 we

give precise definitions of the main objects used in this work. We also discuss
some structural properties of the semigroup ~ in distribution space and we
characterize the uniform stability of ~ in terms of the Dobrushin’s ergodic
coefficient associated to a suitably chosen semigroup on E. The precise
description of Theorem 1.1 is stated and proved in section 3 . We explain
how these results relate to the discrete time space situation treated in [6].
In section 4 we derive several easily verifiable conditions on the pair (Z, X)
underwhich the semigroup ~ is asymptotically stable. We also give explicit
and useful estimates of the Liapunov exponent for continuous and discrete
time space semigroups. Section 5 is devoted to the applications of the general
results to the analysis of the stability of killed Markov particles, interacting
processes and nonlinear filtering equations.



2. Description of the models and statement of some results

Let M(E) be the space of all finite and signed measurable measures on
(E, ~) with the total variation norm

where the supremum and the infimum is taken over all subsets A E ~*. We

also recall that any transition function T(x, dz) on E generates two integral
operations. The first one acting on the set B(E) of bounded £-measurable
functions f : E -~ II~ and the second one on the set M(E) of finite measures

If we write Mo (E) the subspace of M(E) of measures ~c such that ~c(E) _
0 then any Markov transition T(x, dz) on E can be regarded as an operator
T : Mo (E) - Mo (E) and its norm is given by

The quantity j3(T) is a measure of contraction of the total variation

distance of probability measures induced by T. It can also be defined as

where the quantity a(T) is usually called the Dobrushin’s ergodic coefficient
of T and it is defined by

where the infimum is taken over all x, z E E and all resolutions of E into

pairs of non-intersecting subsets ; and m ~ 1 (see for
instance [10]).

To describe our underlying stochastic model, let be given a process
X = (Xt)tEI taking values in the measurable space (E, ~) and defined
on some set S~. In particular, no assumption is made on the regularity ot
the trajectories, since it will not be important for our general considera-
tions (but in the practice of continuous time, such a property can be useful



to get the existence of regular conditional distributions or to check the
measurability conditions presented below and that is one of the reason

why it will be convenient in section 5 to return to a topological setting).
For any s E I and t E I U ~-~-oo~ verifying s x t, let (respectively

denote the 03C3-algebra generated on SZ by the mappings Xr, for all
s  r x t (resp. s  r  t). We will also write F := To put a

(non necessarily time-homogeneous) regular Markovian structure on this
framework, let be given, for any t E I and x E E, a probability on

the mesurable space (SZ, We make the hypothesis that it is indeed
mesurable in x E E, in the sense that for any bounded measurable mapping
G : : (E~t, ~®It) -~ R, the function E 3 x - is mea-

surable, where of course It :_ ~s E I : s > t~. Our main assumption is
that (SZ, (Xt)tEI, is Markovian. This just means
that for any x E E and any bounded measurable mapping
G : (EIt, , ~~It) ~ R, IEt,Xt [G(X)] is a version of the conditional expecta-
tion If ~u is an "initial" probability distribution on
E, we define for any s E I

then with the above notations, for any t > s, [G(X)] is also a version
of the conditional expectation 
As usual, we associate to the above setting a time-inhomogeneous transition
semigroup P = ; s  t~ acting on B(E) by

Now let Z = t~ be a collection of stochastic multiplicative
functions satisfying the following set of conditions. For any r x t,

. Zs,t is a Fs,t--measurable positive and bounded random variable.

. Zs,s = 1 and Zs,t = Zs,r Zr,t

To see that the mappings ~ defined in (1) form a semigroup we first
notice that

where

Then we use the multiplicative properties of Z and the Markov property
of X to check that H = ~.~Is~t ; s  t~ is a well defined semigroup on B(E).



From these observations one concludes that ~ is a well defined semigroup
on Mi(E). To see this last claim, by the semigroup property of H, we notice
that for any 5 ~ 

By definition of and we obtain

from which we conclude that ~ is a semigroup. Before presenting some
structural properties of the Feynman-Kac distributions (1) let us fix some
of the terminology used in the sequel. The semigroup 03A6 on M1(E) is said
to be asymptotically stable if it satisfies the following property

When the rate of convergence is exponential in the sense that there exists
some s E I and I > 0 such that for any t > s

~ is said to be exponentially asymptotically stable.

Our analysis will be based on the following lemma. It says that the non-
linear mapping is the composite mapping of a nonlinear transformation
and a linear semigroup in distribution space.

LEMMA 2.1. - For any s  t and ,u E M1 (E) we have the following
decomposition

where the mapping : M1(E) -~ M1(E) is defined by

and = ; s  r  t~, t E I, is a collection of linear semigroups
defined for any f E B(E) and ~c E M1(E) and s  r  t by



Proof. Since gt,t = = 1 decomposition (7) is trivial. Let us

check that for any fixed time parameter t E I, is a linear semigroup.
For any 0  s  u  r  t and f ~ B(E) we clearly have that

Since Hu,r(gr,t) = = = 9u,t one concludes that

The end of the proof is now straightforward. D

Remark 2.2. - By construction and using the Afarkov property of
X it is easy to see that the transition kernels I~~t~ (x, dz), s  r  t may

likewise be defined by setting

The asymptotic stability properties of 03A6 can be characterized in terms of
the Dobrushin’s ergodic coefficient of the linear semigroups ~.K~t> ; 

PROPOSITION 2.3. - For any s  t and ~c, v E we have that

where the supremum is taken over all distributions ~C, v E M1(E).

Proof. - The inequality (8) is a simple consequence of (5) and the
decomposition (7) given in Lemma 2.1. Let us prove (9). Since for any
x ~ E and s  t

it follows that

The reverse inequality is a consequence of (8) and the proof of (9) is now
completed. D



A crucial practical advantage of (9) is that it gives a first connection be-
tween the stability properties of the nonlinear semigroup 03A6 and the ergodic
coefficients associated to a collection of linear semigroup 

We end this preliminary section by noting that the semigroup ~ may
have completely different kinds of long time behavior. For instance, if the

multiplicative functions Z are trivial in the sense that Zs,t = 1, for any s x t
then

In this case the asymptotic stability properties of 03A6 are reduced to that
of P and

At the opposite if the semigroup P is trivial in the sense that Ps,t = I d,
for any s  t then

In this situation ,C3{I~~~t ) = 1 and one cannot expect to obtain uniform
stability properties. Indeed if I = and the functions Z are given for any
s  t by

then can be rewritten as follows

It is then easily seen that tends as t --~ oo and in narrow sense
to the restriction of p to the subset

where the essential infimum is understood over ~c.

3. An Asymptotic Stability Theorem

The results developed in this section are a more complete form of those
in [6]. Next condition on the multiplicative functions Z is pivotal.



(Z) There exists a time to E I and a positive function ~ : : 7~ 3 (t, u) t2014~

( o,1 ~ , such that for any t > to, any x E E, any u E I and all
mappings f, 9 E B(E) taking only positive values,

with the convention zt (0) = 1.

In particular, if the conditional expectation = y] admits a
regular version in y E E, then condition (,~) is implied by the validity of
the following bounds, for any t > to, any x, y, y’ E E and any u E I B ~0~,

(if E is a topological space, an equivalence even holds under certain conti-
nuity and strong mixing assumptions).

The above hypothesis allows to extend the methodology developed in [6]
to analyze the contraction properties of the semigroups with the col-

lection of probability transitions = r~ defined by

Next for u E I and s  t ~ I, we denote by Iu ( s, r) the discrete subset
of I defined by

with the integer part of a G I~.

Condition (,~) is not really restrictive and it is also easily verifiable.
For instance let us suppose that I = and Z is given by the following
exponentials 

. -’-

for some nonnegative, bounded and measurable function V : . I x E 3

(r, x) ~ vr (x) E In this situation one gets the bounds (10) with



where for any rEI, osc(Vr) denotes the oscillation of the function V.

We also notice that in discrete time settings (10) is always satisfied for
u = 1. More precisely assume that I = N and = for any
tEN. In this settings for any tEN the random variable E I~~
have necessarily the form

for some positive function gt on E. Since for any tEN and x, y E E we
have that

then (10) with = 1.

PROPOSITION 3.1. - If (Z) is satisfied for some to E I or more gener-
ally if (10) is satisfied for some u E I - ~0~ and any t > to then we have
that

Proof. - On the basis of the definition of H given at the beginning of
section 2 it is easy to establish that for any f E ,~(E), x E E, s  r  t

Under our assumptions this clearly implies that for any nonnegative
function f E B(E) and 

If we combine the above inequality with (6) we see that the ergodic pro-
perties of can be related to that of the transitions S’~t~ Nlore precisely

This implies that for any 



Taking into account that

it is easily seen that ( 14) is a consequence of (16). D

In view of the previous proposition we see that the set of Markov tran-
sitions plays a pivotal role in the study of the stability
properties of ~. In order to obtain some useful estimate we will use the
following assumption.
(S) There exists some tl E I and v E I - {0~ such that for any 
s + v x t 

/,’ "

for some nonnegative constants ES (v) E [0, 1] which do not depend on the
parameter t.

THEOREM 3.2. - Assume that condition (S) holds for some constants
. If (Z) is satisfied for some to  tl (or more generally if (10) is

satisfied for u = v and any t > t1) then we have for any t1  s  r  t

Therefore the following set of implications holds.

Proof. By Proposition 3.1, (17) iinplies (18). On the other hand, if
we use the inequalities



then (19) and (20) are easily checked. To prove {21), we simply notice that

as soon as ~ + v) with 1/p + 1/g = 1. This completes the proof of the
theorem. D

Next we return to the discrete time space. Suppose we have I = N and
= for any t ~ N. In this situation (15) and (13) imply that

for any s  ~ 
1,B 1,B

Since is a linear semigroup this yields that for any s  

From (13) we can also check that the functions {9s,t : 0  s  t~ satisfy
the backward recursions

In the discrete time case we find that for any s x 

Therefore if (S) holds v = 1 then we see that (18), (19), (20) and (21)
hold true for v = 1 if we replace ~T.,.t ( 1 ) by .

4. Lower Bounds for Dobrushin’s Coefficient

The assumption (S) holds for instance if the semigroup P is sufficiently
mixing and/or if Z is a collection of sufficiently regular functions. In this
section we present a series of conditions on the pair (P, Z) for which explicit
and useful lower bounds of type (17) may be obtained. These estimating
techniques will be based essentially on the properties of Dobrushin’s ergodic
coefficient. We will also formulate several corollaries of Theorem 3.2.



PROPOSITION 4.1. - Assume that the multiplicative function Z and the
semigroup P satisfy the following condition

(ZP) There exists some tl E I such that

Then condition (S) holds with for any tl  s  s + v  t

In addition, if inft~I ’Yt :=03B3 > 0 then

~’roof. - By a direct computation zue have for any nonnegative test
function f : E -~ R+ and for any 

thus

Therefore the desired bounds are a consequence of (6). 0

The following special case is worth recording. Let I = and Z be

given by

and V : : x E E - V(x) E and v are given. In this situation
one can check that

This also yields the bounds



from which one concludes that

~ v E 7 - {0} : : ‘dt C T a (Pt,t+v ) > 0 =====~ ~ is asymptotically stable.

In addition, if X is time-homogeneous then (21) and (23) yields that

This simple approach works in more general situations. A simple corol-
lary of Proposition 4.1 and Theorem 3.2 is the following

COROLLARY 4.2. - Suppose that I = and the multiplicative func-
tion Z is given by

where V : : (t, .r) E x J? t2014~ measurable function such that

Then the following implication hold for any u > 0

In addition if we have

then for any t > p u and p, q > 1 such that + = 1

Furthermore if := tx(u) > 0 for some u > 0 then for any p > 1
and T > pv and + 1 /q = 1 we have that



Proof. - Under our assumptions, the inequality (14) implies that for

Using this inequality the three implications are straightforward. The last
assertion is a clear consequence of (9). D

This special case apart, Proposition 4.1 only describes some consequence
of the lower bound condition but does not indicate when this property
holds. In the further development we give separate conditions on Z and
P which suffice to check (ZP). Before we proceed we next examine an
additional sufficient condition for (S) in terms of the mixing properties
of P.

PROPOSITION 4.3. - Assume that the semigroup P satisfies the follow-
ing condition.

(P) There exists some tl and v E I such that for any t > tl

for some positive constant E~ (v) > 0 and some reference probability measure
E M1(E). . Then condition (S) holds with

Proof. - Under (P) and for any nonnegative test function f we clearly
have for any 

Again using (6) one concludes that

and the proof is completed. D

Using (ZP) or (P) one can obtain lower bounds for the ergodic coefficient
of the transition probability functions To see the connections

between these two conditions it is convenient to strengthen condition (~).



(Z)’ For any t, u E I there exists a constant E {o,1~ such that

As we shall this in the foregoing development this condition is met in
many interesting applications.

We start by noting that ==~ (Z) and (24) =~ ( 10) . In the same way
one can also check that Zt ( u) for any (u, t) E I2 but the function
zt : u E I zt (u) E (0, 1] usually fails to be lower bounded. More precisely
for any t E I we usually have that limu~~ zt (u) = 0 so that (ZP).
Next proposition shows that + (P) ~ (ZP).

PROPOSITION 4.4. - Assume that condition is satisfied for some
function z. Then the following assertions hold

Proof. - The proof of (25) is a clear consequence of the definition
of To prove (26) we assume that (P) is satisfied for some v E I
and t 1 E I. Since for any u  v

one obtain the lower bound

from which one concludes that

This ends the proof of (26). D

Let us now investigate another consequence of the later results. Assume
that I = and the multiplicative functions Z are given by

where V : E - R+ is a measurable function on E with bounded oscillation
osc(V)  oo. As we have already noticed in (12) condition (.~) and the
lower bound (10) hold with



If X is a sufficiently regular diffusion on a compact manifold E then the
mixing type condition (P) holds with

for some constants 0  A, B  oo and for the uniform Riemannian measure

on the manifold. In this specific situation, using (21) Theorem 3.2, one
concludes that for any u E I, p > 1 and t > p.u

Summarizing it can finally be seen that

COROLLARY 4.5. - Assume that I = and Z is given by (27) and
the semigroup of X satisfies condition (P) with Et (u) = E(u) given by (28).
Then for any p > 1 and u > 0 and T > p u we have that

with

The best bound in term of the constants A, Band osc(V) is obtained for

The last Feynman-Kac model which we are going to discuss will be the
discrete time case. Next proposition is a useful reformulation of the above
results in these settings.

PROPOSITION 4.6. - Assume that I = N and = for
any so that the random variables ; can be defined
by (1 ~~ for some measurable positive functions g := ~gt ; . In this

situation holds if, and only if, g satisfies the following condition

for some nonnegative constants ~at ; . In addition we have that



. Condition (Z) and the corresponding lower bounds (10) hold with

. If (P) holds for v = 1, tl = 0 and for some constant Et{1) := Et > 0

then we have 
;’ ,. "

and therefore

o If (P) is satisfied for some (v, tl ) E I2 and some positive function
E : (s, v) E I x E ~ E then (ZP) holds with

and (s) is also satisfied with

If (P) is satisfied for some v E I and tl = 0 then we have that

and also

. Condition (ZP) holds if the series ~t log a.t converge, that is



o If inft at := a > 0 and (P) holds for some v E I and tl = 0 and
inft Et (v) := ~(?;) > 0 then for any p > 1 p.v

Proof. - The equivalence (29) ~ is clear. To prove that (Z) and
the bounds (10) hold with (30) it suffices to note that

The three implications are a consequence of (22). The proof of (34) is an-

other consequence of (22) and the fact that for any 0 ~ m + v  t and
x, y E E

Indeed, (37) implies that for any nonnegative test function f

and therefore

from which (34) is a clear consequence of (22). If we combine ( 18) and (30)
one obtain (33), that is



Under our assumptions this implies that

from which the end of proof of (36) is straightforward. D

5. Applications

As we said in the introduction the analysis of Feynman-Kac semigroups
as those studied in this work has motivations coming from nonlinear esti-
mation such as nonlinear filtering and numerical function optimization but
also from physics and biology. Next we present several generic examples of
multiplicative functions Z and semigroup P together with some comments
concerning their derivations. Unless otherwise stated, we assume from now
on that I = that E is a Polish space and that the underlying probability
space (0, F) is the canonical set of all cadlag trajectories, endowed with the
classical Skorokhod topology and its Borelian 03C3-field. More generally, one
could work with progressively measurable Markov processes, but we don’t
want to deal here with this kind of extensions (cf. [9]). .

5.1. Markov killed particle

Let us start from a remark that the distributions of a random particle
killed at a given rate and conditioned by non-extinction can be described
by a Feynman-Kac nonlinear semigroup. More precisely let us suppose that
X and V are temporally homogeneous and that V : E - R- is a given
nonpositive measurable function. Let us write 0~ the semigroup
of X. . By the multiplicative property, the transitions 0~
defined for any measurable test function f by setting

form a semigroup which is sub-Markovian in the sense that (x, E)  1
for some x’s and t’s. The semigroups and P are related one another by
the relations

To turn the sub-Markovian semigroup {P(v)t; t  0} into the Markovian
case we adjoin classically to the state space E a cemetery point denoted by



A and we define a Markovian semigroup 0~ by setting for any
measurable subset A E ~

If ~X~~’~ ; t > 0~ denotes the corresponding Nlarkov process on E U ~~~
then we have for any measurable subset A E ~

where = inf ~t > 0 = ~~ is the life-time of X w> . The asymp-
totic stability results developed in previous sections give several conditions
underwhich a killed particle as defined previously and conditioned by non-
extension forgets exponentially fast its initial position.

COROLLARY 5.1. - If the nonlinear semigroup ~ is asymptotically sta-
ble and (2) holds for some -y > 0 then for any t > 0 we have that

5.2. Stability of interacting processes

In measure valued process and genetic algorithm theory, the Feynman-
Kac semigroup (1) describes the evolution in time of the limiting process
of Nloran-type interacting particle systems (see [8]). More precisely, let us
assume that

. the Nlarkov process X is associated to a collection of generators
with domain D C Cb (E) .

. the multiplicative functions Z are defined by

where V : : (r, x) E I x E H YT (x) E is a bounded measurable

function

In this specific example the nonlinear semigroup 03A6 represents the evo-
lution in time of the solution of the nonlinear and M1 (E)-valued process
defined by

.j



where r~ E is a pregenerator on E defined on a
suitable domain by

The above measure valued evolution equations can be regarded as the
limiting process associated to a sequence of interacting particle systems.
More precisely, starting from the family of pre-generators {/~ ; ; t > 0, r~ E

we associate an N-particles system

which is a time-inhomogeneous Markov process on the product space E~,
N > 1, whose generator acts on functions 4 belonging to a good domain by

where the notation ,C~2~ have been used instead of when it acts on the
i-th variable of ~(xl, ... , xN) and ~x is the Dirac measure on x E E. From
(40) we notice that in these schemes the interaction between particles is
expressed through jumps.
To our knowledge the earliest work on the subject of the long time beha-
vior of nonlinear semigroup associated to interacting processes was that of
Tamura [19]. In the latter the author studied the convergence of distribu-
tions of McKean-Vlasov type (in which the interaction goes through drifts)
but he didn’t look to the situation as here where interaction goes through
jumps. Related genetic-type schemes for the numerical solving of Feynman-
Kac formula in discrete time settings can be found in and [6, 7, 8].
In physics (1) can also be regarded as a simple generalized and spatially
homogeneous Boltzmann equation (cf. [15]). The long time behavior of the
Boltzmann equation for Maxwellian molecules is studied in several papers
under specific assumptions on the collision kernel and/or on the initial data
(see for instance [2, 3] and references therein).

Our Feynman-Kac model does not fit into these particular Maxwellian or
Mc-Kean Vlasov settings. The method developed in this paper complements
in some sense the work of Tamura and the papers on the convergence to
equilibrium of Boltzmann’s type equations. Although our approach strongly
depends on the Feynman-Kac representation of (39) it exhibits and under-
lines some precise links between the mixing properties of the first explorating
generators Lt and the asymptotic stability of (39).



As a guide to their usage next we examine how the previous stability
properties can be used to obtain uniform estimates for the particle approx-
imating models (41). To do this we need to recall some estimates presented
in [8]. Let ~r~t ; t > 0~ be the particle density profiles associated to the
N-particle system = ( (~t , ... and defined by

By Proposition 3.2.5 p.100 and the calculations given p.103 in [8] if the
function V is uniformly bounded in the sense that

then we have for any f E ,t3(E), 

for some finite constant V > 0 which only depends on ~ ~ V ~ ~ . Now suppose
the Feynman-Kac semigroup 03A6 is exponentially asymptotically stable in the
sense that for some finite constants To > 0, ~y > 0 and for any T > To

Then using the decomposition

and from (43) and (44) we find that for any t > 0, T > To and N > 1

It follows that for any T > To



This implies that for any 1 such that

we have the uniform estimate with respect to the time parameter

5.3. Nonlinear filtering

In nonlinear filtering settings, the semigroup q. represents the evolution
in time of conditional distributions of a signal process with respect to its
noisy observations. In these settings and if I = R+ the Feynman-Kac for-
mula (1) is a weak solution of the so called Kushner-Stratonovitch equation
(see for instance [14]). If I = N the Feynman-Kac semigroup (1) can also
be used to model continuous time filtering problems with discrete time ob-
servations or more classically discrete time nonlinear filtering problems (see
for instance [6] and [7]). .

5.3.1. Description of the filtering model

Let the signal S = ~,S’t ; t E be an E-valued Markov process
with continuous paths. We suppose S is seen through an Rd-valued process
Y = {Yt ; t E satisfying the following

where h : E ~ Rd is a sufficiently regular function and V = E 

is a d-dimensional Wiener process, independent of 5, and a is an invertible
d x d-matrix. We further assume that the transition semigroup Q = ~Qt ; t >
0~ of S is associated to a pregenerator L : : ,~1. -~ Cb (E) where A is a suitably
chosen algebra A E Cb (E) . We also make the assumption that for any x E E
there exists a unique probability measure I~x on Qi = G(IIg+, E) such that
So o - b~ and for all f E A the process

is a Sx-martingale. We will also write for any M1(E)



To avoid technical difficulties we finally assume that h = (hl, ... hd) E
Ad and to clarify notations we set a = Id. Next we denote S22 = 
and Y = is the coordinate process on SZ2. For each r~o E M1(E) we
introduce on H = Hi x O2 a probability measure on its usual a-field

such that its marginal on Hi is P and such that

is a d-vector standard Brownian motion.

5.3.2. Feynman-Kac’s description

In practice, this probability is usually constructed via Girsanov’s
Theorem from an other reference probability measure on !1, under which
S and Y are independent, S has law P and Y is a d-vector standard
Brownian motion. For t > 0, let 0t = ; 0  s  t) be the cr-
algebra of events up to time t. The probabilities and are in fact

equivalent on and their density is given by

where for any s  t

and where (a)* denotes the transpose of a vector a E If M 1 (E) is
the initial law of the signal then a version of the conditional distribution of
St given the observations up to time t is given for any bounded measurable
function f by the so-called Kallianpur-Striebel formula, namely

Using Ito’s integration by part formula, in the differential sense we have
that



where L(h) = : E - Rd and where = is

a d-vector square integrable continuous martingale (relative to the natural
filtration with cross-variation processes given by

and r is the "carré du champ" associated to the generator L.
For x E E, we will denote by r(h, h) (x) the matrix (r(hi, 
This yields the decomposition

and therefore

where

Together with (46) this decomposition implies that

where, for any y E (such that y0 = 0), is the probability
measure on Qi defined by its restrictions to t) : :

Using standard continuous stochastic calculus (cf. [17], particularly the
Theorem 1.4 p. 313 and Novikov’s criterion, Corollary 1.16 p. 319, or [11]),
it is easy to realize that, as y E C(I1g+, (s.t. 0) is fixed, is

the unique solution to the martingales problem on SZ1 associated to the ini-
tial distribution r~o and to the time-inhomogeneous family of pregenerators
{Lf; ; t > 0~ defined for any t > 0 and f E A by



The above formulation of the optimal filter is classically interpretated as
a pathwise filter defined for any observation path parameter y E 
(s.t. vo = 0) by

where

. For any observation path y E (s.t. yo = 0) the multiplica-
tive functions Z(XY,y) = ; s  ~~ are defined for any
s  t by

. (~ {J~ ; ; t > 0~, I~~o~ is a continuous time and E-valued
Markov process associated to the time-inhomogeneous family of pre-
generators {Lf ; t ) 0~ and with initial distribution r~o.

The reader who wishes to have more details on the theory of pathwise
nonlinear filtering is recommended to consult the pioneer ing papers [4, 12,
14] and [16, 18]. .

When studying the pathwise filter, the path observation y will
always be fixed. To clarify the notations it will be dropped from
our notations so that when there is no possible confusions we will
write Lt, Xt and instead of Lt , Xyt and Py~0.

In contrast to Kallianpur-Striebel formulation (46) the above formula-
tion does not involves stochastic integrations and it is well defined for all
observation paths y E G ( ~0, t~ The above robust version of the optimal
filter in terms of the distribution flow ~ = {~t ; t  0} given in (48) allows
one to construct a Moran type particle approximating model. In section 5.2
we have already presented one way to connect the long time behavior of the
particle approximating model with the stability properties of the nonlinear
semigroup 03A6 = {03A6s,t ; 0  s  t} associated to the flow ~.

By the Markov property of X it is easily seen that ~ satisfies the semi-
group relation



where M1 (E) -~ Mi(E) is given for any bounded measurable function
and for any  E M1 (E) by

where is the expectation with respect to the law of path process
:= s} such that ~c is the law of the initial value Xs. To see

that the multiplicative functions Z(X, y) falls into the set-up of section 3
we notice that Z(X, y) satisfies condition (Z) with

If the transition semigroup P = ~Ps,t ; s  t~ of X satisfies the mixing
condition (P) then using Proposition 4.3 and Theorem 3.2 we may derive
several sufficient conditions for 03A6 to be asymptotically stable. In section 5.3
we will connect the mixing properties of the signal process S with the ones of
the time in-homogeneous process X. Our approach will also permit explicit
lower bounds for the Liapunov exponents associated to the semigroup ~.

The asymptotic stability of the evolution semigroup induced by 7r = {7~ ; ;
t > 0~ also plays a prominent role in filtering literature. To see that the
Kallianpur-Striebel formulation (46) falls into the set-up of this work we
start by noting that after integrating the signal S in (46) we get for any
bounded measurable function f

where E denotes the expectation with respect to the probability measure
P on SZ1. One advantage of the above realization of the optimal filter is
that there is no more conditional expectation inside. The Markov property
of the signal ,S’ and the multiplicative property of Z(,S’, Y) imply that 1r

again satisfies a semigroup relation, namely

where for any measurable subset A c := C([s, ~) and ~r E Ml (E)



where ~i g is the standard shift operator given by (Tg(~))~ = ~g
for any t  0. To simplify notations we will also write SS,03C0s the expectation
with respect to the probability measure SS,03C0s on so that for any  ~

Mi(E) and s  t

This formulation shows that the nonlinear semigroup ~ = ~~s,t ; s  ~~
has indeed the same form as the one given in (1) but it is random on
the observation process Y. Another remark is that the definition of the

multiplicative function Z(S, Y) involves stochastic integrations and it is not
immediate to check whether or not condition (Z) holds for some random
function it (u). We will see in section 5.3.3 that if the signal S is sufficiently
mixing then one can obtain an explicit lower bound for in terms of
the time parameter u, the norms

and where for any v E C(IR+,JRd) and for any s  t we denote

This lower bound will be essential to our purpose since Birkhoff ergodic
theorem combined with Proposition 4.3 and Theorem 3.2 will allow us to
conclude that ~ is almost surely asymptotically stable.

5.3.3. Stability of the NLF equation

Next we assume that the semigroup of the signal process satisfies the
following mixing type condition

(Q) There exists some reference probability measure p on E and t > 0
such that for any x E E and 0  u x t, Qu (x, . ) and

where C > 0, e(u) > 0 and a > 1 (several examples of semigroups satisfying
(Q) are given in [1] and [5]).



Our immediate goal is now to check that the multiplicative function
Z{S, Y) satisfies condition (Z) for some it (u, V) which depends on the pa-
rameter u and .

For any s, t E R+ and x, z E E we denote by z 
the 

conditional distribution of the path signal {Xr ; r  s} starting at
the point Xs = x and given St = z.

By definition of Y one easily check that for any t E l~+, u > 0 and
x,z,z’ E E

with

where as usually (. z ) denotes the expectation with respect to
the probability measure ~ Using Ito integration by part formula,
one obtain 

’ 

After some easy manipulations one concludes that for any given path
v E 

where ; 0 x s  u} is the S0,x-martingale given by



and a(u, h) is a finite constant such that

LEMMA 5.2. - If the semigroup of the signal process S satisfies ( Q) for
some 1, C > 0 and E(u.) > 0 then for any x, z, z’ E E and for any path
v E G(IIg+, we have that

where b~ (u, h) and a« (u, h) are given by

and Aa is a universal constant which only depends on the parameter a.

The proof of Lemma 5.2 is rather technical and it will be given in the
appendix. Lemma 5.2 yields that for any given path V = v E 

~e may now state the main result of this section.

THEORENI 5.3. - Assume that the semigroup Q of the signal satisfies
(Q) for some ~c E M1(E), a > 1, C > 0, 0  ~c  t and > 0. Then
there exists some constant ~ > 0 such that

Proof. - Under our assumptions we have that for any x E E and 0 
u  t, ~u. (x, . ) ^J ~ and

Assertion (50) is a consequence of Birkhoff ergodic theorem, Theorem 3.2
and Proposition 4.3. Furthermore applying Jensen’s inequality to the ex-
ponential (that is E(exp X ) > exp E(X ) for any random variable X ) one
concludes that 

, ,



Using Burkholder-Davis-Gundy inequality one concludes that A(u) > 0 and
the proof is completed. D

5.3.4. Stability of the robust NLF equation

Using the change of probability measures (47) and Girsanov’s Theorem
one can check that under I~~o~ , the Markov process S is a temporally in-
homogeneous Markov process X = ~Xt ; t > 0} with initial law r~o and
transition probability measures + t, given by

where

and where we have used the notation to denote the expectations with

respect to Note that if the path parameter y E C(R+, is constant,
that is ys = yo for any s E R+, then for each s x s + t

from which one concludes that for any s x s + t and x E E the measures

Ps,s+t (x, dz) and Qt (x, dz) are absolutely continuous and

Next proposition extends in some sense the above result to any path
parameter y E under a mixing condition on the semigroup Q.
This result also shows that if the semigroup Q satisfies condition (P) given
page 150 then the temporally inhomogeneous semigroup P again satisfies
condition (~) . The proof of Proposition 5.4 will be given in the appendix.



PROPOSITION 5.4. - Assume that the semigroup Q of the signal process
S satisfies (Q) for some ~x > l. C > 0 and E(u) > 0. Then for each 0 
s  s + t and x E E the probability measures dz) and dz) are
equivalent and the Radon-Nykodim derivatives given by (5~~ satisfy

where Aa is a universal constant which only depends on the parameter ~.~,

In particular this yields that for any 0  s  s+t and x E E, Ps,s+t(x, . ) ~ ~c
and

with

Remark 5.5. - When the observation path is the null path, that is y = 0,
then Ps,s+t = Qt and one can also check that t) = 0 so that (~9~ and
(52) are equivalent.

THEOREM 5.6. - We denote by 03A6 = ; s  t} the semigroup
associated to the distribution flow r~ = ; t > 0~ defined by (,~8~ for
some given path observation y E . Suppose that the semigroup Q
associated to the transition probability of S satisfies the mixing condition
(Q) for some a > 1, C > 0 and E(u) > 0. Then for any p > 1; u > 0, and
T > p u we have that

with the lower bound

where

and Ba is a universal finite constant which only depends on the parameter
c~ and



Proof. - Our assumptions imply that condition (Z) is satisfied with

On the other hand Proposition 5.4 tells us that the semigroup {Ps,t ; s  t~
satisfies the mixing condition

with

As a result the lower bound we are looking for is obtained by using Propo-
sition 4.3 and the same arguments as in the proof of Theorem 3.2. D

Using the above theorem and the description (48) one can easily connect
the asymptotic stability of the semigroup 16 with the asymptotic stability
of the robust version of the optimal filter (48).
For any y E C(R+, (s.t. yo = 0) and  E Mi(E) we write 1fJl = 
0~ the distribution flow defined for any bounded measurable function f by

COROLLARY 5.7. - Suppose that the semigroup Q associated to the
transition probability of ,S’ satisfies the mixing condition ( ~) for some c~ > l,
C > 0 and E(u) > 0. If y E then

where u) is defined in (53).

6. Appendix

The aim of this final section is to prove Proposition 5.4 and Lemma 5.2.

To prove Proposition 5.4 we begin by noting that for any 0 x s x s + t
and x, z E E we have that



it is clearly enough to prove (52) for s = 0. In what follows the points x E E
and z E E and the parameters t and y E C(JR+, will be fixed and so will
be dropped from our notations when there is no possible confusions. Using
the above abusive notations and to clarify presentation we also write Q in-
stead of and we denote Q’ the probability measure on (S2, 
defined by

Under the assumption of the proposition for any s E [0, t) we have that

In addition the density process {Z ; s E [0, t) ~ satisfies

On the other hand the increasing process { M > s : ; s E ~0, t) ~ of the
Q-martingale 

-~

induces a measure d  Ai >S which is absolutely continuous with respect
to the Lebesgue measure ds on [0, t] and satisfies

The proof of (52) is a consequence of the following proposition which has its
own importance and whose proof is postponed to the end of this subsection.

PROPOSITION 6.1. - Let t > 0 be a fixed parameter and let (S2, 
be a continuous time and right filtered space endowed with two

probability measures Q and Q’ . We assume that for any s E ~0, t) the restric-
tion (as of Q’ to .~s is absolutely continuous with respect to the restriction

C~s of Q and we write Zs = the corresponding Radon-Nykodim
derivatives. Let {Ms ; s E [o, t]} be a continuous Q-martingale with increas-
ing process ~  M >S ; s E ~0, t~ ~ . . We assume that the measure d  ~T >S is

absolutely continuous with respect to the Lebesgue measure ds on ~0, t] and
satisfies 

I. - - I



We further assume that the density process Z’ enjoys the following property

for some finite constant C(t) and some parameter c~ > 1. . Then the following
properties hold

1. For any square integrable process ~HS ; s E ~0, t~ ~ we have that

where Aa is a universal constant which only depends on the parameter
a and E (resp. IE’) denote the expectation with respect to Q (resp. Q’ ).

2. For any ~ > 0 we have that

Thanks to the bounds (54) and (55) Proposition 6.1 applies with

More precisely using the above notations by (57) one gets easily the upper
bound 

, A ^ _ , _ ,

for some universal constant Aa which only depends on the parameter c~.

Since for any x, ?/ ~ 0

one obtain the upper bound

Two lower bounds are available. Using Jensen’s inequality to the exponential
(that is E(e-X ) > e-E~‘~> ) and (58) one can also check that



On the other hand using Cauchy-Schwartz’s inequality (that is 
> 1) by the same token as before one obtain the lower bound

The proof of Lemma 5.2 can be done using the same arguments. To
prove Proposition 6.1 we need the following technical lemma.

LEMMA 6.2. - Let F, be a discrete time filtered space en-
dowed with two probability measures Q and Q’. We assume that for each
n E N the restrictions Qn of o’ to Fn is absolutely continuous with respect to
the restriction Qn of Q to Fn . We write Zn = the corresponding Radon-
Nykodim derivatives and we denote by I~ and E’ the expectations with respect
to the measures C~n of Q’. Let M be a martingale on 
such that M0 = 0. Suppose that there exists a pair of integers p, q > 1 such
that p + q = 1 and for any n E N

for some constants ap, aq > 0 and ap, aq E where 0394Mn := Mn - 
and the convention 0394M0 = 0. Then one has the following implication

Proof. - By construction we have Mo = 0 and by definition of Z the
process

is a Q’-martingale such that = 0 (see for instance Theorem 3.46 p. 165
in [13]). This implies that

and under the assumptions of the lemma one concludes that

and the proof of the lemma is now completed.



Proof of Proposition 6.1. . - To apply Lemma 6.2 in the settings of Propo-
sition 6.1 it is convenient to introduce the following sequence of meshes

It is clear that the processes E N} and E N} given by

are Q-martingales with respect to the filtration :_ 

By Fatou’s Lemma and Lemma 6.2 it clearly suffices to check that the
bounds (59) hold for p = ~x + 1 and q = 1 + ~ with

where ap is a universal constant which only depends on the parameter p.
Under our assumptions we first observe that

and the desired bound for q = 1-E- a is now proved with the desired constants
Aq and aq . To check that the second one we use Burkholder-Davis-Gundy’s
inequality to check that

for some universal constant bp which only depends on the parameter p.
Under our assumptions this implies that

Finally, since

the second bound for the parameter p is proved with the desired constants

and a’ = ~e2p _ 111~2 



To prove the second part of the proposition we observe that the process

satisfies

By straightforward calculations, under our assumptions one also can check
that

from which one concludes that (57) is a consequence of (56). To prove (58)
we combine Jensen’s inequality to the exponential (that is 
for any random variable X) with (57). D
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