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RESUME. - Soit G un groupe localement compact connexe localement
connexe métrisable, typiquement de dimension infinie, i.e., qui n’est pas
un groupe de Lie. Nous considerons les espaces de Dirichlet locaux dans

(par rapport a une mesure de Haar gauche ou droite) naturelle-
ment associes a un semigroupe de convolution gaussien Nous
considerons la question de savoir si admet une densité continue.
Nous montrons que tout groupe comme ci-dessus porte des semigroupes
de convolution gaussiens admettant une densite continue. Nous estimons
cette densite hors de la diagonale en fonction du comportement sur la
diagonale et donnons quelques applications.

ABSTRACT. - Let G be a locally compact connected locally connected
metric group, typically infinite dimensional, i.e., not a Lie group. We
consider those local Dirichlet spaces in L2 (G) (with respect to either the
left- or the right-invariant Haar measure) whose Markov semigroup is

naturally associated to a Gaussian convolution semigroup of measures
We consider the questions of whether or not can have a

continuous density and what type of short-time estimates of this density
can be obtained. We prove that Gaussian semigroups having a continuous
density do exist on any group G as above. Under some specific assumptions
on the on-diagonal behavior of the density, we give off-diagonal estimates.

1. Introduction

Let G be a locally compact connected metric group. Unless explicitly
stated, all the groups considered in this paper are of this type. We will equip
G with its right or left Haar measure denoted respectively by vr and vi .
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The aim of this paper is to study certain short time properties of Gaus-
sian convolution semigroups of measures on G when G is (typically) infinite
dimensional. The case of compact connected groups is studied in detail in

[6], [7]. Here, we deal mostly with non-compact groups. We will be concerned
with Gaussian convolution semigroups that are associated with self-adjoint
semigroups of operators on either L2 (G, vr) or L2 (G, vl ) One of the main re-
sult of this paper is Theorem 5.1 which shows that, on any locally compact,
connected, locally connected metrizable group, there are many Gaussian
semigroups having a continuous density with respect to Haar measure.

1.1. Notation

Let 03BDl (resp. vr) denote a fixed left-invariant (resp. right-invariant) Haar
measure . Let m : G -~ (0, +00) be the modular function of G, i.e., the
function such that

for all Borel subsets V of G. We also have

where v is defined by v(V) = v (V -1 ) for any measure v. Recall that G
is unimodular if m - 1 and that any compact group is unimodular. We
assume that the Haar measures 03BDl, vr are chosen such that

This is equivalent to say vi = Vr. .

For clarity, let us recall the definitions of convolutions of two measures,
two functions, and measures and functions; See [21, I, Chp. V]. For two
finite complex Borel measures , v, the convolution *03BD is a finite complex
Borel measure defined by

For functions f g E Co (G), the convolution f * g is the function

For a function f E Co (G) and a finite complex Borel measure ~c, we set



These definitions are consistent when the measure  (resp. v) has density
f (resp. g) with respect to the left Haar measure vi .

Let be a weakly continuous convolution semigroup of probability
measures on G. This means precisely that satisfies

Recall that this semigroup is a Gaussian convolution semigroup if it also
satisfies

(c) --~ 0 as t -~ 0 for any neighborhood V of the identity
element e E G.

A Gaussian measure is a measure J1 that can be embedded in a Gaussian
convolution semigroup (pt )t>o so that = p.

A measure  is symmetric if and only if fi = . By definition, a convo-
lution semigroup is symmetric if each pt, t > 0, is symmetric.

Each Gaussian convolution semigroup defines a semigroup of
contractions (Ht)t>o on LOO(G, vr) = L°° (G, vl ) given by

Clearly, (Ht)t>o is Markov semigroup. Moreover, it commutes with left
translations. If G is unimodular, Ht can be expressed in terms of convo-
lution by

If G is non-unimodular, the formula reads

The semigroup (Ht)t>o extends to L2(G, dVr) and its adjoint is given by

Thus Ht is self-adjoint if and only if is symmetric. It follows that each
symmetric Gaussian convolution semigroup defines a regular strictly local



Dirichlet space (~, .~’) on L2(G,vr). Let -L denote the L2(G,vr) infini-
tesimal generator of (Ht)t>o. We will also refer to -L as the infinitesimal
generator of the convolution semigroup For background on Dirichlet
spaces, see [19]. For background on convolution semigroups of measures,
see [22]. .

1.2. Overview of the paper

In Section 3.2 of this paper, we consider the Dirichlet spaces {~, ,~)
on L2 (G, vr) associated to Gaussian convolution semigroups as above and
we describe their infinitesimal generators in terms of "partial differential
operators". When G is not unimodular, these Dirichlet spaces are not left-
invariant because they are defined on L2 (G, vr ) which is not left-invariant.
Thus, in section 3.3, we consider and characterize strictly local, left-invariant
Dirichlet spaces on L2 {G, vl ) For Lie groups, these descriptions are conse-
quences of celebrated theorems of Hunt and Beurling-Deny; See [22], [19].
The general case follows from the fact that any locally compact connected
group is the projective limit of connected Lie groups. In this context, a use-
ful tool is the notion of projective basis for the (infinite dimensional) Lie
algebra 9 of G. See [13], [14] and Section 2 below.

In Section 4 we discuss the basic properties of the intrinsic (quasi-)
distance associated to these Dirichlet spaces (see, e.g., [11], [15], [27]). For
instance, we show that under a natural non-degeneracy condition, the subset
of all the points that are at finite distance from the neutral element is dense
and either has Haar measure zero or is actually equal to G. Following [6], we
introduce another distance called the relaxed (quasi-)distance which plays
an important role when the intrinsic distance is oo almost everywhere.

On Lie groups, the intrinsic distance introduced in Section 4 is useful to

estimate the density of the associated Gaussian semigroup. On more general
groups, it is not entirely clear that Gaussian semigroups having a continuous
density exist. In Section 5, we state and prove Theorem 5.1 which asserts
the existence of many Gaussian semigroups having a continuous density. In
Section 6, we discuss Gaussian type estimates involving either the intrinsic
or the relaxed distance.

1.3. Notation concerning the densities of Gaussian semigroups

Our main interest is to study certain analytic properties that a Gaussian
convolution semigroup may have or not. To start we consider the

following property.



(CK) For all t > 0, is absolutely continuous with respect to the Haar
measure dvz and admits a continuous density pt (.) . .

Whenever (CK) is satisfied, we denote by

the corresponding density so that

Of course, having a continuous density with respect to left or right Haar
measures are equivalent properties. Assuming that (CK) holds, we denote by

the density with respect to the right Haar measure Vr. We then have

It is important to note that the fact that the measure pt is symmetric is
equivalent to say that its (left) density x - pt (x) satisfies

The existence of Gaussian semigroups of measures satisfying (CK) or even
having a density is not an obvious fact in the present generality. In this
respect, let us recall the following facts (see [22, Chapter 6.4] and [8]):
(a) Each symmetric Gaussian measure is supported by a connected closed
subgroup; (b) A locally compact connected group that admits a Gaussian
measure which is absolutely continuous w.r.t. the Haar measure must be lo-
cally connected and be a metric group (i.e., must have a countable basis for
its topology). Theorem 5.1 (proved below in Section 5) shows that any lo-
cally compact, connected, locally connected metrizable group admits plenty
of symmetric Gaussian semigroups having property (CK) or even stronger
properties.

The following strengthening of property (CK) are of interest to us:

(CK*) For all t > 0, has a continuous density ~ct(~) w.r.t. the Haar
measure dvi and this density satisfies

(CK#) For all t > 0, has a continuous density ~ct (-) w.r.t. the Haar
measure dv~ and this density satisfies

for any compact set K c G such that e ~ K.



The property (#) relates to the off-diagonal behavior of ~ct ( ~ ) and can some-
how be interpreted as a very weak Gaussian upper bound. It plays an im-
portant role in potential theory. See [1], [6].

The next properties involve a fixed non-decreasing positive function ~.

(CK03C8) For all t > 0, has a continuous density pt (.) and

(CK~ * ) For all t > 0, has a continuous density ~ct ( ~ ) and

(CKW~) For all t > 0, has a continuous density ~ct(~) and

The W in this notation refers to the fact that condition is much
weaker than itself. Of course is the same as (CKe~~) for
some constant c, but we find this additional notation useful.

Let us describe some functions ~ that are of special interest in the present
context.

. = = t~‘, for some A E (0,+oo). Note that (CK*) is a

shorthand for (CK’l/JI * ). Concerning (CKW~~), we will use only the
case {CKWt~‘), A E (o, oo). In fact, if A > 1, (CKWt~‘) is already
too weak to be of much use with the techniques available at present
(that is, in some sense, we do not know significant differences between
Gaussian semigroups satisfying (CK) and > 1).

is a regularly varying non-decreasing function of some index 0 ~
A  +00. The function

where log 1 t = logk t = t ) , is a good example
of a regularly varying function of index A. Note that this includes
the possibility that = [log1 t]03B11 ... [logk t]03B1k , when a = 0. In

this case, ~ is a slowly varying function. refer to [10] for a book
treatment of regularly varying functions.



Remark. Consider the semigroup (Ht)t>o associated to a convolution
semigroup by (1.4). The transition function of this semigroup is

given by , , , v r, .-1~

for all Borel sets V C G. Clearly this transition function admits a density
with respect to dvr if and only if does and, if it exists, this density w.r.t.
dvr is given by

Recall that, in general, a semigroup (Ht)t>o defined on v) is ultra-
contractive if Ht sends v) continuously in LOO(M, v), for each t > 0.
This is equivalent to say that, for each t > 0, Ht admits a bounded ker-
nel h(t, x, y) with respect to v. It is important to make the following two
observations:

. The properties (CK), (CK*), (CK#) introduced above for the con-
volution semigroup are equivalent to the properties (CK),
(CK*), (CK#) for the semigroup (Ht)t>o as defined in [3], [4], [6].
This is because these properties (in terms of (Ht)t>o) are local prop-
erties. See [6].

. As m is a multiplicative function, it follows that (Ht)t>o cannot have
a bounded kernel w.r.t. vr unless G is unimodular. In particular,
(Ht)t>o at (1.4) cannot be ultracontractive on vr) unless G is
unimodular. See (1.7).

In [6], properties similar to are introduced in the setting of
symmetric Markov semigroups with replaced by supx h(t, x, x). These
properties are called (CKU... ) in [6] instead of simply (CK... ) here. The
extra U used in [6] stresses the fact that the properties introduced there
are quantitative versions of ultracontractivity. When G is unimodular (and
only in this case), the properties introduced above and in [6] coincide when
applied respectively to a symmetric Gaussian semigroup and to the

semigroup ( Ht ) t > o defined at ( 1.4 ) . For non-unimodular groups, we will see
that the properties (CK... ) for symmetric Gaussian semigroups of mea-
sures coincide with the properties (CKU... ) from [6] for another Markov
semigroup acting not on L2 (G, vr) but on L2 (G, vl ) .

2. Gaussian semigroups and the pro jective structure

2.1. The pro jective structure

Let G be a locally compact, connected metrizable group (hence, G has
a countable basis for its topology). Then, there exists a decreasing sequence



of compact normal subgroups Ka, , a E I, such that na Ka - ~ e ~ and
G/Ka = G~ is a connected Lie group. See [20], [22], [29]. Here, the set I
can be taken to be either a singleton or the countable set I = N. Of course,
I can be taken to be a singleton if and only if G is a Lie group. Denote
by 1f a the canonical homomorphism G --> Ga and by the canonical

homomorphism G/3 2014~ Ga for a x /3. Then the group G is the projective
limit of the family

For readers unfamiliar with projective limits, let us emphasize that the
maps are crucial ingredients of the notion of projective limit. A given
sequence of abstract groups can lead to very different projective limits
depending on the specific nature of the maps 

The group G admits a Lie algebra ~ which is the projective limit of
the system formed by the Lie algebras Qa and the maps For clarity
and later use, let us recall one possible way to understand projective limits.
The fact that G = lim proj Ga implies that we can regard G as a closed
subgroup of the product III Namely, G consists of those sequences (g« ) I
such that, for all a x (3, g« = ~r«,~ (9,~ ) . In particular, ~r« is the restriction
to G of the canonical coordinate mapping III Gy---~ This makes it clear
that G is determined by the sequence (G~, ~r«,,~), a, ~3 E I, a  ~3. The
same remark applies to the Lie algebra of G. In particular, the exponential
map G is the restriction to Q of the product of the exponential
maps exp~ : : Qa ~ Ga, a G I. The differential Qa is defined
similarly.

The following two definitions are important for our purpose.

DEFINITION 2.1.2014 Let be a Gaussian convolution semigroup
on G = lim proj Ga. For each a E I, define to be the convolution

semigroup on G« given by

It is easy to see that is Gaussian.

DEFINITION 2.2. - We say that a Gaussian convolution semigroup
is non-degenerate if for each c~ E I, is absolutely continuous

with respect to the Haar measure on Ga for all t > 0.

Remark. If pt is absolutely continuous w.r.t Haar measure for all t >
0, then clearly is absolutely continuous w.r.t the Haar measure on Ga



for all t > 0 and all a E I. By a result of Siebert [26] this implies that
admits a smooth density. In general, the converse is not true at

all: it may of course be the case that each admits a smooth density
and is singular with respect to Haar measure. See e.g., ~l~ .

We now introduce in the discussion the notion of projective basis. As
the sequence (Ka) is decreasing, one can show that there exists a family

which is a projective basis for G with respect to That is,
for any a E I, there is a finite subset Ja of J such that i E Ja,
form a basis of the vector space Qa and = 0 if i ~ Ja. Note that,
in particular,

In what follows, we fix a sequence and an associated Lie projective
basis Let Ca be the set of all functions f on G of the form f = ~ o ~ra
with § E . In this context, the set C of Bruhat test functions is
defined by

It plays the role that the set of smooth cylindric functions plays in the case
of infinite products. Observe that

is well defined for f = ~ o ~ra E Ca . See Born, [13].

In [14], Born proves a general Levy-Khinchin formula which describes
the infinitesimal generator of any given convolution semigroup on G in terms
of a fixed projective basis of the projective Lie algebra of G. A crucial step is
to observe that C, the set of Bruhat test functions, is contained in the (L2 or
Co ) domain of the infinitesimal generator of any convolution semigroup. This
easily follows from Hunt’s celebrated description of convolution semigroups
on Lie groups. See [23].

In the special case of Gaussian semigroups the Levy-Khinchin formula
reads as follows.

THEOREM 2.3 ([14]).2014 Let G be a locally compact, connected, group
having a countable basis for its topology. Fix a projective basis (Xi)i~J of the
projective Lie algebra of G. There is a one to one correspondence between



the set of all Gaussian semigroups on G and the set of all pairs
(A, b) where A = is a symmetric non-negative real matrix indexed
by J and a sequence b = (b2) J of reals such that the infinitesimal generator
- L of is given by

Here and in the sequel, we say that a symmetric matrix A = is non-

negative (resp. positive) if 0 (resp. > 0) for all £ = (~2 ) J ~ 0
with finitely many non-zero real coordinates.

Note that for any given f = ~ o 7ra, a E I, the above formula for L
involves only finitely many non-zero terms and reads

where -La is the infinitesimal generator of on Ga . As we shall see
below, a Gaussian convolution semigroup associated to a pair (A, b)
as above is symmetric if and only if b = 0.

We want to point out a consequence of the above theorem that will be
important later in this paper.

COROLLARY 2.4. - Let G be a locally compact, connected, group having
a countable basis for its topology. Let H be a closed normal totally dis-
connected subgroup of G. Then any Gaussian semigroup on G/H
can be lifted uniquely to a Gaussian semigroup on G so that the

image of by the canonical projection G -~ G/H is 

The proof follows immediately from Born’s result because G and G/H
have the same projective Lie algebra. More precisely, the Lie algebras of G
and G/H can be identified through the map d7r where 7r is the canonical
projection from G onto G/H. Indeed, G/H is the projective limit of the
groups Gal Ha where Ha is the projection of H on Ga, that is Ha =

Ka ) . By construction Ha is a closed subgroup of the
Lie group Ga. By a theorem of Cartan, it follows that Ha is either discrete
or a Lie group. By [21, 3.5:7. II], the fact that H is totally disconnected
implies that Ha is not a Lie group. Hence Ha is discrete. This shows that
the groups Ga and G03B1/H03B1 have the same Lie algebra. The result follows.



2.2. S ums of squares

We now want to give an alternative description of the generators of
Gaussian convolution semigroups. Let (Xi ) J be a fixed projective basis of
the Lie algebra ~ of G. Consider a sequence of vectors

and define formally a differential operator L by setting

One can easily check that this operator is well defined on C if and only if

Assuming (2.2), -L is clearly the infinitesimal generator of a Gaussian con-
volution semigroup. Conversely, the following lemma from [6] shows that
any infinitesimal generator of a Gaussian convolution semigroup is of this
form. As we shall see below, this convolution semigroup is symmetric if and
only if Yo = 0.

LEMMA 2.5. - Let A = be an infinite symmetric non-negative
matrix. There exists an infinite matrix T with lines TZ = (T2, ~ ) ~ 1 E 
such that:

(i) Tz,k = 0 if k  i, that is, T is upper-triangular.

Moreover, the lines TZ = form a basis in if and only if A is

positive. This is the case if and only if TZ,Z > 0 for all i.

Note that (2.2) is automatically satisfied here because of the upper-
triangular nature of T.

The following two definitions will help clarify future discussions (note
the special role played by Yo ) .

DEFINITION 2 . 6. - Let Y = (Yi)o be a system of vectors in ~ satisfying
(2.2).



1. . We say that Y is a Hörmander system if for each a the Lie algebra
generated by the vectors i = 1 , 2, ... is ~a . In other words,
Yi, i = 1,2,..., generates ~ .

2. We say that Y is a Siebert system if for each a the linear span of
d7ra(Yi), i = 1, 2, ... and the brackets of length at least two of the
vectors i = 0,1, 2, ..., is .

With this definition, we can state the following result.

PROPOSITION 2. 7. - Let Y be a system of vectors in ~ satisfying (2.2). .
Then the associated Gaussian convolution semigroup is non-degene-
rate if and only if Y is a Siebert system.

This immediately follows from Siebert’s theorem [26]. It follows that
can well be non-degenerate even if the system Y = (Yi) is not a

basis of the Lie algebra ~ since it suffices that Y generates ~ as a Lie algebra
(in the appropriate sense). Note that if Yo = 0 (i.e., if is symme-

tric) or, more generally, if Yo is in the span of Yi, i = 1, 2, ..., then Siebert
condition reduces to Hormander condition. In this case it follows that the

projections of the non-degenerated convolution semigroup 
have smooth strictly positive densities.

3. Dirichlet forms associated to Gaussian semigroups

3.1. Semigroup of operators that commutes with left translations

Each weakly continuous convolution semigroup defines a weakly
continuous semigroup of contractions (Ht)t>o on LOO(G) given by

Here LOO(G) stands for LOO(G, 03BDl) = LOO(G, vr ) . Clearly, (Ht )t>o is Markov
semigroup of operators and commutes with left translations. It is easy to
check that this semigroup of operators also acts as a semigroup of contrac-
tions on L 1 (G, vr) since

Hence, it extends to all 1  p  +00. Moreover, its adjoint on
L 2 ( G, vr ) is given by



It follows that (Ht)t>o is self-adjoint if and only if is symmetric.
Thus each symmetric weakly continuous convolution semigroup defines a
Dirichlet space (~, .~’) on L2 (G, vr ) where the form £ is given by

where .~’ is the set of all functions in L2 (G, vr ) such that

Here (., .) r is the scalar product in L2 (G, vr ) . .

Recall that a Dirichlet space (~, F) is strictly local if ~(u, v) = 0 for any
u, v such that v is constant on a neighborhood of the support of u (see
[19, (~*7), pg. 6]). From the definition it follows that the Dirichlet spaces
associated with symmetric Gaussian semigroups are strictly local.

We now want to characterize all Dirichlet spaces on L2 (G, vr ) and
L2 (G, vl ) whose associated semigroup commutes with left translations. We
start with the following known result.

PROPOSITION 3.1.2014 Let (Ht )t>o be a semigroup of bounded operators
acting on L°° (G) such that Ht commutes with left translations. Then there
exists a convolution semigroup of signed measures with finite total
variation such that

We sketch the proof for completeness. The first step is to show that, for
any continuous function f with compact support, Ht f admits a continuous
version. For any non-negative continuous function with compact support
and  03C6d03BDl = 1, let - f where 9 is an arbitrary
function in Note that is continuous. Now, for any x, y in G, we
have

As we assume that f is continuous with compact support, it follows that
the family obtained by varying § is equicontinuous and uniformly
bounded. Taking a sequence ~n such that 6e, the sequence 
converges weakly to Ht f and we can extract a subsequence which converges
uniformly to a continuous function which represents Ht f .



Thus f ~ Ht f (x) is a continuous functional on the space of continuous
functions vanishing at infinity. Hence, for each t, x, there exists a unique
signed measure x, dy) with finite total variation such that

As Ht commutes with left translations, we must have

for any Borel set V and any a G G. Setting = e, V ), we get the
representation

as desired.

THEOREM 3.2.- Let (~, .~) be Dirichlet space on (resp.
L2 (G, such that the associated semigroup (Ht)t>o extended to L°° (G)
commutes with left translations and satisfies Ht 1 = 1. . Then, there exists a
weakly continuous semigroup of probability measures {tct )t>o such that

Moreover, (~, ,~’) is a regular Dirichlet space on L2 (G, vr) (resp. L2 (G, 
and C is a core. Finally, (£, .~’) is strictly local if and only if is

Gaussian.

Sketch of the Proof. The representation of Ht follows from the pre-
vious proposition. By an argument similar to [19, Lemma 1.4.2], one shows
that is a core. In particular (~, 0) is a regular Dirichlet space. To show
that C is a core, it suffices to show that C C F. This follows from Hunt’s
celebrated theorem [23]. To see that strict locality of (E, F) is equivalent to
the Gaussian character of one uses the Beurling-Deny formula [19,
Theorem 3.2.1] and the Lévy-Khintchin formula of Hunt [23]. See also [18]. .

3.2. Symmetric convolution semigroups

Let us now assume that is Gaussian and fix a projective basis
(Xi)J associated to By Theorem 2.3 above, the infinitesimal gene-
rator - L of ( Ht ) t > o is given on C by



for some (A, b). As left-invariant vector fields are skew adjoint with respect
to the right Haar measure vr and L must be self-adjoint, one easily see that
b must vanish.

This leads to the following statement. .

THEOREM 3. 3. Let G be as in Section ~.1 and let (Xi)J be a fixed
projective basis of the Lie algebra ~.

(i) For any strictly local Dirichlet space (~, .~) on L2 (G, v~. ) such that
(Ht)t>o commutes with left translations, there exists a unique sym-
metric non-negative matrix A = such that

Moreover, C is a core for (E, .~’). .

(ii) Conversely, for any symmetric non-negative matrix A = 
the quadratic form

is closable and its minimal closure defines a strictly local Dirichlet
space (~A, ~ ) on L2 (G, vr) such that the corresponding semigroup
(Ht)t>o commutes with left translations.

(iii) For a Dirichlet space as above with associated matrix A, the infinite-
simal generator -LA is given on C by

Using Lemma 2.5 we obtain another representation of these Dirichlet
spaces.

THEOREM 3.4.- Let (~, ,~’) be a strictly local Dirichlet space on

L2 (G, vr) whose semigroup (Ht )t>o commutes with left translations. Then
there exists a system Y = c ~ which is projective and can be obtained
from the given basis (Xi)EJ by an upper-triangular matrix T = 
and such that:



(i) The domain .~’ of ~ coincides with the Sobolev space

and

(ii) The infinitesimal generator -L associated to (E, ,~’) is given on C by

(iii) The Gaussian convolution semigroup associated to (Ht)t>o
by Theorem 3.2 is non-degenerate if and only if Y is a Hörmander
system (see definition 2.6).

Remarks. 1. The system Y = (Yi ) ~ is obtained from X = (X2 ) I by
Y = TX where T is given by Lemma 2.5, with the convention that any
zero vector that might appear is disregarded. This explains why we use a
different set J to index the Yi’s.

2. The system Y forms a basis of Q if and only if the matrix A is positive.
In the abelian case (see [6]), this is also equivalent to the fact that each 
has a smooth density. This is no longer true in the non-abelian case. Let us
emphasize and explain this important difference between the abelian and
non-abelian case. Let (E, .~) be a Dirichlet space as in Theorem 3.4. By
Proposition 2.7 (pt )t>o is non-degenerated if and only if the infinitesimal
generator -La of is a sum of squares of vector fields having the
Hormander property. Actually, in the notation of Theorem 3.4,

Hence, is non-degenerate if and only if

This is equivalent to say that Lie~Y~ _ ~, that is, Y is a Hormander system.
This proves the last assertion of Theorem 3.4.



3.3. Left-invariant Dirichlet spaces on G

We now define left-invariant Dirichlet spaces on G. See [16]. First, ob-
serve that left translations act as isometries on L2 (G, dvl ) .

DEFINITION 3 . 5. - A Dirichlet space (~, ,~) on L2 (G, vl ) is left-inva-
riant if for all x E G and for all u E .~’ the function y ~ = u(xy)
belongs to .~’ and ux ) = u) . .

The notion of right-invariant Dirichlet space on L2 (G, dvr ) is defined

similarly and, if G is unimodular, a Dirichlet space is bi-invariant if it is both
left and right invariant. Note that the Markov semigroup (Ht)t>o associated
with a left-invariant Dirichlet space commutes with left translations. Hence,
Theorem 3.2 applies to left-invariant Dirichlet spaces.

If G is unimodular, Theorems 3.3 and 3.4 describe all left-invariant

strictly local Dirichlet spaces on G. If G is not unimodular, these theorems
do not treat directly left-invariant Dirichlet spaces. The aim of this section
is to describe all left-invariant Dirichlet spaces when G is not unimodular.
First we show that the modular function is a smooth cylindric function that
is, in some sense, depends only on finitely many coordinates.

LEMMA 3.6. - The modular function m is a smooth cylindric function
and, for any X E ~, it satisfies

where Àx = X m(e) is a constant.

Proo f. First, one easily check this result for any Lie group using the
fact that m is multiplicative. Second, by a well-known theorem of Malcev
and Iwasawa, any locally compact connected group G is locally the direct
product of a local Lie group E and a compact group K. That is, there
exists a neighborhood V of e in G and a neighborhood U of eE in E such
that V = U x K. Let be a descending sequence of compact normal
subgroups of G such that G/Ka is a Lie group Ga . . By excluding finitely
many a’s, we can assume without loss of generality that the are in
fact of the form ~eE ~ x I~a with I~a C K. It then follows that Ga is locally
isomorphic to Va = U x (K/ Ka). Let ma be the modular function on Ga. .
We claim that

for all /3 ~ o;. This claim easily follows from the following four facts: 1)
the modular function can be computed locally in any neighborhood of the



neutral element, 2) any (left-invariant, say) Haar measure on G,~ projects
to a (left-invariant) Haar measure on Ga. 3) the Haar measure in Va is the
product of the Haar measure of E in U and the Haar measure of 
4) compact groups are unimodular.

From the claim it follows that the modular function m is given by

for any cx large enough. That is, m is a cylindric function. The rest of Lemma
3.6 follows from its finite dimensional version.

Let (~, F) be a left-invariant, strictly local Dirichlet space on L2 (G, dvl ) .
Fix a projective basis By Theorem 2.3, the infinitesimal generator
- L is given by

Let us compute the adjoint of L on cylindric functions. By Lemma 3.6, for
each i E J, the modular function m satisfies

where ~i - is a constant. Moreover, only finitely many ~Z are
non-zero. Hence, for any ~, ~ E C, we have

As L must be self-adjoint, we have



and

In fact, the first equality implies

which implies the second condition.

Given that (3.4) must be satisfied, we see that the Dirichlet form £ is
given on cylindric functions by

The infinitesimal generator -L is given by

These findings are recorded in the following theorem.

THEOREM 3.7. - Let G be as in Section ~.1. Let (Xi) J be a fixed pro-
jective basis of ~. .

(i~ For any strictly local left-invariant Dirichlet space (~, .~’) in L2 (G, vl ), ,
there exists a unique symmetric non-negative matrix A = 
such that

Moreover, C is a core for (~, .~’). .

(ii) Conversely, for any symmetric non-negative matrix A = 
the quadratic form

is closable and its minimale closure defines a strictly local left-invariant
Dirichlet space (~A, .~’A ) on L2 (G, vl ) .



(iii) Given a symmetric non-negative matrix A = the infinites-
imal generator -LA corresponding to the Dirichlet space {~A, .~’A) is
given on C by

with is given by (3.3).

Remark. When G is not unimodular, the Gaussian semigroup asso-
ciated to a left-invariant strictly local Dirichlet space is not symmetric. Let
us also point out that, if A is a positive matrix and G is a Lie group, then the
above Dirichlet space is, up to a multiplicative constant, the Dirichlet space
of a left-invariant Riemannian structure on G. Thus, from a Riemannian
geometry viewpoint, the Dirichlet spaces considered in Theorem 3.7 are
more natural than those of Theorem 3.3 when G is not unimodular.

We can now use Lemma 2.5 to obtain a different representation of left-
invariant Dirichlet spaces on L2 (G, vl ) . .

THEOREM 3.8. - Let (~, .~’) be a strictly local left-invariant Dirichlet
space on L2 (G, vl ) . Then there exists a system Y = c ~ which is

projective and can be obtained from the given basis (XZ)EJ by an upper-
triangular matrix T = )i,jEJ and such that:

(i) The domain .~’ of ~ coincides with the Sobolev space

(ii) The infinitesimal generator -L associated with (£, ,~’) is given on C
by



Here YZ* is the adjoint of YZ on L2 (G, dvi) which is given by

(iii) The Gaussian semigroup associated with the Markov semigroup
by Theorem 3.2 is non-degenerate if and only if Y is a

Hörmander system.

Only part (iii) needs to be proved. It follows directly from Proposition 2.7
and the fact that

where Yo = - ~ Ài Yi belongs to the linear span of Y.

3.4. The two Dirichlet spaces associated to a symmetric matrix

Let G be the projective limit of a sequence (Ga )I of Lie groups, with as-
sociated projective basis Given a symmetric non-negative matrix A,
Theorems 3.3, 3.7 yield two Dirichlet spaces and two Gaussian convolution
semigroups. These objects are really distinct when G is not unimodular,
i.e., when 1. Lemma 3.9 below shows how these objects are related.

Let {~A, .~’A) (resp. .~’A)) be the Dirichlet space on L2(G, vr) (resp.
L2 (G, vl ) ) given by Theorem 3.3 (resp. 3.7). Namely, for f E C, we have

Let (~cA)t>o be the symmetric Gaussian semigroup associated to 
and let

be (minus) its infinitesimal generator and let

be the associated self-adjoint semigroup of operators on L2 (G, Vr). .



Let be the (non-symmetric) Gaussian semi group associated to
(~A, .~A ), let

be (minus) its infinitesimal generator and let

be the associated self-adjoint semigroup of operators on L2 (G, vl ) .

LEMMA 3. 9. - For all f E C, we have

where

with ~i defined at (3.3) . In particular,

and

Proof. - We simply compute

This prove the first identity. The other statements all follow from the first.

4. Intrinsic and relaxed distances

Let be a fixed projective basis of the Lie algebra of G. Fix a
symmetric non-negative matrix A = . Let also Y = (YZ ), YZ =

~~ , i E J, be the system of left invariant vector fields given by
Lemma 2.5 so that

This notation will be used throughout this section.



4.1. The intrinsic distance

For f,g E C, set

and note that r can also be computed as

Set

Note that, by definition, d is lower semi-continuous.

Consider now the two Dirichlet spaces 0x), (~A, .~’A). They both
have C as a core and, for f E C,

Let us recall that the intrinsic distance attached to the Dirichlet space
(~A, ,~A ) is defined by

See e.g., 11 ~ , ~ [15], [27]. A similar definition holds for dA As vr and Vz are
equivalent measures and are equal as sets, it is clear that

dA = dA. Now, in the present context, for any compact C G, it is easy
to construct cylindric compactly supported functions that are equal to 1 on
K and have arbitrarily small gradient (i.e., small F A). Moreover, for any
f E 03C6 E C, ,l 03C6d03BDr = 1, >

is a cylindric function such that

Using this regularization procedure and cut-off, it is easy to prove the follo-
wing lemma.



LEMMA 4.1. - For any symmetric non-negative matrix A, the distances
da and dA are both equal to the distance dA defined at (4.1 ) .

We will call d = dA the intrinsic distance associated to A. Since d is
left-invariant, we set d(x) = d(e, x) so that d(x, y) = Let also da
be the intrinsic distance on Ga associated to (~«, .~’«).

THEOREM 4.2. - Referring to the notation introduced above,

(i) d x E G, d(x) = sup d03B1  03C003B1(x) . In particular, the topology of G is
aEI

finer or equal to the topology induced by d. They are equal if and only
if d is continuous.

(ii) If Y is a Hörmander system, i. e., Lie(Y) = G, then the set

is a dense Borel subgroup of G and v(D) = 0 or D = G.

(iii) If D = G then d is bounded on each compact subset of G.

Proof. Assertion (i) is clear from the definition (see (2.1)). The proof
of (ii) is three steps.

Step 1. - As d is lower semicontinuous, D is a Borel set. The triangle
inequality and the fact that d(x) = show that D is a subgroup of G.

Step 2. - On a locally compact group, if U is a measurable subset with
positive Haar measure then contains a non-empty open neighborhood
of the neutral element. Hence, if vr (D) > 0 then D = D must contain a

non-empty open neighborhood of the neutral element. Since any non-empty
open neighborhood of the neutral element in a locally compact connected
group G generates G, we must then have D = G.

Step 3. - To show that D is dense, it suffices to show that, for each a,
= Ga. In ~, consider the linear subspace

and set



We now show that H(Y) C D. Let 03C8 E C and set = where

Z E H(Y) . Observe that

Observe that, since Y is obtained from X by an upper triangular matrix T
and 03C8 E C, it follows that the sums in the above computation are in fact
finite sums. Now write

This shows that d(x)   oo. Note that H(Y) is not a subgroup of
G. Let

Then, clearly, is simply the linear span of d~ra (Y) in ~a and thus
the non-degeneracy hypothesis implies that generates ~a as a Lie
algebra. Moreover,

It follows that the closed subgroup generated by is Ga. As
C this proves that = = G~ which is the

desired result.

The proof of (iii) is three steps.

Step 1. - As D = G it follows that {x E Ga : dQ(x)  Ga.
This in turn implies that Y is a Hormander system and da is a conti-
nuous function, in fact, locally Holder continuous with respect to any fixed
Riemannian distance. See, e.g., [24], [28].

Step 2. - Consider the sets Vk = {x : d(x) x 1~~. As each of the sets
{x da o I~~ is a compact cylindric set, Vk = na{x : I~~ is
compact.



Step 3. 2014 As Vk ~ G, there exists a ko such that Vko has positive Haar
measure. Then, Vko contains an open neighborhood U of the identity
element e and for any z E U we have z = with x, y E Vko. Thus

2ko . As G is connected, U generates the whole group, that
is, G = . As U is open, for any compact set there exists

ki  oo such that K C . Thus d(x) x 2koki for any x E K. This
finishes the proof of Theorem 4.2.

4.2. The relaxed distance

It was observed in [6] that another distance called "relaxed distance" is
a useful substitute to the intrinsic distance in certain situation. In order to
define the notion of relaxed distance we need to recall the notion of "good
algebra" .

DEFINITION 4.3. - Let M be a locally compact separable metric space
equipped with a positive Borel measure v having full support. Let (£, ,~) be a
regular strictly local Dirichlet space on v) with infinitesimal generator
(-L, D) . An algebra A of compactly supported continuous functions is a good
algebra for (~, F) if

1. A C D and A is stable by L, i. e., LA c A;

2. A is a core for (£, ,~’) .

Note that the existence of a good algebra is a strong assumption.. See
[6]. If (£, .~’) is a regular strictly local Dirichlet space with infinitesimal
generator -L that admits a good algebra A, we can set

The function J : M x M -> [0, +00] is called the relaxed (quasi) distance
associated to (£, 0, A) .

In the setting of the present paper there is a natural obvious choice for
the good algebra A. Indeed, by Theorems 3.4, 3.8, it is clear that the set C of
all Bruhat test functions is a good algebra for the Dirichlet spaces (~A, 0x )
and (~A, ,~’A). This leads to the definition of two (left and right), possibly
distinct, relaxed distances ~A, ~A associated with a given matrix A because
the infinitesimal generators and are different. We will only use
the left version. Actually, it is easy to see that one always has ~A .1 ~A. This
follows from the fact that LA, LA share the same r and are related by



where

DEFINITION 4.4. - Given a symmetric, non-negative matrix A, we de-
fine the relaxed distance associated to A by setting

Clearly, 6 is lower semicontinuous and a result analogous to Theorem 4.2
holds true for the relaxed distance ~. Set ~(x) = ~(e, x) and let ~a denote
the relaxed distance on Ga associated to the Dirichlet form (~«, ,~’« ) with
good algebra .

THEOREM 4.5. - Referring to the definition above, we have

(i) V x E G, 03B4(x) = sup 03B403B1  03C003B1(x) .

aEI

(ii) If Y is a Hörmander system, i. e., Lie(Y) = G, then the set

is a dense Borel subgroup of G and = 0 or 0 = G.

(iii) If A = G then ~ is bounded on each compact subset of G.

Note that ~a  da always holds. By the triangular inequality, it follows
that ~a is continuous whenever da is continuous. It follows also that D C A.
These remarks and steps 1-2 of the proof of Theorem 4.2(ii) yields a proof
of Theorem 4.5(ii). Step 3 need not be repeated here since D c A. The
proof of (iii) is similar to that of Theorem 4.2 (iii) .

The relaxed distance is diflicult to compute explicitly. See [6] where it is
computed for left-invariant Dirichlet form on the circle T. In this case the
relaxed and intrinsic distances may have completely different behaviors. In
[6] we also noticed that the relaxed distance of a finite dimensional Euclidean
space is equal to the Euclidean (i.e. intrinsic) distance. In general, we have
the following result.



THEOREM 4.6. - Let A be a symmetric non-negative matrix. Let d, b
be the corresponding intrinsic and relaxed distances on G and assume that
d(x) is finite for all x E G. Then

where C depends on G and A.

Proof. - Let 03C6 be a non-negative function in C such that  03C6d03BDr = 1

and § ~ 1/2 on a neighborhood V of the neutral element. As d(x) is finite
for each x, Theorem 4.2 shows that d is bounded on compact sets. Hence
the formula

defines a smooth cylindric function on G. Moreover, p is strictly positive.
Indeed, for any a, d > da o and da is the intrinsic distance associated
with a Hormander system of left-invariant vector fields on the Lie group Ga. .

We claim that

To prove the upper bound, write d(y)  + d(yx) = d(x) + d(yx) and

To prove the lower bound, write

with the same Ci as before. Now, fix a and let K = {x : da 2C1 ~ .
The set K is compact, and for x E K, we have

for some constant c > 0. Indeed, we already noticed that p is continuous
and positive and d is bounded on compact sets. For x ~ K, we have d(x) >
da o 2Ci. As p(x) ~ d(x) - Cl, this gives



Hence,

This proves the claim.

We now want to show that there exists a constant C such that

Indeed, for any left-invariant vector field X, we have

As

we get

By the triangle inequality,

Thus

The desired inequality then follows from T ( p, p) = 03A3i |Yi03C1|2 and the fact
that p is a cylindric function hence 7~ 0 for finitely many i only. Simi-
larly,

This proves the claim.

Now, consider a smooth function f [0, oo) -~ [0,1] such that f(x) = 1
on [0,1], f(x) = 0 for x > 2, and set fR(x) = Rf(p(x)/ R), R > 1. Then,



and

It follows that

for some constant C3. This shows that we can use f R/C3 to obtain a lower
bound on J. Indeed, fix x E G with /)(~) ~ 2p(e). Set R = p(x)/2. Then

Hence there exist two constants C4, c4 > 0 such that

for all x such that ~(.r) ~ C4. Finally, this shows that

as desired.

5. Gaussian semigroups having prescribed behaviors

5.1. An existence statement

On a connected Lie group, consider a Gaussian semigroup 
which is either symmetric (hence gives rise to a self-adjoint semigroup
on L2(G, vr)) or not symmetric but induces a self-adjoint semi group on
L2 (G, dvi) (as in Section 3.3). Then either is degenerate, that is, is
singular with respect to Haar measure on G or is non-degenerate
and it actually has a smooth positive density (w.r.t. 03BDl) which
satisfies

for all t E (0,1) and some constants Here /~ is an integer
and one can show that ~ belongs to the interval [n, n(n + 1 )/2~ where n
is the topological dimension of the Lie group G. See [28]. When G is not
a Lie group, but a locally compact connected locally connected metrizable
group, it is not completely clear what behaviors one should expect from
pt (e), assuming that the density pt (.) does exist for all t > 0. This section
is devoted to the proof of the following theorem which asserts that, on any
such group G, there is a host of different behaviors that do appear.

THEOREM 5.1. - Let G be a locally compact connected locally connected
metrizable group. Assume that G is not a Lie group.



1 ) For any regularly varying function of index ~, ~ E (0, oo), there
exists a symmetric Gaussian convolution semigroup on G
which has a continuous density ~ct(~) w.r.t. vl, satisfies and
such that

2) For any positive increasing function such that lim~ 03C8 = ~, there
exists a symmetric Gaussian convolution semigroup on G
which has a continuous density ~ct ( ~ ) w. r. t. vl and satisfies

When G is abelian, these results are due to the first author [2]. When G
is compact, see [7, Theorem 1.1]. Of course, we can see the above Theorem
as stating the existence of left-invariant Dirichlet spaces on L2 (G, d03BDl) such
that the associated Gaussian semigroup of measures ( pt )t >o admits a density
pt ( ~ ) satisfying the same conditions as ~ct ( ~ ) above. See Lemma 3.9.

Statement 2) is optimal. More precisely, we have the following lemma.

LEMMA 5.2. - Let G be as in Theorem 5.1. . Assume that is
a symmetric Gaussian semigroup having a continuous density t > 0
w. r. t vl . Then

Proof. - As G is locally connected and G is not a Lie group, the sequence
(Ga ) such that G = lim proj G~ must have the property that the topological
dimension na of Ga tends to infinity. Moreover, we have

and for t E (0,1) (see [28])

Thus

The lemma follows.



5.2. Proof of Theorem 5.1

As Theorem 5.1 is proved in [7, Theorem 1.1] for compact groups, it
suffices to show that the general case follows from the compact case.

Let G be a locally compact connected locally connected metrizable
group. By a result of Berestowskii and Plaut [9], there exist a simply con-
nected connected Lie group L, a compact group K and a discrete subgroup
HofLxKsothat

In other words, G is covered by the direct product L x K.

In what follows the neutral elements of different groups are all denoted

by e. Define

Note that HK is a discrete normal subgroup of K. Hence HK is finite. Let ~
be its order. Note also that HL is a discrete normal subgroup of L. Moreover,
for any f E HL and k, k’ such that (.~, k) , , (.~, k’) E H, we have 1~ -11~’ E HK . .
Thus, setting

we have

Let )t~o be a symmetric Gaussian semigroup on L with infinitesimal
generator where is a basis of the Lie algebra of L. By [28], this
semigroup has a density satisfying

where Vt E (0,1), g(t) means there exist 0  c  C  +00 such

that, for all t E (0,1), c ~ C.

Let be the projection of onto L/HL. As HL is discrete,
L and L/HL have the same Lie algebra and the infinitesimal generator of

is again ~I Y22. It follows that has a smooth positive density
given by

and satisfying (see, e.g., [28])



Let be a symmetric Gaussian semigroup on K having a conti-
nuous density Kt (.) for all t > 0 (see [7]). Consider the Gaussian product-
semigroup ) t > o on L x K defined by

By projection, we obtain a Gaussian symmetric semigroup on

(L x K)jH with (excessive) density x H satisfying

We also have

It follows that

From (5.4) it easily follows that Theorem 5.1 reduces to the compact case
treated in [7]. .

6. Gaussian upper bounds

6.1. Gaussian upper bounds involving the intrinsic distance

For the purpose of this section, let us fix a group G as in Section 2 and
a projective basis (Xi) of its Lie algebra. Fix also a non-negative symme-
tric matrix A and consider the Dirichlet space (~l, in L2 (G, dvl ). The
associated semigroup ) t > o is given by

As A will be fixed throughout the section, we will drop all references to it
in our notation. We let d and J be the corresponding intrinsic and relaxed
distances

Assume that (Pt)t>o has a density x ~ pt(x), t > 0, x E G w.r.t. dvl.
In the present setting, it is well known that one can choose the density



z - pt (x) as a lower semi-continuous function on G. This has the advan-
tage of uniquely defining pt point-wise. Introduce also the transition density
q(t, x, y) of the operator Qt on L2 (G, vl ), we have

Moreover, for all t, s > 0 and all x E G,

By construction, Qt is self-adjoint on L2 (G, dvl ). Hence q(t, x, y) = q(t, y, x)
and this implies that

From this, we deduce that the density pt is bounded if and only if

Furthermore, the density pt is bounded for all t > 0 if and only if the
Gaussian semigroup (Pt )t>o satisfies (CK).

This section describes what is known about Gaussian upper bounds,
that is, bounds of the sort

where dist (x, y) is some invariant distance on G and dist(x) is the distance
between x and the neutral element. Here, dist will be either the intrinsic
distance d or the relaxed distance ~. In most statements available in the

literature the function M is obtained in terms of the function

The first result is an application of Davies’ Gaussian bounds. See ~15~, Chap-
ter 3.

THEOREM 6.1. - Fix 0  ~  1 and let ~ be a regularly varying func-
tion of index A. Assume that (pt)t>o satisfies (resp. Then

for any E > 0 there exists a constant CE > 0 such that the continuous density
pt(~) of pt satisfies



Note that the case A = 0 is not excluded in the statement above. How-

ever, if A = 0, the hypothesis of the theorem can not be satisfied if the
slowly varying function ~ grows too slowly at infinity. Indeed, on any Lie
group, if (Pt)t>o has a continuous density then its behavior for small t is of
the form pt(e)  t-n/2 for some integer n larger or equal to the dimension of
G. See [28]. This shows that 9 must at least satisfy ~(u) > c log(u), u > 1,
for some c.

Thanks to Lemma 3.9, Theorem 6.1 has the following corollary which is
of interest in the case of non-unimodular groups.

THEOREM 6.2. - Let be a symmetric Gaussian semigroup. Let
d be the corresponding intrinsic distance. Assume that satisfies 
(resp. for some regularly varying function of index 0  ~  l. .

Let t(.), be the density of t w.r.t. d03BDl. Then for any E > 0 there exists a
constant CE > 0 such that

6.2. Gaussian upper bounds involving the relaxed distance

Let Mo be as in (6.5). Theorem 6.1 gives Gaussian upper bounds on the
density pt when Ct-~‘ for some a E (o,1 ) . These bounds involve
the intrinsic distance d. As observed in [6], Gaussian bounds involving the
intrinsic distance d are simply not true when the hypothesis on the behavior
of Mo (t) is relaxed to condition (*), i.e., tMo (t) -~ 0 as t tends to 0. Instead,
one can then obtain Gaussian upper bounds involving the relaxed distance J.

In the present setting, the results of [6] yield the following important
theorems and corollaries.

THEOREM 6.3. - Assume that pt has a continuous density pt (~) for all
t>0.

(1 ) If (Pt)t>o satisfies for some 0  ~y  l, , then

where, for each V > - 1), we have



(2) If (Pt)t>o satisfies (resp. ) for some regularly varying
function 9 of index 0  03BB  +~ then (6.6) holds with

In particular, if (pt)t>o satisfies (CK*) then (6.6) holds with a func-
tion M such that limt~o tM(t) = 0.

THEOREM 6.4. - Let be a symmetric Gaussian semigroup. Let
~ be the associated relaxed distance. Assume that, for all t > 0, pt has a
continuous density pt (.) w.r.t. dvl .

(1 ) If satisfies for some 0  ~y  1, then

where, for each y’ > -y/(y - 1),

(2) If satisfies (resp. for some regularly varying
function of index 0  +~ then (6.7) holds with

In particular, if satisfies (CK*) then (6.7) holds with a func-
tion M such that limt~o tM(t) = 0.

Remark. Concerning the second statement of each of the two last
theorems, observe that Theorems 6.1 6.2 give much better results when
0a1.

We now state two important corollaries of the Gaussian estimates (6.6),
(6.7). See [6, Corollary 3.9~ .

COROLLARY 6.5. - Let A be a symmetric non-negative matrix. Let

(Pt )t>o and be the two Gaussian convolution semigroups associated
to A by Theorems 8.1~, 3.8. Assume that (Pt)t>o (equivalently sat-

isfies (CK*). Then they both satisfy (CK#). In particular, (CK*) implies
(CK#) for all symmetric Gaussian semigroups.



COROLLARY 6.6. - Let A be a symmetric non-negative matrix. Let
(pt)t>o and be the two Gaussian convolution semigroups associated
to A by Theorems ~.,~, 3.8.

. Assume that (pt)t>o (equivalently satisfies for some
regularly varying function of index ~ E (o,1 ) . Then the intrinsic
distance d associated to A is continuous.

. Assume that (Pt)t>o (equivalently satisfies for some
~y E (o,1 ) . Then the relaxed distance ~ associated to A is continuous.

Proof. We only prove the first statement since the two proofs are
similar (see also [6]). By Theorem 6.1, we have

Thus

By hypothesis, and t log pt (e) tend to zero as t tends to zero. Thus
lim supx~e d(x)2 = 0. It follows that d is continuous.

6.3. Application to coverings

Consider a covering G of a group G = G/H where H is a discrete
normal subgroup of G. Let ~r be the canonical projection. Observe that the
Lie algebras of G and G can be identified through the bijection Let

and be two Gaussian semi groups on G and G respectively
such that pt is the image of ~ct under the canonical projection ~r. Our next
theorem relates the respective behaviors of these two Gaussian semi groups
under some additional hypotheses.

THEOREM 6.7. - Let G be a connected locally connected locally compact
metrizable group. Assume that H is a discrete normal subgroup of G and
let 03C0 : G ~ G = G j H be the canonical projection. Identify the Lie algebras
of G and G through the isomorphism d~r and fix a projective basis. Let A
be a symmetric non-negative matrix. Let and (resp. (pt)t>o)
and be the two Gaussian convolution semigroups on G (resp. on
G) associated to A by Theorems ~..~, 3.8. Then (pt)t>o (resp. is
the projection ofpt)t>o (resp. and:

(1) For any regularly varying function of index ~, 0  ~  
the Gaussian semigroup (equivalently has property



(resp if and only if the same is true for (pt)t>o)
(equivalently 

(2) If 03C8 is a regularly varying function of index 0  03BB  oo and if 
has a continuous density satisfying

then

(3) If the Gaussian semigroup (equivalently satisfies
for some ~y E (0, 1), then (pt)t>o (equivalently 

satisfies (CKWt~’~ ) for all -y’ > - 1 ) .

Proo f. By Lemma 3.9, it suffices to work with and (Pt)t>o. Let
us start by noting that the measure pt is absolutely continuous with respect
to a Haar measure on G if and only if pt is absolutely continuous with
respect to a Haar measure on G. Moreover, their lower continuous densities
w.r.t. the left Haar measures on G and G are related by

where = x. Thus

Moreover we obtain the following lemma.

LEMMA 6.8. - Referring to the setting of Theorem 6.7, if (Pt)t>o (resp.
satisfies (CK) then so does (resp. Moreover if

these Gaussian semigroups satisfy (CK) then

In particular, if (pt)t>o (resp. satisfies any one of the properties
where ~ is a fixed positive non-decreasing func-

tion, then the same property holds for (resp. 

The rest of the proofs of each the three assertions in Theorem 6.7 are
similar and use Theorems 6.1 and 6.3. We omit the proof of the two first



assertions and give a detailed proof of the third. Assume that satisfies
for some (0, 1 ) . Then, applying Theorem 6.3, we have

with  oo for all V > ~y/ (~y -1 ) . Thus, for 0  t  1,
the density Pt on G is bounded by

for some constant C, c > 0. We are left with the task to show that

Let U be a compact neighborhood of e to be chosen later with the
property that (a) U = U-1 and (b) H fl U2 = {e~. Set V = U2 and for any
9 E G, set

As any neighborhood of the identity in G generates G, (g ~ is finite for all

g E G. We need the following volume growth Lemma.

LEMMA 6.9. - There exists A1, A2 > 1 such that

and

Proof. - Although this is well known, we do not know a precise refe-
rence. We include a proof for completeness. Let X = ~xl , ... be a
maximal subset of vn-l such that xiU~xjU = Ø if i ~ j. Then, as Ui xiU ~

we have

We claim that ~ixiV3 covers Indeed, consider z = v 1 ... vn+1 ~
E V, and set y = vl ... vn_ 1. Suppose that y ~ ~ixiV. Then

yU~xiU = 0 for all i (this use the assumption that U = U-1). As y E 
this contradicts the maximality of the set ~x 1, ... Hence y E Ui xi V
and it follows that z E Ui xi V 3 as desired. Thus we have



This clearly proves the first assertion of Lemma 6.9 with ~4i = .

To prove the second assertion observe that, by our assumption (b) concern-
ing U, hU n h’ U = 0 for all distinct h, h’ E H. Thus ~ ~ h E H ~  1~ ~ 

This ends the proof of Lemma 6.9.

We now return to the proof of (6.10). Recall that G is the projective limit
of a sequence of Lie groups (Ga ) . Let da be the distance on Ga induced by

As is non-degenerate, the distances da are continuous and
have compact closed balls in Ga. Thus we can choose a and r > 0 such that
the set

intersects H only at the neutral element and set

This U is compact and satisfies the conditions (a) and (b) considered above.

As H is a discrete subgroup, it is easy to check that > 0

and, by the choice of a and r, ~« > r. Thus Theorem 4.6

yields 
~ /. ,-: /. ,

For any h E H, we also have

Indeed, set t = da o 1f a(h) and let 03B3 : [0, t] ~ G« be a d« minimizing
curve from ea to (h), parametrized by arc-length. Set = k - 1 and

ha,i = 1(ir), i = 0,1, ... ,1~ - 1, and = 1fa(h). Set ho = ë, hk = h
and, for i = 1, ... k - 1, pick hi to be any element in ~ra 1 Then, by
construction,

Hence, k x 1 + t/r = 1 as desired. We conclude that

there exists a constant C such that

It follows from this and Lemma 6.9 that

with E > 0. This proves (6.10). Together, (6.9) and (6.10) show that (Pt)t>o
has property for all q’ > ~y/ (~y - 1), proving the third assertion
of Theorem 6.7.



Remark. Theorem 6.7 is not entirely satisfactory. Indeed, it is natural
to ask whether or not as long as (pt)t>o satisfies (CK), we have

without further hypothesis on (Pt)t>o. . In particular, a Fourier transform
argument gives such a result in the abelian case, see [6, Proposition 6.1].
However, a general result seems out of reach if one uses Gaussian bound
techniques to prove (6.10) as above.

7. Examples

7.1. The Iwasawa example Gp

Consider the infinite dimensional torus and the topolo-
gical space G = R x R x Elements of this space are denoted by (x, y, 0)
where x, y are reals and 03B8 = (81, 62, ...) E Let us also denote by p the
canonical projection from R to T and by poo the projection from to 

where p = ( pl p2, ...) is a vector in This product is compatible with
the topology of G and turns G into a locally compact connected locally
connected metric group. Note that the group G = G p actually depends on
the choice of p. This example appears in Iwasawa’s work [17] and in [9]. Let
Q denote the Lie algebra of G. As a vector space, ~ can be identified with
R x R x where the first line corresponds to ax at the identity, the second
line to ay and the i-th line in corresponds to Here, we are viewing
Q as the tangent space at the origin. Let us now describe the left-invariant
vector fields on G corresponding to these vectors. With obvious notation,
for g = (x, y, 0 ) we have

In particular, this allows us to compute the Lie bracket which is 0 except
for 

_



From this it follows that the topological commutator group ~G, G~ is the
closure in ’foo of {g = E Iwasawa [17, pg. 550-551] takes
the coordinates Pi of p to be linearly independent over the rationals. This
implies that ~G, G~ - a fact that lets Iwasawa conclude that, in this
case, G cannot split globally as a direct product of a Lie group and a compact
group. Another interesting choice is p = ( 1,1 /q,1 /q2, ...) where q > 2 is
an integer. In this case, ~G, G~ is a q-adic solenoid in and, repeating
Iwasawa’s argument [17], one sees that G does not split.

In [9], Berestowskii and Plaut use Iwasawa example to illustrate their
result concerning the global splitting of a cover of a general locally compact
connected locally connected group. Indeed, set G = L x K where L = IE~ is
the Heisenberg group, that is R3 equipped with the product

and K = 11"00. Consider the map 7r : G -~ G given by

Assuming that 0, one can check (see [9]) that 7r is a surjective group
homorphism. The kernel H of this projection is

which is clearly a discrete subgroup of G, that is (G, 1r) is a covering of G.

We now introduce more precise notation concerning the Lie algebras ?
and 9 of G and G, respectively. We first look at these two Lie algebras
independently and then write down the identification provided by the map
d1r, assuming that 03C11 ~ 0. As explained above, G = R x R x Denote

by the canonical basis of R x x and, using a common abuse of
notation, let also Ei denote the left-invariant vector field on G corresponding
to Ei G C. Then we have

and

For g, we (as vector spaces) with basis
(Fi , F2, F3, F4, F5, ...) where (Fl, F2, F3) is the natural basis of the Heisen-
berg Lie algebra. In particular F2 ~ = F3. The covering map ~r induces



an isomorphism d7r between the Lie algebras 9 To write down this

isomorphism concretely, we need to observe that (El, E2, Z, E4, E5, ...) is

another basis of ~. In this basis, the isomorphism d7r is simply given by

We will use these facts and notation below.

7.2. Gaussian semigroups on G = Gp

Let be a symmetric Gaussian semigroup on G. By Theorem 2.4,
there exists a unique symmetric Gaussian semigroup on G such that

for all t > 0 and all measurable sets we

can project to obtain a symmetric Gaussian semigroup on K = Too
which we denote by This allows us to state the following conjecture.

Conjecture. The short-time properties of are

the same. More precisely, any of these symmetric Gaussian semigroups sa-
tisfy property (CK) if and only if the two others do and we have

Note that the effect of taking the log in the last sequence of comparisons
is to make the contribution of the Lie group factor irrelevant. We would like
to stress that, at this stage, we are very far to have a proof of this conjecture.
In [6, Cor. 6.3], the authors use a simple Fourier transform argument to treat
a similar problem in the purely abelian case where G = Ilgn x G = Tn x
Too . Even in this simpler situation, only the comparison log ~ct (e )
is known to hold whereas the part log ~Ct (e) ~ log ~CK (e) is an open problem.

In connection with this conjecture, it is interesting to describe more
concretely the lifting from to when is associated
with the symmetric non-negative matrix A = in the basis E = (Ei )
of ~. This means that the infinitesimal generator of is

To lift this operator to G, we need to change basis and use the basis



Let A = be the matrix such that

Then, setting = po = 0, we have

Now, the Gaussian semigroup is exactly the Gaussian semigroup
associated to the matrix A in the basis F = of ~, i.e., the Gaussian
semigroup with generator

Indeed, for any smooth cylindric function f on G, we have

Our next result shows that the conjecture formulated above holds true
at least for a subclass of symmetric Gaussian semigroups, namely, those
which lift to a product Gaussian semi group on G = L x K = H x 

THEOREM 7.1. - Referring to the notation introduced above, assume
that the symmetric Gaussian semigroup has the form

where (pf)t>o is a symmetric Gaussian semigroup on L = H and 
is a symmetric Gaussian semigroup on K = . Then satisfies
(CK) if and only if does and

Proof. - Recall the well known general fact (see, e.g., [8, Lem. 3.3]) that
is absolutely continuous with respect to Haar measure if and only if

)t>o is. Hence, things boil down to the comparisons between pt (e), ~ct (e)
and In particular, in all cases of interest for this theorem, )t>o
has a smooth positive density bounded above by



for all t E (0,1) and all (x, y, z) E L = IHI, for some constants C, c > 0. See,
e.g., [28] (the absence of square in z in this formula is not a typo).

As noticed earlier, we always have

and

where H is the kernel of 7r given at (7.2). Hence, for t E (0,1),

Thus, we have

Given that the behavior of ~ct (e) is under control, this suffices to prove
Theorem 7.1.

Next we apply this result to give very explicit examples of behaviors of
symmetric Gaussian semigroups on G = Gp. The proof is a direct applica-
tion of (7.3), Theorem 7.1 and the results of 1 ~ , [2]. .

THEOREM 7.2. - Fix a sequence a = of non-negative numbers.
Assume that a3 = 0 but ai > 0 for i ~ 3. Set A = with ai,2 = ai and

ai,j = 0 if i ~ j . Set also

Let (pt)t>o be the symmetric Gaussian semigroup on G whose infinitesimal
generator is -L = £j azE/ . Then we have:

(I) The following properties are equivalent

1. The Gaussian semigroup (pt)t>o is absolutely continuous with
respect to Haar measure.

2. The Gaussian semigroup ( t)t>0 satisfies (CK).
3. lim s ~ ~ log N(s) = 0 .

s-ao



(ii) The Gaussian semigroup satisfies (CK*) if and only if

(iii) If N ~ at infinity and is a regularly varying function of index
~ > 0 then

(iv) If N .: at infinity and 03C8 is slowly varying then

Bibliography

[1] BENDIKOV (A.). - Potential Theory on Infinite Dimensional Abelian Groups, Wal-
ter De Gruyter &#x26; Co., Berlin-New York, 1995.

[2] BENDIKOV (A.). - Symmetric stable semigroups on the infinite dimensional torus,
Expo. Math., 13 (1995), 39-79.

[3] BENDIKOV (A.), SALOFF-COSTE (L.). - Theorie du potentiel sur les produits infinis
et les groupes localement compacts, C. R. Acad. Sci. Paris, Série I, 324 (1997), 777-
782.

[4] BENDIKOV (A.), SALOFF-COSTE (L.). - Elliptic diffusions on infinite products, J.
reine angew. Math., 493 (1997), 171-220.

[5] BENDIKOV (A.), SALOFF-COSTE (L.). - Potential theory on infinite products and
groups, Potential Analysis, 11 (1999), 325-358.

[6] BENDIKOV (A.), SALOFF-COSTE (L.). 2014 On- and off-diagonal heat kernel behaviors
on certain infinite dimensional local Dirichlet spaces, Amer. J. Math., 122 (2000),
1205-1263.

[7] BENDIKOV (A.), SALOFF-COSTE (L.). - Central Gaussian semigroups of measures
with continuous density, J. Funct. Anal., 186 (2001), 206-268.

[8] BENDIKOV (A.), SALOFF-COSTE (L.). - On the absolute continuity of Gaussian
measures on locally compact groups, J. Theoret. Prob., 14 (2001), 887-898.

[9] BERESTOVSKII (V.W.), PLAUT (C.). - Homogeneous spaces of curvature bounded
below, J. Geom. Anal., 9 (1999), 203-219.

[10] BINGHAM (N. H), GOLDIE (C. M.), TEUGELS (J. L.). - Regular Variation, Encyclo-
pedia of Mathematics and its Applications, 27, Cambridge University Press (1989).

[11] BIROLI (M.), Mosco (U.). - Formes de Dirichlet et estimations stucturelles dans
les milieux discontinus, C.R. Acad. Sci. Paris, 313 (1991), 593-598.

[12] BONY (J.M.).2014 Opérateurs elliptiques dégénérés associés aux axiomatiques de la
théorie du potentiel, In: Potential Theory, C.I.M.E. (Stresa, 1969), Rome, 1970.

[13] BORN (E.). - Projective Lie Algebra Bases of a Locally Compact Group and Uni-
form Differentiability, Math. Zeit., 200 (1989), 279-292.

[14] BORN (E.). 2014 An Explicit Lévy-Hin010Din Formula for Convolution Semigroups on
Locally Compact Groups, J. Theor. Prob., 2 (1989), 325-342.



- 349 -

[15] DAVIES (E.B.). - Heat kernels and spectral theory, Cambridge University Press,
1989.

[16] DENY (J.). - Méthodes hilbertiennes en théorie du potentiel, In: Potential Theory,
C.I.M.E. (Stresa, 1969), Rome, 1970.

[17] IWASAWA (K.). - On some types of topological groups, Ann. Math., 50 (1949), 507-
558.

[18] FUKUSHIMA (M.). - Local property of Dirichlet forms and continuity of sample
paths, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 29 (1974), 1-6.

[19] FUKUSHIMA (M.), OSHIMA (Y.), TAKEDA (M.). - Dirichlet forms and Symmetric
Markov processes, W. De Gruyter, 1994.

[20] GLUSHKOV (V.N.). - The structure of locally compact groups and Hilbert’s Fifth
Problem, AMS Translations, 15 (1960), 55-94.

[21] HEWITT (E.), ROSS (K.). - Abstract Harmonic Analysis, Vol I &#x26; II, Springer, 1963.
[22] HEYER (H.). - Probability Measures on Locally Compact Groups, Ergeb. der Math.

und ihren Grenzgeb. 94, Springer, Berlin-Heidelberg-New York, 1977.

[23] HUNT (G.A.). - Semi-groups of measures on Lie groups, Trans. Amer. Math. Soc.,
81 (1956), 264-293.

[24] NAGEL (A.), STEIN (E.), WAINGER (S.). - Balls and metrics defined by vector fields,
Acta Math., 155 (1985), 103-147.

[25] SALOFF-COSTE (L.). - A note on Poincaré, Sobolev and Harnack inequalities,
Duke Math. J., IMRN, 2 (1992), 27-38.

[26] SIEBERT (E.). - Absolute continuity, singularity and supports of Gaussian semi-
groups on a Lie group, Monatshefte für Math., 93 (1982), 239-253.

[27] STURM (K-T.). - On the geometry defined by Dirichlet forms, Seminar on Stochas-
tic Analysis, Random Fields and Applications (Ascona, 1993), 231-242, Progr.
Probab., 36, Birkhäuser, Basel, 1995.

[28] VAROPOULOS (N.), SALOFF-COSTE (L.), COULHON (T.). - Analysis and geometry
on groups, Cambridge University Press, 1993.

[29] WEIL (A.). - L’intégration sur les groupes topologiques et ses applications, Actu-
alités scientifiques et industrilles, 869, Hermann, Paris, 1940.


