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Alternative statistical models
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RESUME. - Une variete de strategies permet d’approcher l’analyse de
larges tableaux creux a 1’aide de modeles presentant un nombre modeste
de parametres. Cet article presente quelques unes de ces strategies, insis-
tant sur le role des modeles log-lineaires et le concept d’echangeabilite :
des generalisations multidimensionnelles du modele de quasi-symetrie du
a Henri Caussinus, des versions bayesiennes du modele de Rasch en theorie
des questionnaires et ses generalisations, et le modele de degre d’apparte-
nance.

ABSTRACT. - A variety of strategies allow one to approach the analy-
sis of large sparse contingency tables using models with a modest num-
ber of parameters. This paper gives an overview of some of these strate-
gies, emphasizing the role of log-linear models and exchangeability: multi-
dimensional generalizations of the model of quasi-symmetry due to Henri
Caussinus, Bayesian versions of the Rasch model from item response the-
ory and its generalizations, and the Grade of Membership model.
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1. Introduction

The literature on log-linear models for the analysis of multi-dimensional
contingency tables which arose in the 1960s and 1970s built on fundamen-
tal contributions by Birch, Darroch, Good, Goodman, and others (see the
overview in Fienberg [29]). It was spurred on by theoretical developments
(e.g., see Haberman [36]), practical applications involving large sparse tables
(e.g., the National Halothane Study in the U.S. [13]), and advances in com-
puting that made practical the use of approaches such as Deming-Stephan
iterative proportional fitting algorithm, and approaches for the Generalized
Linear model (e.g., [53]). From the outset, the log-linear model literature
placed heavy emphasis on the fitting of parsimonious models, e.g., by setting
as many higher-order interaction terms equal to zero as possible. Another
way to induce parsimony is by invoking forms of symmetry or exchange-
ability (see for example, Bishop, Fienberg, and Holland [10], Bhapkar and
Darroch [8], Ten Have and Becker [58], and Fienberg, Johnson, and Junker
[30]), which is one of the focuses of this paper. Without such parsimonious
representations for large sparse tables, the likelihood gets maximized on the
boundary of the parameter space and many of the cell estimates are zero
(or minus infinity in the logarithmic scale).

Henri C aussinus’s landmark 1966 paper [15], while focused largely on
two-way tables and the models of quasi-independence and quasi-symmetry,
fits well with those theoretical developments and stimulated multidimen-
sional generalizations that appeared initially in Bishop, Fienberg, and Hol-
land [10], Chapter 8. Caussinus’ insights on the links between quasi-indepen-
dence and quasi-symmetry led to the reformulation of quasi-symmetry as
a log-linear model in Bishop, Fienberg, and Holland [10]. This in turn al-
lowed the adaptation of iterative proportional fitting algorithm (IPF) as an
alternative to the related algorithm for estimation under quasi-symmetry
presented in Caussinus [15]. The next steps described in that chapter then
followed naturally: (1) re-expressing IPF for quasi-symmetry in terms of the
standard IPF algorithm for no 2nd-order interaction in a three-way table
constructed from the original two-way table, and (2) various multivariate
generalizations of quasi-symmetry. The former awaited the subsequent the-
oretical work of Meyer [52] for a firm foundation, and the latter remained
somewhat of a hidden curiosity until its link to other statistical models was
recognized in the 1980s and 1990s.

In the late 1970s, Otis Dudley Duncan, a distinguished sociologist, dis-
covered the Rasch model from the educational testing literature and was
applying it in innovative ways to survey analysis (e.g., see Duncan [26]).
But he was stymied when it came to understanding the theoretical basis



for the approach he had intuitively adopted. Fortunately, work by Tjur [60]
provided the key to his problem and, in giving it a proper contingency table
representation in Fienberg and Meyer [31], we were able to tie it directly
to one of the multivariate generalizations of quasi-symmetry! These same
ideas surfaced again in the 1990s in work on models for heterogeneity in a
multiple-recapture setting by Darroch, Fienberg, Glonek, and Junker [23]
and Fienberg, Johnson and Junker [30], and by Agresti [2] and Coull and
Agresti [19]. For related discussion and links to other log-linear and related
models, see Cox and Wermuth [20] and the papers by Agresti [3] and Good-
man [35] in this issue.

Despite the 35 years that have passed since the emergence of the log-
linear model literature, the interest in succinct parametric models for large
sparse contingency tables remains, and quasi-symmetry ideas remain one
of the essential tools that are being refined and used. In this paper, we re-
view three different approaches to the modeling of large sparse contingency
tables, standard log-linear models, including those with quasi-symmetric
interactions (Section 2), the related class of Rasch model extensions (Sec-
tions 3 and 4), and the class of Grade of Membership (GoM) models which
are of special interest in many of the same settings as are the Rasch and
quasi-symmetry approaches (Section 5). .

2. Log-linear models and quasi-symmetry

Let n = (nl, n2 , ... , , nt) be a vector of observed counts for t cells, struc-
tured in the form of a cross-classification for n = ~~-1 nc observations.
Now let m = E[n] = (ml, m2, ... , mt) be the vector of expected values that
are assumed to be functions of unknown parameters 8’ - (91, 92, ... , 9S ),
where s  t.

Let M denote the log-linear model specified by m = m (8 ) . When the t
cells form a J-dimensional cross-classification corresponding to J categorical
variables, then we can rewrite the most general version of model m = m(8)
in its more recognizable saturated log-linear form as



To make model (1) identifiable, we require each subscripted u-term to sum
to zero over any subscript following Bishop, Fienberg, and Holland [10], or
we set selected u-terms equal to zero as in GLIM or S-Plus. By setting some
of the interaction terms in (1) equal to zero, we get a reduced or unsaturated
log-linear model.

For the general log-linear model, A4, the minimal sufficient statistics
(MSSs) are given by the projection of n onto A4 , Pa4 n (e.g., see Haberman
[36]). In the case of model (1), the MSSs consist of the marginal totals
corresponding to the highest order terms in the model. For example if we
set all 3-factor and higher-order interactions, then model (1) reduces to

and the MSSs are the two-way marginal totals, corresponding to the two-
factor terms in (2).

The quasi-symmetry strategy for reducing the number of parameters in
(1) sets all of the higher-order terms of the same order equal to one another,
e.g.,

where perm[.] denotes any permutation of the sequence of indices in the
argument (e.g., see Bishop, Fienberg and Holland [10], Darroch [22]). As
Ten Have and Becker [58] note, quasi-symmetry in this sense involves a
form of conditional exchangeability of expected cell values which combines
both class parameter invariance (equivalence of u-terms of similar order)
and class parameter symmetry of any interaction involving all variables of
a class. Clearly, we can also separate out the various components of this
model and utilize them in a hierarchical log-linear fashion.

Because the model which combines (1) with (3) is log-linear, we can
read off the MSSs directly. They are the two-way marginals which corre-
spond to the the first-order interaction parameters in (1) which are not
in quasi-symmetrization of (3), and the sums of counts corresponding to
the symmetry or equivalence sets defined by (3). Had we also symmetrized
the first-order interaction terms, Ujlj2(ijl ij2)’ we would replace the two-way
marginals by the corresponding sums of counts and include the one-way
marginals in the MSSs.



We can also combine the two strategies of modeling by setting some
higher-order terms equal to zero and assuming class parameter symmetry
and/or invariance for others. Computing maximum likelihood estimates
under any of these models is straightforward using any generalized linear
model computer program, such as the ones in S-Plus or SAS.

3. Variations on the Rasch model

In education and the social sciences, the J categorical variables whose
cross-classification leads to the table n = (nl, n2 , ... , , nt) modelled in equa-
tion (1) often arises as coded subject responses to a set of items (questions,
statements, or tasks) on survey forms, self-report inventories, and mental
tests. Subject i responds to item j, for j = 1, 2, ... , J, coded as Xi; = 1

or 0, indicating the agreement (1) or disagreement (0) of subject i with

proposition j, success (1) or failure (0) at performing task j, presence (1)
or absence (0) of a symptom or feature j, etc. The table n is then the table
of counts nx of the unique binary response patterns x = (~i,~2?..’ ~ 1t j ).
Since t = 2~ grows exponentially with J, n is typically large and sparse.

It is often sensible to separate subject (row) effects from item (column)
effects in the matrix of responses X = i = 1,2,..., n; j = 1,2,..., , J}.
One of the earliest models to do this was developed by Georg Rasch [55],
and specifies row and column effects in an additive logistic model for A’:

where ()i represents subject i’s propensity to respond positively to any item
relative to other subjects ; and {3j represents the difficulty of responding pos-
itively to item j, relative to other items. As ()i increases, the probability of
responding 1 to item j increases, and as the difficulty parameter (3j increases,
the probability of responding 1 to item j decreases. The Rasch model, to-
gether with similar models using different forms for developed by
Loevinger [48], Lord [49], and others, became the core of what is now item
response theory (e.g., see Fischer and Molenaar [32] and van der Linden
and Hambleton [62]). Clearly, the number of parameters 6i increase linearly
with the sample size n; the ()i are typically treated as latent variables in
the model (conditioned or integrated away when estimation of the /3j is de-

sired). In the psychometric literature it is common to talk about a single
latent variable for ability but that assumes a relationship among the ()i such
as that they come from a common distribution (see Section 3.1 below).

We further assume "local independence" among item responses, that
is, we assume all Xi; are conditionally independent, given the ()’s and .3’s.



Letting Xij denote the observed values of Xij, we may write the likelihood
for the Rasch model as

The Rasch model in equation (4) has the interesting invariance property
that the odds ratio comparing two items j and k is

which is independent of 8i Hence any two items may be compared, in princi-
ple, using any convenient sample of subjects regardless of their propensities
to respond positively (in practice, of course, subjects still contribute at least
"small sample bias" to the estimated {3’s). Similarly, the odds ratio com-
paring two subjects is independent of the item difficulty parameters. These
two invariance properties are instances of "specific objectivity," a property
Rasch considered important in defining a measurement model, and from
which equation (4) can be derived (c.f. Fischer and Molenaar [32]).

The Rasch model is also closely related to the Bradley-Terry [12] model
of paired comparisons (see Fienberg and Meyer [31]). Consider two items j
and k for which {3j  ~3~ . For any subject i responding positively to only
one of these two items, it follows from equation (4) that

independent of 01 ; this is exactly the Bradley-Terry model, which says that
the log odds of choosing item j from the pair jand k depends only on a
ratio of positive parameters of the form: ~~ /~~ . We can use the the lack
of dependence of the right hand side of equation (7) on 03B8i to construct
empirical tests of the Rasch model, since we can estimate the probability
in equation (7) without assuming the Rasch model and this should be the
same in any subpopulation of subjects in which the Rasch model applies.

3.1. The Rasch model and quasi-symmetry for the 2~ table

Two estimation methods are traditionally associated with the Rasch
model, joint maximum likelihood (JML) and conditional maximum likeli-
hood (CML). Work of Erling Andersen in the 1970’s summarized in Ander-
sen [4], shows that JML estimators for (3j obtained by maximizing equation



(5) jointly in the 8’s and ~3’s, are inconsistent, that is, asymptotically biased
as n grows and J remains fixed. On the other hand, the CML approach,
conditioning on row totals in X to eliminate the 92’s, lead to consistent es-
timators of /3~. Estimates of both the 8’s and the {3’s in the joint likelihood
in equation (5) can be made to be consistent if both n and J are allowed to
grow at controlled rates (Haberman [37]).

A more widespread approach to solving the inconsistency problem with
JML has been to assume the scalars 03B8i are independent random effects
following a common (discrete or continuous) distribution with hy-
perparameters ~. Integrating over 01 for each subject yields the marginal
likelihood

Maximizing equation (8) with respect to ~32’s and 77 (using an E-M-like al-
gorithm, for example, as in Bock and Aitken [11]) yields what are called
maximum marginal likelihood (MML) estimates ~3~ and 7}. These MML es-
timates are also consistent (asymptotically unbiased). The method based
on equation (8) can be interpreted as an empirical Bayes method; it also
links the Rasch model directly with other latent variable approaches such as
factor analysis, where the are treated as unobserved random variables,
or, equivalently, as missing data.

Equation (8) also provides an important link to log-linear models. Under
i.i.d. sampling of subjects with observed response patterns x = (.ri, z2 , ... , ,
xJ) and missing latent variables 0, the integral in equation (8) gives the cell
probabilities for the unique binary response patterns x = (x 1, x2, ... , xJ). .
Indeed, since equation (4) implies that - 0 - /3~, it

follows that these cell probabilities are

This readily simplifies to a log-linear model of the form

where



(for details, see Tjur [60], Cressie and Holland, [21]; Fienberg and Meyer
[31], Holland [39], Darroch, Fienberg, Glonek and Junker [23]). The log-
linear model in equation ( 10) is equivalent to the full quasi-symmetry model
of equation (3) for the 2J table, subject to moment-like order constraints on
the implied by equation (11) and detailed in Cressie and Holland [21].
Lindsay, Clogg and Grego [47] explore in detail connections between Rasch
models and log-linear quasi-symmetry models, and consequences for the
identifiability of the distribution in a semiparametric formulation
of equation (8). .

3.2. The Rasch model and quasi-symmetry for the KJ table

The Rasch model generalizes naturally to multinomial logit models
depending on j3 and B, when there are more than two levels of response
per measure and the categories are ordered. In particular, suppose each Xij
takes values in the discrete set {0,1,.... Ii - 1 ~ . The polytomous Rasch
model, or "partial credit model" (Masters [51]) specifies linear adjacent
category logits as

or, equivalently, in a somewhat overparametrized form,

where sums with indices from 1 to 0 are defined to be zero. Under this model,
the response categories are stochastically ordered by 0: > is a

non-decreasing function of 03B8i for each c. Agresti [1] considers related models,
e.g., when ~~~ in equation (12) is replaced by two terms additive in j and k.

Again, if we assume local independence and integrate out the latent
variables 01 with respect to a common distribution we can write the
cell probability for the pattern of polytomous responses x = (xl, x2, ... 
in the KJ table as the integrated product multinomial

where



Using the definition in equation (13) we see that

where, again, x+ = ~~ 1 x~ . A simplification analogous to that leading
from equation (9) to equation (10) produces the log-linear model

where bjk = -~=1~ and ~(5) = E[es8lx = 0]. Again, this is a quasi-
symmetry representation for the KJ table, subject to moment constraints
on ~y (s ) Unlike the 2 ~ case, however, this is not the most general K J quasi-
symmetry model expressed in equation (3), since any two interaction terms
with the same sum x+ are constrained to be equal in equation (16). For
ordinal tables with "equally spaced scores," the implied log-linear model
has a simpler main effects form (c.f., Agresti’s [3] "ordinal quasi-symmetry"
model) .

Variants of this approach have been outlined for social survey data by
Sobel, Hout, and Duncan, [57], Thissen and Mooney [59], and Goodman
[34]. Alternative forms of the model in equation (15) and equation (16) may
be obtained by changing the form of the linear logits in equation (12) (e.g.,
see Huguenard, Lerch, Junker, Patz and Kass [41]).

4. Semi-exchangeability variations on the Rasch model

Due to the stochastic ordering property, that P[Xij > c[0j] z is nonde-

creasing in 8i for all i, j and c, the dichotomous and polytomous Rasch
models exhibit strong positive dependence in the structure they induce for
2J and K~ tables. Holland and Rosenbaum [40] explore this dependence
in detail, and Junker and Ellis [44] use related properties to characterize a
broad class of item response models. However, in many applications, ranging
from multiple-recapture census enumeration to epidemiology, biostatistics
and even cognitive testing, this strong positive dependence structure is too
restrictive for practical modeling.



One way to weaken this structure has been to generalize the quasi-
symmetry model, especially in the case of dichotomous response data, for
example by adding two-way interactions

Kelderman [46] considered these so-called "generalized log-linear Rasch mod-
els" to develop hierarchically nested alternatives to the null hypothesis that
the data follow the log-linear Rasch model of equation (10). Cormack [18]
provided an independent, alternative development of these ideas. These
ideas have also proven useful in extending the log-linear Rasch model to
accommodate dependence in the table of counts nx that is Rasch-like but
more general than the "exchangeable higher moments" structure of the
Rasch model (see Darroch and McCloud, [24], Carriquiry and Fienberg [14],
Biggeri et al. [9] and Bartolucci and Forcina [7]). In particular, the terms
bjlj2XjlXj2 allow for negative dependence between some pairs of items that
are excluded by the basic Rasch model’s assertion of equal positive asso-
ciations among all the items. It is also worth noting that models of the
form equation ( 17) may contain interactions of all orders, but they may be
severely constrained both by the form of the ~(’) terms in equation ( 17)
and by moment inequality constraints of the type discussed after equation
( 11 ) above.

To relate log-linear models like equation (17) to the Rasch model of
equation (4), we begin by rewriting the likelihood for the conditional 2J
table of counts nxl8, given 8, as

where a (8 ) = logU.~Jl 2014 Pj(8)], , and for the Rasch model in particular,
Àj(8) = 8 + bj (bj = -{3j in equation (4) ) .



Darroch, et al. [23] note that interdependencies in the observed 2~ table
may either be the result of collapsing over 8 (a version of Simpson’s paradox,
see Holland and Rosenbaum [40] or Kadane, Meyer and Tukey [45]) or they
may be a consequence of the items being truly interdependent even when the
data are disaggregated to the person or object level. Examples can be found
in diverse applications, e.g., two web search engines may draw from the same
pool of web pages (perhaps because of a common indexing strategy), so that
a web page may be more likely to show up in one, given than it is in the
other, quite apart from the visibility of the page to search engines in general.
In multiple-recapture census work based on administrative lists, lists that

by their nature penetrate nearly disjoint subpopulations induce a tendency
toward negative dependence in the marginal distribution 7rx (Asher and
Fienberg [6]).

To illustrate models for item-by-item dependencies that are not artifacts
of aggregating over 8, we consider adding to equation (18) the two-way
interactions in the conditional (fixed 8) model:

where a(8) is simply the usual log-linear model normalizing constant (sum of
model terms over all binary patterns xl, x2, ... , rj)’ We assume, as before,
that ~~ (8) = B + bj , and now we also assume that (B) = 8 + This

leads to the form

(c.f. Jannarone [42] and Jannarone, Yu and Laughlin [43]).

Exponentiating, integrating with respect to the distribution of the ran-
dom catchability effects, 8, and taking the logarithm again, Fienberg, John-
son and Junker [30] obtained the log-linear model

a submodel of equation (17) [subject to moment constraints analogous to
equation (11)].

A different development generates terms like ~y’ (x.~, x+ ) in equation ( 17)
and interprets them in terms of heterogeneity across subjects that cannot
be described by the simple Rasch model. Let us begin again with the basic
likelihood in equation (18), and suppose now that 8 is multidimensional, i.e.,



8 = (81, e2, ... ~g). Moreover, suppose that different items depend on dif-
ferent 8’s through the Rasch model. For example, suppose that 8 = (81, 92 )
and we can partition the items into I items that depend only on 81 and
J - I items that depend only on 82. Then, after permuting item indices, the
likelihood given 9 becomes

If, as would usually seem reasonable, the density of 8 = (91, 82 ) does not
factor, then a derivation which is similar to that leading from equation (20)
to equation (21 ) above now leads us to

where = x~, and = x~ . Equation (23) is a partial
quasi-symmetry model in which two sets of items participate in separate
quasi-symmetry relationships. This sort of structure was employed by Dar-
roch, et al. [23] in triple-system enumeration, to model the differing visibility
(modelled by 81 and (2) of persons in administrative lists, in U.S. Census
lists and in a post-enumeration survey also conducted by the U.S. Census
Bureau.

Clearly, the same construction can be used to add terms ~+ -1~1 ) to
the basic Rasch quasi-symmetry model in equation ( 10) . This is equivalent
to adding the term ~y ( 1~ 1,1~+ ) to the model, since there is a 1-1 correspon-
dence between levels of the pair (A-i, k+ - k1) and levels of the pair (k1, k+ )
(due to the constraint k+ = k1 + ... + Of course, we may also add

item-by-item interactions to this model as in equation (19), in the end ob-
taining the full generality of equation (17). In addition to providing links
between the Rasch model and hierarchically structured log-linear models,
this approach is useful in relaxing the strong positive association constraints
of the basic Rasch model and exhibiting some meaningful stochastic order-
ing properties, while retaining an intepretation in terms of latent variable
models.

5. The Grade of Membership model

Log-linear models, as we introduced them in Section 2, focus on de-
pendencies among variables and they assume that the units (subjects) are
homogeneous. Latent structure models originated from searching for a phe-
nomenon that would describe substantive differences among subjects in the
sample. In particular, latent class models (Goodman [33]) assume that a



heterogeneous population is composed of a few subpopulations that are ho-
mogeneous in their responses with respect to the problem of interest, and
that, given the latent class, the responses to the items are considered in-

dependent (a form of the "local independence" assumption). When this
assumption is reasonable, by representing the likelihood as a mixture of la-
tent classes, we can obtain a good fit to multi-way contingency table data
that would otherwise require a number of not so easy to explain higher-order
interactions in a log-linear model.

Rasch models involve parameters for two sets of objects, e.g. for items
and subjects. The property of "specific objectivity" (Rost [56]) assures that
the estimation of parameters for one set of objects is independent of the
other set. Rasch showed that when only two response categories are consid-
ered, the dichotomous Rasch model is the only parametric model that fulfills
the requirement of specific objectivity (see Andersen and Olsen [5]). By as-
suming random subject effects for the Rasch model, we can think in terms
of disaggregating the 2J contingency table into independence tables by the
value of subject parameter. It is common to assume a unimodal distribution,
such as the normal, for subject parameters, and then integrate them out in
order to estimate the item parameters. Unimodal distributions are consis-
tent with the assumption, plausible in many cases, that a population can
be represented on a latent continuum in such a way that a few individuals
would have very high/low values of the subject parameters and the rest of
the population would have values concentrated near the average. But such
unimodality does not hold universally, and we often need alternatives to the
Rasch models for modeling purposes.

We often observe another kind of population heterogeneity in medical
classification problems. Examining whether each of J symptoms is present
or absent for patients, clinicians can classify a good proportion of a popu-
lation as either being healthy or having a disease, but the diagnosis for the
rest of the population can be less certain. The uncertainty in the diagnosis
can be incorporated into a subject parameter where the value of the pa-
rameter would indicate how close each subject is to having a disease. This
idea gave rise to formulation of the Grade of Membership (GoM) model
proposed originally in the 1970s by Max Woodbury and described in detail
by Manton, Woodbury, and Tolley [50]. The GoM model regards the prop-
erty of convexity in the response probabilities in a population as worthy of
modeling. Intuitively, convexity is a two-fold phenomenon: first, extremal
individual cases or extreme profiles must exist, at least theoretically, and,
second, all other individual cases must be convex conlbinations of extremal
cases. Extreme profiles are defined by the conditional probabilities of re-
sponse for "certain diagnosis" cases. These are the item parameters as well.



Subject level parameters are components of the K-dimensional vector of
membership scores. Each component represents how close an individual is
to the respective extreme profile. In the GoM model we again invoke the
local independence assumption: given the membership scores, J responses
are considered independent. Therefore, the model disaggregates observed 2J
table according to the vector of membership scores.

As before, we consider data arising in the form of a vector of J dichoto-
mous manifest variables, X = ( X 1, X 2 , ... XJ), and we let x = ( x 1, x 2 , ... ,
xJ) denote a binary response pattern, where = 0 or 1 is a response to j th
manifest variable, for j = 1, 2, ... , J. We denote by G = (Gi, G2 , ... , , GK)
a vector of membership scores with distribution H(g) such that 0, for
k = 1,2,.... K, and Gk = l. Denote the conditional probability of
positive response for each extreme profile by

The probability of negative response, Xj = 0, is one minus the probability
of positive response.

The marginal probability of response for the manifest variable Xj , given
the membership scores, is a convex combination of the probabilities that
correspond to the extremal cases:

where g = (91 ~ g2 ~ ... , 9x ) E (~~ 1 ) x ~ .

The GoM local independence assumption states that manifest variables
are conditionally independent, given the latent variables. Thus, for the con-
ditional probability of observing a response pattern x is

This particular form of conditional probability function results in a pro-
perty of the GoM model that distinguishes it from other continuous latent



variable models. Thus, for the Rasch model, Ramsay [54] has pointed out
that the value of the ability parameter in the Rasch model is only indirectly
related to its position within the manifold that corresponds to the model
in the probability space. In contrast, for the GoM model, Erosheva [27]
has shown that the values of the membership scores represent the distances

along the model manifold from corresponding extreme profiles. Thus, the
membership scores have the property of being intrinsic to the model mani-
fold, which provides a natural characterization of the latent continuum.

Integrating the conditional probability in equation (26) with respect to
the distribution of the membership scores, we obtain the marginal distribu-
tion of the data for the GoM model

where the integration is over (O,l)K.
Following a suggestion of Haberman [38], Erosheva [28] shows that we

can derive the same distribution by treating the data as arising from a con-
strained latent class model with J latent variables. Let Zl, Z2, ... , ZJ be
multinomial exchangeable latent variables with the values zj E {1,2,..., , I~~.
Let the probability of observing a latent vector z = (zl, z2, ... , be the

expected value of the J-fold product of corresponding membership scores:

By assuming that the conditional distribution of the jth manifest variable
depends only on the jth component of the latent vector and setting

Erosheva [28] has shown that the probability to observe response pattern x
under this constrained latent class model coincides with the corresponding
probability under the GoM model.

We can consider the classical notion of item independence in the context
of the GoM model. Assume that items ji and j2 are independent if they are
independent in the 2J contingency table aggregated over the distribution
of individual parameters. In this case, the observed 2J table would show

independence or near independence of j 1 and j2 . From the geometric repre-
sentation of the GoM model, it can be seen that two items are independent
only if the model manifold is a straight line on the surface of independence



in the subspace of the parameters of the corresponding 2 x 2 table (Ero-
sheva [27]). If the distribution of the GoM scores is not degenerate, this
can happen only when one of the items, say j1, has the same probability of
response for all extreme profiles. Since the items in the GoM model are fully
characterized by their extreme profile probabilities, this implies that item
ji is in fact independent from other J - 2 items as well. In other words, item
ji is irrelevant for explaining population heterogeneity in the GoM model.
This result is similar to the one for IRT models: item responses can be in-

dependent in the aggregated 2J contingency table only if each subject in
the population has the same ability; otherwise, a positive correlation among
items is to be expected. While the Rasch model can be used to model pos-
itive item dependencies, the GoM model can be employed to model more
general item interactions in 2J table.

By using the latent class representation of the GoM model described
above, we can give the GoM model a log-linear random effects form. Consi-
der the (KJ x 2 )-dimensional table. Let be the expected count
in the cell (z, x 2> ... > x J)~ where z = z 2> ... , Because the model
assumes that the items are conditionally independent, given the value of
the latent vector z, the log-linear model will only have the main item effects
and the interaction effects between each of the manifest variables and the
latent vector-valued variable z, i.e.,

The log-linear parameters are related to conditional probabilities in the
GoM model as

or, equivalently, as

By using the conditional probability from the GoM model and imposing
the usual zero-sum constraints, we can write the log-linear main effect and
interaction parameters as



This random effects log-linear formulation has an underlying partial-
symmetry structure that results from exchangeability in the components of
the latent vectors: if z and z* are such that zj = z;, then = ufll i This
partial-symmetry structure, however, does not resemble quasi-symmetry as
proposed originally by Caussinus.

There has long been a fascination in the statistical literature about
the development of additive as opposed to log-additive models for multi-
dimensional contingency tables (e.g., see Darroch and Speed [25]). Intui-
tively, it is clear that additive models on the probability scale can not be
additive on the log probability scale. There might be exceptions to these
rule, e.g., if the gk parameters of the GoM model were independent, then
we can rewrite equation (30) as a constant plus J terms, each depending
on Ajk and the expected values of the membership scores. It is not clear

whether there might exist an alternative parameterization that would pr o-
vide a log-linear form for the GoM model.

Finally, we note the similarities of the GoM model and its representations
to the latent budget model of van der Heijden, Mooijaart and de Leeuw [61],
which is also described in terms of extreme profiles ( "latent budgets" ), and
a simultaneous latent class model proposed by Clogg and Goodman [16]
~ 17~ .

6. Summary

Henri Caussinus introduced the notion of quasi-symmetry in the con-
text of two-way contingency tables in 1965. The subsequent generalizations
of this quasi-symmetry model have proved to be especially useful in the
modeling of multi-way contingency tables. In particular, they represent an
interesting point of departure for alternatives to standard log-linear models
for large sparse contingency tables. Such models offer a way to simplify pa-
rameter structures while at the same time allowing for interactions in the
models.

In this paper, we have described some alternative models for large sparse
tables that are based on latent structures, and we have described some of
their relationships to quasi-symmetry and log-linear structures. These latent
variable models scale to high dimensional settings and retain the simplicity
of interpretation associated with the traditional local independence assump-
tion.

Cox and Wermuth [20] suggest a somewhat different strategy for clevel-
oping models for multivariate binary tables based on dichotomized Gaus-
sian models. Their approach also uses a latent representation and essentially



replaces the logistic model of equation (4) by a multivariate Gaussian struc-
ture. They also consider a quadratic binary exponential model which is in
essence a log-linear model without 2nd- and higher-order effects.

This area of categorical data analysis remains a fertile one for the deve-
lopment of new methodology.
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