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Quasi-symmetry and representation theory (*)
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RESUME. - La quasi-symetrie est un modele pour les tableaux carres
dont les lignes et les colonnes sont indexees par un meme ensemble.

Dans un modele log-lineaire, la quasi-symetrie est associee a un sous es-
pace vectoriel QSn de certaines fonctions reelles definies sur n x n. Une

permutation des niveaux des facteurs induit une transformation lineaire
QSn - QSn faisant de ceci une representation du groupe symétrique
Sn Toutefois, il a plusieurs representations du groupe qui sont totalement
insatisfaisantes en tant que modeles lineaires ou log-lineaires. La quasi-
symetrie est aussi une representation hereditaire du groupe symetrique,
qui dit que la restriction de Q Sn+ 1 au sous tableau principal n x nest
egale a QSn Une autre maniere de dire la meme chose est que, en tant que
sequence d’espaces vectoriels, QS est une representation de la catégorie
des applications injectives sur des ensembles finis. Cette propriete est
d’une importance fondamentale pour les modeles statistiques. Cet article
a pour but de lister toutes les sous representations hereditaires par des ma-
trices carrees reelles et d’expliquer comment celles-ci peuvent etre utilisees
pour la construction de modeles. Nous concluons qu’il y a exactement six
modeles log-lineaires non triviaux pour un tableau de contingence carre.

ABSTRACT. - Quasi-symmetry is a model for square contingency tables
with rows and columns indexed by the same set. In a log-linear model,
quasi-symmetry is associated with a vector subspace QSn of certain real-
valued functions on n x n. Permutation of factor levels induces a linear

transformation QSn, making this into a representation of the
symmetric group Sn However, there are many group representations that
are totally unsatisfactory as linear or generalized linear models. Quasi-
symmetry is also a hereditary group representation, which is to say that
the restriction of QS n+ 1 to the leading n x n sub-array is equal to QSn. .
Another way of saying the same thing is that, as a sequence of vector
spaces, QS is a representation of the category of injective maps on finite
sets. This property is of fundamental importance for statistical models.
This paper sets out to list all hereditary sub-representations by real-valued
square matrices, and to explain how these may used in model construction.
We conclude that there are exactly six non-trivial log-linear models for a
square contingency table.

~ * ~ Recu le 18 septembre 2001, accepte le 18 septembre 2002
( 1 ) Department of Statistics, University of Chicago, Chicago, 11 60637, U.S.A.



1. Introduction

A real-valued square matrix f is said to be quasi-symmetric of order n,
if there exists a vector g E Rn and a symmetric matrix h such that

Equivalently, since hi~ = 9i + gj + hij is symmetric, the condition can
be written in the form fij = hij + 9j. . The original definition of quasi-
symmetry, given by Caussinus (1965) in the context of positive matrices
and log-linear models, involves multiplication rather than addition. That
is to say, a positive matrix m is quasi-symmetric in the original sense if
the matrix log m with components log mij is quasi-symmetric in the sense
of (1).

If f, f’ are both quasi-symmetric, there exists a vector g’ and a symme-
tric matrix h’ such that f ~ + . Consequently, for all scalars cx, ct’,
the linear combination 03B1f + ct’ f’ is also quasi-symmetric. That is to say,
the set of quasi-symmetric matrices of order n is a vector space. We write
QSn C noting that, for n > l, QSn has dimension (n2 + 3n - 2)/2.
The co-dimension for the residual degrees of freedom is (n - 1 ) (n - 2) /2.

As many applied statisticians are well aware, quasi-symmetry is no or-
dinary vector subspace. It arises as a statistical model in all manner of

apparently unrelated applications, such as the following.

(i) Case-control studies in epidemiology (Pike, Casagrande and Smith
1975; Darroch 1981; McCullagh 1982);

( ii ) Reversible Markov chains (Kelly, 19 7 9 ) ;
(iii) Gravity models in migration studies, (Stewart, 1948; Upton, 1985);
(iv) Transmission disequilibrium models in genetics, (Spielman et al. 1993;

Ewens and Spielman 1995; and Sethuraman and Speed 1997),
(v) Matched pairs designs (Fienberg and Larntz 1976),
(vi) Citation studies in science (Stigler, 1994).
The closely related Bradley-Terry model (Bradley and Terry, 1952) is

frequently used for assessing team strengths (Barry and Hartigan 1993),
and for rating teams or players in tournaments (Joe 1990). Although the
derivations seem to have little in common, it is hard to believe that there is
not a common theme.

The chief aim of this paper is to uncover what it is that distinguishes
quasi-symmetry from ordinary run-of-the-mill vector subspaces, and to de-
scribe the entire class of vector subspaces that have the same properties.
Quasi-symmetry has two properties, both relevant to statistical models,



that set it apart from the great majority of subspaces. The first property
is connected with representation theory for the symmetric group (Diaconis,
1988), the idea here being that the order in which the factor levels are listed
is sometimes entirely arbitrary. A permutation 7r E Sn acts naturally on
vectors f E TZn by composition such that f is carried to 7r* f with compo-
nents (7r* f)i = . The same permutation also acts naturally on square
matrices in Rn2 by composition such that the matrix f is carried to 7r* f by

This is a linear transformation nn 2 -t nn 2 which could be expressed in the
form of matrix multiplication if that were helpful. If f is quasi-symmetric
with the decomposition ( 1 ), the image 7r* f is also quasi-symmetric:

such that h’ is symmetric. In algebraic terminology, the association of each
group element 7r with a linear transformation 7r*: QSn is a rep-
resentation *: Sn - GL(QSn) of the symmetric group by invertible lin-
ear transformations -- QSn on a vector space. The induced linear
transformation is not in fact a homomorphism in the usual sense, but an
anti-homomorphism: the group product is carried to the composition
cp* ~r* : ~Zn -- in reverse order. This reversal is of little consequence
for group representations, but it is important in the critical property of
inheritance.

The second property of quasi-symmetry is not so much a property of
the vector subspace C Rn 2 as a property of the sequence of subspaces

C ~Z 1 ~ , QS’2 C R , ... ~ . That is to say, the second property applies to
quasi-symmetry as a statistical model formula, defined in a similar manner
for each integer n > 0. If f E QSn, the leading (n - 1 ) x (n - 1 ) sub-matrix
is also quasi-symmetric, and thus in This humble inheritance prop-
erty guarantees that the sub-models QS 4 C R42, QS5 C R52 and so on,
are alike and have similar interpretations. Generally speaking, the number
of recorded levels is rather arbitrary, and determined to some extent by the
investigator through selection and aggregation. Any pattern that arises as
a consequence of such capricious choices is of little scientific interest. For
a model to be sensible, it must be immune, or at least robust, to selection
of levels and, if relevant, aggregation of levels. Selection and aggregation
are not invertible transformations, so group representations do not begin to
address this inheritance property, which is the critical ingredient that dis-
tinguishes a possibly sensible statistical model from a definitely silly model
(McCullagh, 2000).



It is easy to see, for example that the diagonal matrices, the symmetric
matrices and the skew-symmetric matrices are group-invariant and also have
the inheritance property. So, although quasi-symmetry is very special, it is
certainly not unique in this respect. With a little effort, it is possible to
exhibit a number of other group-invariant sequences, such as the constant
matrices, that also have the inheritance property. The purpose of this paper
is to provide a complete catalogue of statistical models that occur as sub-
representations in Rn2. .

2. Representation of injective maps

2.1. Model formula

We set out in this section to identify all model formulae for square
two-way tables with rows and columns indexed by the same labels. For this
purpose, a model formula is defined as follows. For each n > 0 a model
formula M identifies a vector subspace liIn C Rnxn that is closed under
simultaneous permutation of rows and columns. Moreover, the sequence

is such that Mn is embedded in Mn+1 by selecting the leading n x n
sub-array, i.e. by a projection that deletes the last row and column. We
discuss in section 3 what modifications are required to make the definition
appropriate for contingency tables and log-linear models, where the issue of
aggregation of levels also arises.

2.2. Composition

Let n = {I, ... , n~, so that n2 = n x n is the set of ordered pairs of real
numbers ~ (i, j ) :1  i, j  n). It may be helpful to think of n2 as a table,
or array. For the moment, this is an array of empty slots, but the intention
is to fill it with real numbers as in a square matrix or contingency table. A
function f : n2 ~ R is a square matrix with components fij = f(i,j), each
of which is a real number. Such a function is typically displayed as a square
matrix, such as

for n = 4.

Consider now the injective map cp: m --~ n, in which m = 3 and n = 4,
defined by



To say that the map is injective is to say that it is one-to-one, i.e. distinct

points in the domain m = ~1, 2, 3~ have distinct images in n = ( 1 , 2, 3, 4~.
With f defined as in (2), the composition p* f is a square matrix of order 3
whose components are the values of f on the re-arranged sub-array

That is to say, p* f is the 3 x 3 matrix

Note that diagonal elements remain on the diagonal, and off diagonal ele-
ments remain off-diagonal.

It is clear that

for all scalars ct, a’, showing that the induced transformation cp* : Rn2 --
Rm2 is a linear transformation from matrices of order n into matrices of

order m. Note that the direction of p* is reversed relative to p.

2.3. Representation

Denote by I the set of all injective maps on finite sets. It is sufficient for
our purposes to pretend that, for each integer ?~ ~ 0, there is only one set of
size n, namely n = {1,..., , n~. To each map (/?: n ~ n’ there coresponds a
domain n = dom p and a codomain n’ = cod p: the image pn C n’ is the set
of points px E n’ such that x E n. It is important in all that follows not to
confuse the image with the codomain. Two maps p: n -~ n’ and n’ -~ n"
are said to be composable if dom 03C8 = cod p, in which case the composition
~~cp: n -~ n" is also a map. Each identity map n -~ n is evidently injective,
and the composition of composable injective maps is also injective. The set
I of injective maps on finite sets constitutes a category, containing each
identity and closed under composition.

A contravariant representation of I by surjective linear maps is a func-
tion, here denoted by 03C6 ~ 5p*, that associates with each 1-1 map (/?: m ~ n
in I a surjective linear map Vm -~ Vn on vector spaces in such a way
that identity and composition are preserved. That is to say, the identity map



1 : n --~ n is carried to the identity linear transformation 1 * : Vn -~ Vn . Also,
~: n --~ n’ is carried to ~* : Vn~ -- Vn, and the composition m ~ n’ to

which is the composition of images in reverse order.

The standard zero-order representation of l associates with each cp: m -~
n in I, the identity map -- TZ. The first-order standard representation
of I associates with each cp: m ~ n in I, the surjective linear transformation
cp* : Rn ~ Rm by functional composition p* f = f o p. The components of
the transformed vector are (p* f )2 = f~(i), which is a selected subset, or
sample, of the original components. Our interest is in square matrices, and
specifically in vector spaces of square matrices. Accordingly, the second-
order standard representation of Z~ associates with each p: m --~ n in I,
the surjective linear transformation cp* -- also by functional
composition

on square matrices as described and illustrated in the preceding section.

The action of an injective map on a table or multi-way array of num-
bers is to select, permute and re-label factor levels, for example by selecting
varieties in a variety trial or treatment levels in a horticultural experiment.
Statistical sampling is an instance of the action of an injective map, in
fact a randomly chosen injective map whose image is the set of sampled
units. Ordinarily, in factorial designs the injective maps act independently
on the levels of each factor. For a statistical design with k logically unre-
lated factors, a linear model is sub-representation of the product category
Z~ in the kth-order tensor product of first-order representations. The struc-
ture of these sub-representations is precisely that of the factorial models,
also called hierarchical interaction models, in 1-1 correspondence with the
free distributive lattice on k generators. But, for homologous factors (Mc-
Cullagh, 2000), the action on the rows is the same as the action on the
columns, and the matrices are square. That is to say, the structure of the
sub-representations in the second-order standard representation of I is dif-
ferent from the sub-representations of the product category I2 in the tensor
product of first-order representations. For example, symmetry and skew-
symmetry and quasi-symmetry are sub-representations, but these are not
factorial models.

2.4. Orbits

The symmetric group Sn acts on n by permutation. The action is said to
be transitive because, to each ordered pair of points (i, j ) there corresponds



a permutation 7r E Sn such that ~r (i) = j. The symmetric group Sn also acts
on the square array n x n by permutation, the same permutation applied
to rows as to columns. In other words, the ordered pair (i, j ) is carried to

(7r(i),7r(j)). . This action has two orbits, the diagonal elements (i, i), and
the off-diagonal elements (i, j ) for i ~ j In the category of injective maps,
each injective map p: m ~ n also preserves group orbits. The diagonal orbit
diag(m2) is carried injectively to diag(n2), and similarly for the off-diagonal
orbit. The orbit partition implies that the second-order standard representa-
tion of I may be decomposed as the direct sum of two sub-representations,
the real-valued functions on the diagonal orbit and the real-valued functions
on the off diagonal orbit.

Ordinarily, there is no guarantee that group orbits are preserved by the
non-invertible maps in the category. For example in the category of all maps
on finite ordinal sets, the invertible maps are the finite symmetric groups.
So the group orbits are the diagonal and the off-diagonal. But this partition
is not preserved by non-injective maps: an ordered pair (i, j) with i 7~ ~ may
be carried to an ordered pair for which cp(i) = cp( j ) . On the other hand,
diagonal elements cannot be sent to off-diagonal elements, so the diagonal
is a sink, not an orbit.

2.5. Sub-representation

Let cp: m -~ n be a generic injective map, and let nn2 -~ nm2 be the
image map in the standard representation. Within this representation there
may exist a sequence of subspaces Vn C Rn2 such that, for each p: m ~ n,
the linear transformation -~ also satisfies p*Vn = Vm . Then
the restriction of p* to the subspaces Vn also constitutes a representation of
I by surjective linear maps on vector spaces. By a slight abuse of termino-
logy, we say that V is a sub-representation in the standard representation,
the maps being determined by restriction.

Several sub-representations have previously been indicated. The parti-
tion of n2 by orbits implies that the second-order standard representation
contains two complementary sub-representations, the real-valued functions
taking the value zero on the diagonal orbit, and the real-valued functions
taking the value zero on the off-diagonal orbit. We now introduce a model-
formula notation capable of describing these and some others in a modera-
tely convenient manner.



The definition for A is to be read in the following manner. To each integer n
there corresponds a vector subspace An C nn2 consisting of n x n matrices
f such that fij = ai for some vector a E The asterisk denotes restriction
to the off-diagonal orbit; diag() denotes restriction to the diagonal orbit. For
each 77 ~ 0, the vector spaces An and Bn have dimension n. For each 77 ~ 2,
the vector spaces An and Bn also have dimension n. The representations

are isomorphic, as are A* ^-_’ B* . The representations A and A* are
almost, but not quite, isomorphic.

2.6. Group representations

The set of invertible maps n -t n in I is the permutation group, and the
representation theory for finite groups is well understood; see, for example,
James and Liebeck (1993) or Diaconis (1988). Since the restriction of each
I-representation to n is necessarily a group representation, we begin our
study of I-representations by studying the group representations that occur
in the standard representation. The great majority of group representations
are not inherited under restriction, and thus do not extend naturally to
I-representations. Our task is to identify those that do extend naturally.

A representation of Sn associates with each permutation 7r a linear trans-
formation 7r* : in such a way that identity and composition are pre-
served. In the first-order standard representation, V = TZn and 7r* is the
usual n x n matrix representation by linear transformations that permute
coordinates. This representation decomposes into two irreducible represen-
tations, the trivial one-dimensional representation In C TZn by constant
functions, and a complementary representation 1 n by vectors whose com-
ponents add to zero. The restriction of 1 ~ to a subset of m  n components is
equal to 1m, so the sequence In C is a sub-representation of l. However,
the restriction of 1~- is equal to not to 1~. Thus, the first-order stan-
dard I-representation contains exactly one sub-representation, but there
is no complementary sub-representation. In this respect, the structure of
sub-representations of I is fundamentally different from the representation
theory for finite groups: it is not semi-simple.

In the second-order standard representation V = and the linear
transformation 7r* acts by composition (7r* f)ij = The group prod-
uct 03C003C6 is carried to (03C003C6) * = reversing the order of composition.

Character theory for finite groups (James and Liebeck 1993) enables
us to identify irreducible sub-representations that occur in a given repre-
sentation. In the case of the symmetric group to each partition of the
number n there corresponds a distinct irreducible representation, and con-



versely, so each irreducible sub-representation is associated with a partition
such as (n), (n - 1,1 ), (n - 2, 2), (n - 1,1,1 ) and so on. The decomposition
of the first-order representation is (n) (B (n - 1,1) in which (n) is the tri-
vial representation and (n - 1,1 ) is the (n - 1 )-dimensional representation.
For the standard second-order representation of Sn by square matrices, the
decomposition by sub-representations is as follows.

The first line states that the vector space of square matrices can be expressed
as the direct sum of three subspaces, the diagonal matrices, the symme-
tric off-diagonal matrices, and the skew-symmetric matrices. Further, these
three subspaces are preserved under coordinate permutation, which is to say
that each is a sub-representation of ,S’n . None of these sub-representations
is irreducible. The diagonal sub-representation contains a one-dimensional
sub-representation by constant functions plus a complementary (n - 1)-
dimensional sub-representation consisting of functions whose components
sum to zero. The symmetric off-diagonal representation contains a one-
dimensional representation by constant functions, a sub-representation con-
sisting of functions

such that L exi = 0, and a complementary sub-representation

The dimensions are 1, n -1 and n(n - 3)/2. The alternating representation
contains two sub-representations, one consisting of functions

and a complementary sub-representation

The dimensions are and (n -1 ) (n - 2 ) /2. All dimensions are necessarily
non-negative, so the expression n(n - 3)/2 is interpreted as zero for n  3.

It is straightforward to verify that each of these subspaces is closed under
coordinate permutation. The marvel of character theory is that it enables



us to determine whether or not a given representation is reducible. These
calculations are standard and classical, so details are omitted. For ?~ ~ 3,
the standard second-order Sn-representation contains seven irreducibles,

in which the trivial representation (n) has multiplicity two, (n - l,1 ) has
multiplicity three, and the remaining two have multiplicity one each.

2.7. Inheritance and I-representations

A sub-representation of I in the standard representation is a sequence
of subspaces Vn C nn 2 such that

. (i) Vn is a representation of the symmetric group S’n, closed under
coordinate permutation;

. (ii) The restriction of functions f in Vn to the leading m x m sub-array
is equal to Vm.

Thus, each component of an I-representation is also a group represen-
tation, but only certain group representations can occur as a component in
an I-representation.

A representation V that contains no sub-representation other than itself
and the zero representation is called irreducible. For the category I of injec-
tive maps, or for the product category Ik, such representations are rather
rare, so this concept is not especially useful. A representation that is ex-
pressible as the direct sum 0 W of two complementary non-zero sub-
representations is called decomposable. Conversely, a representation that is
not expressible in this form is called indecomposable. The standard first-
order I-representation is indecomposable, but it is not irreducible because
it contains the trivial one-dimensional sub-representation. A representation
that is expressible as the span V = U + W of two sub-representations, not
equal to zero or V, is called weakly decomposable. Although V n W is also
a sub-representation, there need not exist a direct-sum decomposition. The
factorial model ~4 + B is a weakly decomposable I2-representation in which
A n B is the trivial one-dimensional sub-representation. There is no direct-
sum decomposition, so this representation is I2-indecomposable.

It is evident that the direct-sum decomposition

is preserved not only by permutation but also by restriction to subsets. This
observation implies that the standard I-representation decomposes as the



direct sum of three sub-representations. This decomposition is unique only
in the sense of isomorphism. There exist alternative direct-sum-decomposi-
tions in which diag(Rn2) is replaced by an isomorphic sub-representation
such as A, B or symadd(A, B). Despite this lack of uniqueness, we focus ini-
tially on the sub-representations that occur in each of these three representa-
tions. On account of isomorphisms, however, there exist sub-representations
of the standard second order representation that are not in any of these three
components. Many of these are indecomposable, and some are irreducible.

The method used to construct a sub-representation proceeds as follows.
For some large n, choose a group irreducible C Then act on

v(n) by restriction to the leading m x m sub-array giving a vector space
which is necessarily a sub-representation of the group Sm in 7Z"z .

The sequence of vector spaces is a sub-representation of the category
of injective maps on finite sets of cardinality ~ n. To extend this

finite sequence to an infinite sequence, it is necessary to begin at n = oo,
whatever that might mean, and to define the sequence by restriction
to finite squares. The representation generated in this manner may contain
a sub-representation, i.e. it may not be irreducible, but it is necessarily
indecomposable, not expressible as the vector span of two non-zero sub-
representations.

To see how this works, let v(n) = (n) C diag(Rn2 ) be the trivial

group representation by constant diagonal matrices, multiples of the iden-
tity. The restriction of v(n) to the leading m x m sub-array is equal to

C diag(Rm2 ), which is also Sm-irreducible. Thus, the constant dia-
gonal functions ld constitute a trivial I-representation. On the other hand,
if we let V~n> ~--" (n - 1,1) C be the complementary group ir-
reducible consisting of diagonal matrices whose elements sum to zero, the
restriction to a proper m x m sub-array is equal to the set of all m x /?7

diagonal matrices. The zero-sum condition is not preserved by restriction
to subsets. In other words, the restriction of the Sn-irreducible (n - 1,1) is
equal to (m) ® (m -1,1 ), which is clearly not irreducible. That is to the

sequence of vector subspaces diag n C is the smallest Z-representation
that includes the group irreducibles (n - 1, 1 ) C This represen-
tation contains a one-dimensional trivial sub-representation, but there does
not exist a complementary sub-representation.

In the same way, we find that sym* and alt are indecomposable I-
representations containing sub-representations as follows:



For ?~ ~ 2, 1~ is the one-dimensional vector space of constant off-diagonal
matrices. Likewise, symadd~ is the vector subspace consisting of matrices
expressible in the form

for some a E Equivalently, symadd~ is the image of the linear trans-
formation Rn  Rn 2 as defined above. The dimension is zero for n  1,
one for n = 2, and n for n  3. Finally, altaddn is a vector space of di-
mension n - 1 consisting of additive skew-symmetric matrices of the form
a2 - The mappings Rn - Rn2 defined by (gn03B1)ij = cxi + 03B1j for i ~ j
and = aj are the components of two homomorphisms of the
first-order representation into the second-order standard representation.

2.8. General sub-representations

When applied to a group irreducible, v(n), the projection = 

is a representation of Sm in The sequence ~V~n~ ~ is a representation
of the category by surjective linear maps. When applies to the direct
sum of Sn-irreducibles, the projection yields

in which the image spaces may have non-zero intersection. Since we even-
tually let n go to infinity, it is sufficient to consider only the sequences
generated by restriction of Sn-irreducibles. Such representations are neces-
sarily indecomposable in both senses. All other sub-representations of I in
the standard representation are expressible as the span of indecomposables.

be arbitrary real numbers. Consider the Sn-irreducible consisting
of vectors f such that, for some ct E 1 n

For ?~ ~ 3, and for each 8, g5, this irreducible has dimension n - 1 and is
isomorphic with ln ^--’ (n - 1,1). If § = 0 and 8 = -Tr/4, the restric-
tion to m  n elements is an irreducible Sm-representation consisting of
skew-symmetric matrices of the form and this sequence evidently
constitutes an irreducible I-representation. For every other value of 8, 03C6,
the restriction is a representation of 8m of the same form except that the
zero-sum restriction on a is not conserved. These representations are almost
isomorphic with the first-order standard representation, and are indecom-
posable but not irreducible.



The unusual qualifier ’almost’ is inserted here for the following reason.
Let I> = 0 and 8 = 7r/4, so that fij = ai + aj for i # j. . The dimension
of this representation is zero for n = 1, one for n = 2 and n for each

n > 3, whereas the dimension of the first-order standard representation is
n. On dimensional grounds alone, the representations cannot be isomorphic
in the orthodox sense. However, if we restrict the category I to sets of size
at least three, the truncated representations are indeed isomorphic. The

phrase ’almost isomorphic’ is understood in this truncated sense.

To each real I> and -1r /2  8 # Tr/2 there corresponds an indecompos-
able I-representation V8,4>. For (0, Ø) =1= (8’, 4/) the representations V8,4> and
V9~~ may overlap. For example, if ø = 1, the representations corresponding
to 8 = 0 and 8 = Tr/2 are the subspaces fij = ai and fij = aj, conventionally
denoted by A and B. The intersection is the one-dimensional trivial repre-
sentation. However, the representation A + B is in fact I-decomposable in
the strong sense because it can be expressed as symadd 0 altadd. The span
of any subset of the V84> is evidently a decomposable representation, but
any subset of three distinct V’s is sufficient for a basis.

This completes the story for the three isomorphic Sn-representations.
If we do the same thing for the representation (n - 1,1,1 ), with n > 3
we find that the projection for m  n is the space of all skew-symmetric
matrices. This representation is I-indecomposable, but it contains the ad-
ditive sub-representation of dimension n - 1. Likewise, the projection of the
symmetric representation (n - 2, 2) is the space of symmetric off-diagonal
matrices, which contains two sub-representations. Finally, the two trivial
sub-representations 1 and 1 * are non-overlapping and almost isomorphic.

2.9. Symmetry

It is possible to reduce the number of representations by adding fur-
ther symmetry conditions such as invariance under the two-element group
52 that acts by switching rows with columns. While this invariance may
seem appealing on purely algebraic grounds, I have rarely seen compelling
arguments for it in statistical applications. Nonetheless, it is worthwhile

explaining why certain I-representations in the standard representation do
not extend to representations of I x ~2.

The inversion in the group 62 carries (i, j ) to (jay, i), so the orbit decompo-
sition is unaffected. Since fij is carried to fji, the decomposition by diagonal,
symmetric and skew-symmetric matrices is unaffected. The group 62 acts
as the identity on the symmetric matrices, ( f T = f ), but the inversion acts
as the negative identity on skew-symmetric matrices, ( f ~’ = - f). . Conse-



quently, the additive symmetric sub-representation, fij = ctj + aj is carried
to itself element-wise. In the additive skew-symmetric representation, how-
ever, the inversion carries fij = ctj - aj to - f, so these representations are
no longer isomorphic. In effect, 62 splits the three previously isomorphic
representations into two isomorphic representations and one other. The in-
version in 62 carries the subspace Ag = {/ = cxi COS () + aj sin 9~ to ~r/2-~
so Ao is a representation only for 8 = -1r / 4 and B = Tr/4. In particular, the
row factor A = Ao and the column factor B = A7r /2 are not representations
ofTx?2. However ~1+jB ~ A7r /4 EB A-7t" / -1 is a decomposable representation.

Quasi-symmetry and quasi-skew-symmetry are both decomposable sub-
representations of I x 52 :

3. Contingency tables

3.1. . Aggregation of levels

The discussion in section 2 relates to representation-theory for injective
maps, the idea being that the form of the model, i.e. the model formula,
should be unaffected by permutation and selection of factor levels. This
condition seems fairly compelling in certain circumstances, particularly in
connection with explanatory factors having unordered levels. For contin-
gency tables, however, certain factors are explanatory whereas others are
responses. It is extremely important to make this distinction clear because
the relevant algebraic operations on response levels are not the same as the
operations performed on the levels of an explanatory factor. The levels of a
response factor may be aggregated, but the same operation does not make
sense for explanatory factors unless the levels being aggregated are equiva-
lent in their effect. Selection of response levels may also be appropriate when
we talk of conditional distributions. For these reasons, it is appropriate in
connection with contingency tables to develop the representation theory for
all maps, including aggregation and selection, along the lines of section 2.

To illustrate what is involved, consider a response factor initially having
levels denoted by SZ = {a, b, c}, in which levels {a, b~ are aggregated to form
a new binary response factor having two levels. This operation is denoted
by a map cp: SZ -~ 0’ such that



and 0’ = {1,2}. Let f = ( f (a), f (b), f (c) ) be a vector of frequencies, or a
measure defined on the subsets of Then f o ’1’-1 is the measure on SZ’

whose density is

This is a linear transformation cpt : 7Z3 -~ R2 for which the matrix is

Note that the direction of pt is the same as the direction of p, so this

association determines a covariant representation. We focus instead on the

dual, or contravariant, representation in which the matrix is replaced by its
transpose and p* is the dual of put .

3.2. Representation theory

Consider the category A of all maps on finite sets, i.e. injective maps,
surjective maps and compositions of these. The standard representation A
of order one associates with each set S2 the vector space and

with each map ~p: SZ -~ S2’ the linear map cp* - ~Z~ by functional
composition. That is to say, for each f E the image p* f is given by
composition (p* f )(i) = f (cp(i)). Note that if p is injective, p* is surjective,
and if p is surjective p* is injective. The standard representation contains
the one-dimensional trivial representation 1 C A of constant functions. The
restriction of the standard A-representation to injective maps coincides with
the I-representation described in section 2.

For the standard representation of order two, however, the structure of
the sub-representations of A is not exactly the same as the structure of
the sub-representations of I in A2. In particular, there is no partition into
two orbits, and there is no sub-representation corresponding to diagonal
matrices. This is fairly simple to understand. Let f = diag{l, 2, 3, 4~ be the
diagonal matrix of order four, and let p: 3 -~ 4 be the map

Then p* f is the 3 x 3 matrix

which is not a diagonal matrix. On the other hand, if f is zero on the diago-
nal, p* f is also zero on the diagonal, so the off-diagonal matrices constitute



a sub-representation in A2, which splits into symmetric and skew-symmetric
off-diagonal matrices. There is in fact a complementary representation iso-
morphic with A, but this is not unique. In the direct-sum decomposition

A may be identified with the row factor, the column factor, or with the space
of additive symmetric matrices. Regardless of the choice, 1 C A is a one-
dimensional trivial sub-representation consisting of matrices whose elements
are all equal. Furthermore, alt contains an additive sub-representation, but
by contrast with I-representations, sym* is A-irreducible.

If U, V are sub-representations of A in a given representation X, the
intersection and vector span are also sub-representations. Consequently,
the entire set of sub-representations in AZ constitutes a lattice, as shown
in Figure 1 below. The penultimate row lists the three irreducible sub-
representations. -7T/4, the sub-representation A consists
of matrices expressible in the form fij = ai cos 8 + aj sin 8 for some vec-
tor a E A. Then A = Ao and B = A03C0/2 are the row factor and the column
factor respectively. In any event, symmetry, quasi-symmetry, and quasi-
skew-symmetry are all sub-representations.

Figure 1. - Hasse diagram of the sub-representations of A in A2. The off-diagonal
symmetric sub-representation is sym* ; sym is the full symmetric subspace; alt is the full
skew-symmetric subspace; sym+ and alt+ are the additive symmetric and alternating
subspaces; the remaining subrepresentations isomorphic with A have been telescoped

into one, denoted by Ae . Quasi-symmetry is the sub-representation sym + alt+ .

For tables whose rows and columns are indexed by unrelated factors
with unordered levels, the factorial models are the only models that are



closed under permutation and selection of levels. What we aim to do here
is to provide a similar list of the models that are suitable for square con-
tingency tables with rows and columns indexed by the same factor. The
models displayed in Fig. 1 comprise precisely such a list.

3.3. Aggregation and log-linear models

Let be the vector space of square matrices, and let be

the cone of non-negative square matrices. It is helpful for present purposes
to regard vct+ (SZ2) as the set of all non-negative measures on 522, and this
set includes the observed contingency table. To each map ’1’: SZ -~ SZ’ in A
there corresponds a map as described in section 3.1

by composition with the inverse image. Suppose, for example, that S2 =

{1, 2, 3, 4~, SZ’ - ~1, 2, 3~ and

Then the 4 x 4 contingency table in 

is carried by aggregation to the 3 x 3 table in vct(0/2) as shown above.
Note that the direction of pt is the same as the direction of p. Note that

C vct(02) is carried to C by the linear trans-
formation pt, which is in fact the dual, or matrix transpose, of . By
the same token, the subset of symmetric product distributions such that
F(A x B) = G(A)G(B) is preserved by this aggregation operation. These
are both sub-functors in vct(02), and their intersection is also a sub-functor.
They are not sub-representations because vct+ (SZ2 ) is not a vector space,
nor is the set of product distributions a vector space.

Consider a contravariant representation 8, one of the points in the lattice
in Fig. 1. For each set 0 in A, exponential weighting by 8 E 80 carries the
distribution F E to a new distribution Fo such that dFe (x ) =

dF(x) for each x E 522, or equivalently,

Since we are not considering probability distributions here, re-normalization
is not necessary.



Exponential weighting is an instance of a natural transformation g of
functors as illustrated below.

By this diagram we mean that the component 90 of the natural transforma-
tion g is exponential weighting of non-negative distributions 8) = Fo . .
To say that these are the components of a natural transformation is to say
that for each F E and 8 E O~~ , the induced transformations are
such that

Note that is the marginal distribution of F after aggregation or trans-
formation by Sp. The commutativity condition is a consistency condition
to the effect that, if the parameter 9 is constant over the levels to be ag-
gregated, marginalization and exponential weighting can be performed in
either order. This consistency property requires 8 to be a representation
of A; it is not sufficient that 8 be a representation of I. See the remark
concerning the avoidance of inconsistencies in section 7 of Stigler’s paper in
the present volume.

A log-linear model for a square contingency table is determined by the
set of mean measures, which is a subset of vct+ (SZ2 ~ . The parameter space
for a log-linear model has two components, a set of baseline measures C

and a representation 80 C 7Z~2 . The set of baseline measures is
a sub-functor, and exponential weighting gives rise to an enlarged set of
measures as follows.

That is to say, the log-linear model is the set of measures in the image of 9n.
Note that the baseline sets are measures closed under aggregation, but
the image of g is not closed under aggregation. For example, a symmetric
matrix remains symmetric under aggregation, but a quasi-symmetric matrix
does not remain quasi-symmetric.

It is natural to ask why a set of baseline measures is required. Why not
use the uniform distribution on S2 or S22 as a baseline. The answer is that the
uniform distribution does not remain uniform under aggregation of levels,
so aggregation and exponential weighting do not commute.



Generally speaking, the model as described above is over-parameterized,
which is to say that 90 is many-to-one. Thus, only certain functions of the
parameter are identifiable. Furthermore, the same model may be identified
in more than one manner. Thus, for example, quasi-symmetry requires 8 =

QS, but the baseline set can be either the set of symmetric measures, the
set of symmetric product measures, or the set of product measures. These
baseline measures are sub-functors in vct+ and are thus non-negative.

4. Conclusions

Because of the need to incorporate a set of baseline measures in (4), it
may well be the case that two distinct representations 8, 8’ give rise to the
same image, i.e. the same model with a different parameterization. Let 03A6
be the set of symmetric product measures, !~ the set of product measures,
~" the set of symmetric measures, and 8 = QS. Regardless of the choice of
~, the log density with respect to uniform measure on S22 has the form

where is symmetric. The set of log-linear models that can be generated
from ~ as baseline is the set of representations in Fig. 1 that includes sym+,
as follows

the final model being saturated. The conclusion is that, for a square contin-
gency table indexed by homologous factors, there are exactly six log-linear
models with ~ as baseline. The fact that one of these is quasi-symmetry can
hardly be a surprise. But why quasi-skew-symmetry?

Since 03A6 ~ 03A6’ and 03A6 C the set of models that can be generated from
~’ or is a subset of the preceding list. Other than marginal homogeneity
(MH) and measures concentrated on the diagonal, it does not appear that
there is any other sub-functor in vct+, closed under aggregation, that could
serve as a baseline. When marginal homogeneity and diagonal measures are
included in the list, the number of models increases to eight. Among these
eight models, six are in fact sub-functors in vct+, which is to say closed
under aggregation of levels. The log-linear models QS and QSS satisfy the
commutativity condition (4), but they are not closed under aggregation of
levels, so they are not functors in vct+. For example, the 4 x 4 table



is quasi-skew-symmetric in the log-linear sense because mijmji = miimjj up
to rounding error. But the 3 x 3 table formed by aggregating the second and
third rows and columns is not quasi-skew-symmetric. In this sense quasi-
skew-symmetry is similar to quasi-symmetry.

The situation for multi-way tables indexed by k unrelated factors is si-
milar so far as the commutative diagram (4) is concerned. In this situation,
however, we must allow for permutation, selection, or aggregation, indepen-
dently on the levels of each factor. The natural minimal baseline model ~
in vct+ is the set of product measures, i.e. joint distributions for which all
factors are independent. The set of log-linear models generated from this
baseline is then in 1-1 correspondence with the factorial models, also called
hierarchical interaction models, that include all k main effects. For a two-
way table, the only log-linear models are A + B and A.B. For a three-way
table we have A + B + C, A.B + C~3~, A.B + B.C~3~, A.B + B.C + A.C
and A.B.C, making a total of nine models. With the exception of the three
conditional independence models and the one indecomposable model, the
other five are closed under aggregation of levels. The special status that is
sometimes accorded to decomposable log-linear models or graphical models
(Lauritzen, 1996) is not a consequence of representation theory.
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