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Local existence of a solution of a semi-linear wave

equation in a neighborhood of initial characteristic
hypersurfaces(*)

AURORE CABET(~)

RÉSUMÉ. - In this paper we are concerned with a semilinear wave equa-
tion with initial data given on two transversely intersecting null hypersur-
faces in the Minkowski space Rn+1. We prove existence and uniqueness
of a solution in a (one-sided future directed) neighborhood of the initial
data null hypersurfaces.

ABSTRACT. - Dans cet article, nous nous plaçons dans l’espace de
Minkowski Rn+l et nous nous intéressons à une équation d’onde semi-
linéaire avec données initiales sur des hypersurfaces caractéristiques. Nous
prouvons l’existence et l’unicité d’une solution dans un voisinage dirigé
vers le futur d’un côté de ces hypersurfaces.

Annales de la Faculté des Sciences de TouloUSE Vol. XII, n° 1, 2003

1. Introduction

The problem we are interested in here is about a semilinear wave equa-
tion with data given on two transversely intersecting null hypersurfaces.
Many problems with characteristic initial values have been studied in the
last forty years. H. Friedrich [4] has written a few papers about characteris-
tic initial value problem in the context of Einstein’s vacuum field equations
(his work consists essentialy in showing the way to apply the results of
existence and uniqueness of solutions of wave equation with characteristic
initial value). R. Courant and D. Hilbert [3] have shown the uniqueness of a
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solution of wave equation with data prescribed on a characteristic half-cone.
Other works treat the Cauchy problem for quasi-linear equation with data
on a characteristic conoid as F. Cagnac [1], F. Cagnac and M. Dossa [2].
In this article the initial characteristic hypersurfaces are N+, N- defined in
the Minkowsky space JRn+l by

We know by standard results that there exists a global solution in the linear
case. But in the case of a nonlinear hyperbolic equation, the published proofs
give an existence (and uniqueness) of solutions in a neighborhood of the
intersection of the null hypersurfaces, namely neighborhood with a finite
time, as it is done in H. Müller zum Hagen and H.-J. Seifert [5] or A. D.
Rendall [6].
In this paper we propose to demonstrate the existence and uniqueness of
solutions in a one-sided neighborhood of both null hypersurfaces and not
only of their intersection. More precisely, we consider in Rn+1 the problem

82 
where o =-h2 ht2+ 0394x
and cp can be vector-valued .

We show, under certain conditions, that, for any positive real R, there
exists positive reals R’ and R" such that there exists a unique C2 solution
in the domain VR := {0~t-x1~R, 0~t + x1~ R’, (x2,...,xn) E
Rn-1}U{0~ t+x1~ R, 0 ~ t - x1 ~ R", (x2, ..., xn) E Rn-1}, then

U VR gives a one-sided neighborhood of the initial data hypersurfaces. We
R

can visualize a part of this neighborhood by the following figure.

The proof is based on the Galerkin method with estimates of energy in
some special Sobolev spaces. The mathematics tools used in this article are
very classical, but the originality here is to apply a standard method by
considering a isotropic direction as the time direction. Moreover the imple-
mentation of the different parts of the proof are not so trivial.
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The structure of this article is organised as follows.
We start in section 2 by a short presentation and results about the spaces
in which we will work. In the third section, we give the assumptions on the
functions F, cp+, - and we transform the problem to obtain an equation
more convenient with a new function (,u,u,y) ~ (,u,v,y) where u =
(t - x1)/2 , v = (t + x1)/2 , y = (x2, ..., xn ) and H vanishes at (0, u, 0, y).
In section 4, we construct a spectral approximation of a solution of the
precedent equation. Then we estimate in the fifth section the energy of
these solutions in the spaces introduced at the beginning. We deduce of this
in section 6 the existence of a solution cp and we discuss its regularity. After
that in section 7 we come back to the first equation and discuss also the
regularity and uniqueness of the solution of the problem (1.1), to prove the
uniqueness we use a classical tool namely the energy-momentum tensor. In
section 8, we resume the results obtained in the simpler case of dimension
1 + 1 where we can work in Sobolev spaces Hk.
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2. Spaces Hm,k

Let R be a strictly positive real, and Tn-1 a torus of length T in each
direction. We will work in the spaces Hm,k where

with derivatives of cp understood in the distribution sense. Hm,k is a Hilbert
space hence it is reflexive.

We take a orthonormal basis of L2([0; 2R] x 1rn-l). So we set

We know tha ’0: and we have

The proofs of the following results are similar as in the classical Sobolev
spaces Ws,p and can be found in Appendix A.

LEMMA 2.1.2013 We have the equivalence 

LEMMA 2.2. - Let l a positive integer.

LEMMA 2.3. 2013 If k  k’ then Hm,k’ Hm,k with compact embedding.
Similarly, if m  m’ then Hm’,k  Hm,k with compact embedding.
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LEMMA 2.4. 2013 If f E Hm,k  Hm,k’ with k  k’ then  03B3 E [0 ; 1],
f E Hm,03B3k+(1-03B3)k’ and Il f ~Hm,03B3k+(1-03B3)k’ ~ ~ f ~03B3Hm,k Il f ~1-03B3Hm,k’.
Similarly, if f E Hm,k n Hm’,k with m  m’ then 03B3 E [0; 1],
f E H03B3m+(1-y)m’,k and Il f ~H03B3m+(1-y)m’,k il f ~03B3Hm,k ~ f ~1-yHm’k.

3. Transformation of the problem

In this section, we show how we transform the problem (1.1) to obtain
a problem where the first equation is replaced by an equation of the form

where u t-x1 2, v =t+x1 2, y = (x2, ...,xn) and (0,u,0,y) vanishes.
We notice that N+ = {v = 0,u~, 0, y ~ Rn-1} and N- = lu = 0,v ~ 0,

y,~Rn-1}.

If the funetion ~ satisfies h2 huhv ~ = h2 huhu ~ the equation becomes:

Concerning regularity of the functions F, ~+, ~- in the problem (1.1),
we shall assume for the moment that there exists m ~ N such that the

following holds :

(i) F : (0, t, xl, y) ~ F(03B8, t, x1,y) satisfies that for any a, bEN,
0~a~1,0~b~1,03B3~N, 03BC~ Nn-1, 0~03B3+|03BC|~m+1
DatDbx1D03B303B8D03BCyF is continuous in all its variables.

(ii) ~+ is of class Cm+5, cp_ Cm+4 and ~+, ~- satisfy the corner condi-
tion :

~+(0, y) = ~- (0, y).

(iii) There exists a real T &#x3E; 0 such that F, ~+, ~- are T-periodic in each
Yi.

Remark. - The corner conditions are only those in (ii) because for the
partial derivatives with respect to u or v separately, we have
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and for the partial derivatives with respect to mixed u and v, the corner
conditions are assumed by the equation (3.1), namely

By induction, we get higher derivatives with respect to mixed u and v at
(0,0,y). ~

With the definitions of H, u and v above, we see that H satisfies : for any
0~a~1,0~b~1,0~03B3+|03BC|~m+1, DauDbvD03B303B8D03BCyH continuous in all
its variables.

After that we calculate h hv ~(u, 0, y) with the initial values as follows: we
know that

(we can invert 0394y and the limit in v = 0 because ~ is supposed C2 in all
its variables, for the same reason we will invert 8v and the limit in u = 0 in
the second line below). So by integrating in u, we obtain

Then we set

Thus cp and its first derivative in v vanish at v = 0. On another hand, if we
take the equation (3.1) and put cp in it, we obtain



-53-

 has the same regularity as H because 03B4(~+, ~-), Dy03B4(~+, ~-) and

h2 huhv 03B4(~+, ~-) are of class C’+’.
If we look the value of fI + Dy cp at v = 0 we can see that it vanishes:

But if cp is supposed C2 in all its variables, then  is continuous in all its vari-

ables, so we can invert Ay and the limit in v = 0, thus 0394y (~) (u, v, y) |v=0 =
0, hence we have

So in setting

we want now to solve the problem:

where the assumptions of the regularity of the functions  and - are the
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following:

(i) H : (03B8, u, v, y) ~ (03B8, u, v, y) satisfies that a,b~N, 0  a  1 ,
0~b~ 1 , 03B3~N, 03BC~Nn-1, 0~03B3 + |03BC| ~ m+1,

DauDbvD03B303B8D03BCy is continuous in ail its variables (3.6)
(ii) ~- is of class Cm+4
(iii) there exists a real T &#x3E; 0 such that H, ~- are T-periodic in each y2.

4. Spectral approximation of ~

We take an arbitrary real R &#x3E; 0. Let 03B5 =03A3 03C803B1, &#x3E;03C8a. We

know that there exists a continuation of 77 in v from [0; R] to [0; 2R] such
that for any 0~a~1,0~03B3+|03BC|~m+1 we have DvaD03B303B8D03BCy  continuous
in ail its variables (indeed, it suffices to set for v &#x3E; R , (03B8,u,v,y)=
H(03B8,u,R,y) + (v - R) h hv (03B8,u,R,y)) . The function  in the following
will be this function multiplied by a smooth eut off function ~R of v equal
to 1 on [0; R] and to 0 on [3R 4; 2R]. Similarly, there exists a continuation of
~- in v from [0; R] to [0; 2R] of class Ck in all its variables. The function
- in the following will be this function multiplied by ~R.

We will build a solution 03B5 of the problem:

We first show the existence of the 03B5 By the first equation of problen
(4.1), 03B5, has a finite number of components 03B5,03B1 :

We differentiate 03B5 in v, after in u, on one hand, we have
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On another hand we have by using the second equation of the problem
(4.1) : 

Hence with these both results, by making scalar product by 03C803B1 (recall
that (03C803B1)03B1~Zn is an orthonormal basis), we can identify the components:

We can distinguish two cases. First if Go ~ 0 we obtain h hu03B5,03B1(u) =
Fa((03B5,03B2)|03B2|~1 ~, u) with F and continuous in all their variables

((~~,03B2)|03B2|~1 ~,u) because fI and DefI are continuous in all their variables
and , &#x3E; is sesquilinear.

Now, if Go = 0, to assume the third equation of problem (4.1) we want
that

03B5(u,0,y)= 03A3 03B5,03B1(u)(2R)-1 2T-n-1 2e2a.y203C0 T= 0.

Recall that a = (a0, a), we can decompose this sum in a sum on a and a
sum on ao, and as ao just intervenes in ~03B5,03B1 we obtain :

03A3 ( 03A3 0. As this holds for

lal~103B5 {03B10;|(a0a)|~1 03B5}
every y in Tn- 1 we necessarily have
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hence we define ~03B5,(0,a) by

Finally all the ~03B5,(0.a) are C1-function of the ~03B5,(a0,a) with a0 ~ 0 so

we can ex ress 
a 

u) in function of((~03B503B2 u) as follows :we can express in function of as follows :

with Fa and h h03B5,03B2 Fa continuous in all their variables.

By the theorem of Cauchy-Lipschitz, we know that if a function f is

continuous, locally Lipschitz with respect to its second variable, the problem
y’ = f (t,y) with y(to) = yo has a unique C1-solution y(t) on a maximal
open interval I. Here we take 

For all 03B5 &#x3E; 0, there exists a maximal open interval I03B5 containing zero,
in which we have a unique solution 03B5 ~ C1 in u (the

are given by (4.2)).

Moreover, 03B5 is smooth in (v, y) on [0;2R] x Tn-1, so we can commute
all the partial derivatives in v and y2 at any order. And as for all 03B2 in N,
03B3 in Nn-1, h03B2 hv03B2 h03B3 hy03B3 03B5 is a finite sum of products of C1-function in u by
C1-function in (v, y), we have h03B2 hv03B2 h03B3 hy03B3 03B5 in C1 (I03B5 x [0;2R] x Tn-1). So we
can commute h hu with all the partial derivatives in v and y2 at any order.

Remark. 2013 In all this section if we keep the expression of  with H and

03B4(~+, (~-), we see that we just need the following assumptions:

(i) H : (0, u, v, y) ~ H(03B8, u, v, y) satisfies that
H and hH h03B8 are continuous in all their variables
Vz = 1,..., n-1, h2H h03B82, h2H hyih03B8, h2H h03B8hyi, h2H hy2i, are continuous in variable y

(ii) ~+ is of class C4 or HS with s &#x3E; 7 2 -E- 2
(iii) ~- is of class C3 or Hs-1
(iv) there exists a real T &#x3E; 0 such that H, ~+, ~- are T-periodic in each y
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(when we take ~+ in Hs, the gain of an "half order" of derivative in com-
parison with the embedding HS  C4 for s &#x3E; 4 + n 2 comes from the fact
that at a certain step we just need the continuity of ~+ in variable y).

5. Estimation of 03B5(u) Hm,2

To estimate 03B5 (u) Hm,2’ we will first bound d du 03B5 (u) Hm,2 bY a
continuous function of 03B5 (u) Hm,2 and then we will use the Gronwall
lemma.

PROPOSITION 5.1. If m &#x3E; n2l , we have the following estimation

with F continuous in both variables.

Remarks

1) The assumption m &#x3E; n2l comes from the embedding Hm, 2 in LOO and
so we can bound (03B5, u, v, y) by a function of the norm Hm,2 of ~03B5, (U) -

2) By writing in details the partial derivatives of  with the function H
and 03B4(~+, ~- ), we can reduce the assumptions on ~+, ~- . Then, for this
proposition, we can replace assumptions on ~+, ~- by the followings:
~+ E C4 n Hm+5 or ~+ ~ Hs with s &#x3E;7 2 + n 2 and s ~ m + 5
~- E C3 n Hm+4 or ~- E Hs-1.

3) If the functions H and ’P- are not T-periodic in each y2 or not defined
on Rn-1 in their variable y, we can get the existence (and uniqueness) of a
solution of the problem (1.1) but in a smaller domain. We will see this in
theorem 7.3.

Proof

1. Estimation of du d (U) 2L2.
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a2 ~ 
a2 

~

As equals and so is continuous, we also have by integration
in v:

But ~03B5 is C1 in variable (u, v) so we can invert in the expression
the limit in v = 0 and the limit in h = 0 cor-

h

responding to h hu. As ~03B5(u + h, 0, y) = 03B5(u,0,y) = 0 given by the third
92

equation in (4.1) we obtain h hu (03B5) (u,0,y)= 0. Now, by using h hvhu ~
equals h2 huhv 03B5 and the second equation of (4.1) we obtain

On one hand, by using Cauchy-Schwarz inequality in L2 ([0; v]) and the
fact that v is in [0; 2R] we have for the first term of the sum in the right
member of (5.2)

And so by definition of the norm L2 we deduce

By using Cauchy-Schwarz inequality in L2 (Tn-1) and the inequality above,
we obtain

We know by Plancherel’s theorem that for any (2R Tn-1 )-periodic functior
f we have ~f~2L2= 03A3 |03C803B1,f&#x3E;|2 so

03B1~Zn+1
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and as the function fI is continuous we can bound as follows

wherE
obtai :

with CR continuous in all its variables.

On another hand, for the second term of the sum in the right member
of (5.2), we have in the same way

Finally, we integrate in v and add these two estimations, so we obtain

hence as if m &#x3E; n-1 2 we have Hm,2([0;2$] x Tn-1) C L~({0;2R] x Tn-1)
(see lemma 2.2), and we can write

with CIR continuous in all its variables.
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2. Estimation 

Let 03B2 ~ Nn-1, 1 |03B2|~ m , we denote hp hy03B2 where 03B2 = (03B21, ...,03B2-1) to

mean that we differentiate |03B2i| times with respect to yi.

As h03B2 hy03B2 03B5 is in C1 (I03B5 x [0;2R] x Tn-1) we can commute du d and and
after as we have done for h hu 03B5 in (5.1) we use that h03B2+2 hvhuhy03B2 03B5 equals

h03B2+2 huhvhy03B2 03B5 
and so is continuous , hence

We can show that (h hu (h03B2 hy03B2)) (u, 0, y) equal zero in the same way as we
have done for la (03B5) (u, 0, y) = 0 because for any (u, y) in I03B5 xTn-1, we haveau

03B5(u,0, y) = 0 , and for any |03B3| ~|03B2|, h03B3 hy03B3 (03B5) 
is in C~(I03B5 x [0; 2R] x Tn-1)

so we can invert the limits in v = 0 and in hl = 0,..., h03B2+1 = 0 for the
partial derivatives in u and y03B2 .

h03B2+2 h03B2+2
Finally, as and by using the second equa-

tion of (4.1), we obtain

8(3 A - 8(3 -
Now we will show that = 

By the definition of 03B5, and in the end by doing an integration by parts, we
have
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where [/(zi)]zi~T means f (b) - f (a) if T = [a; b]. We have supposed that H
and - are T-periodic in each y2 , it implies that 03B5 is T-periodic in each y2
(by uniqueness of solution given by the Cauchy-Lipschitz theorem in section
4), thus the first part of the second member in the equation above vanishes
and we have

For higher derivatives, we proceed by recurrence with the same method

(we can notice that for any h’ +v|~|03B2| , the functions 
are also T-periodic in each y2). So the following holds:
For any 03B2 ~ N"’B 1~03B2~ m ,

Hence we obtain

(we can put h03B2 hy03B2 03B5 under fô by continuity of the functions on [0; 2R] x Tn-1).
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Now for the first part, as we have done before, by using the fact that v
is in [0; 2R], Cauchy-Schwarz inequality, and (5.3) we can bound as follows

Therefore we notice that h03B2 hy03B2(03B5,u,s,y) is a sum of

By assumption (3.6) we know that h h03B803B4hy03BC H is continuous, so when we take

the norm L of h03B2 hy03B2 (03B5, u, 5, y), we can extract it, thus we obtain

where 039803B5, = [- Il 03B5(u) Then

as we know that is in C0(Tn-1) n Hm(Tn-1), we can apply the
proposition 3.6 page 9 of Taylor [7] (which is still available with Tn-1 instead
of Rn) with f =g = ~03B5, (u,v), thus we get

Now we integrate the square of this inequality in v on [0; 2R], it gives
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Hence we have

Therefore if m &#x3E; n-1 2, we obtain

with C2R continuous in all its variables.

Then by integrating in v on [0; 2R]

On another hand, for the second part, by continuity of the functions we
can commute fTn-1 and Fv0, and as h03B2-1 hy03B2-1 03B5 is T-periodic in each yi, we
have by integrating by parts in each y on T:

Thus
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3. Estimation c

For an

we can commute 
d 

and anwe can du and an

Then by using the second equation of (4.1) and (5.5) , we obtain

As we have done in (5.6), we can deduce that

with C3R continuous in all its variables.

For the second part, by integrating by parts in each y2 on T , as h03B2+1 hvhy03B2

and h03B2+1 hyiyy03B2 03B5 are T-periodic in each Yi, we have:

We know tha



-65-

But h hyihy03B2 03B5 (u, 0, y) = 0 , indeed it cornes from the third equation of

(4.1) and the continuit y of all the functions h03B3 hu03B3 03B5 on [0;2R] x Tn-1, soay
we get

Finally, we have if m &#x3E; n - 1,

with C3R continuous in all its variables.

4. Estimation of d du ~ ~2 ~v2 ~03B2 ~y03B203B5(u) ~2L2.

For any /3 ~ N"-B 0  |03B2|  m , as ~2 ~u2 ~03B2~y03B203B5 is in C1(I03B5 x [0;2R] x
Tn- 1) and 

~03B2+3 ~u~v2~y03B2
03B5 

equals 
~03B2+3 ~v~y03B2~u~v

03B5 we can proceed as before, so
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We estimate the first part of (5.9) corresponding to the first term in thE
sum beyond. By (5.5) we have

Now by integrating by parts on [0; 2R], we obtain

where [f(w)]2R0 means f(2R) - f(0).

But ~03B2 ~y03B2((03B5(u, 2R, z), u, 2R, z)) = 0, indeed H is a product of a func-
tion f by v H ~R(v), so for any v such that |03BD|  |03B2|, ~03BD~y03BD = ~R~03BD ~y03BDf
and ~R(2R) = 0.

On another hand, ~03B2~u03B2((03B5(u, 0, z), u, 0, z)) = 0. Indeed

For the first term, 03B5(u, 0, z) = 0 and we can invert in the expression
((03B8, u, v, y + hei) - (03B8, u, v, y))/h the limit in (03B8, v) = (0,0) and the
limit in h = 0 corresponding to âyi because of the regularity of H. As
(0, u, 0, y) = 0 for any (u, y) (see (3.3)), this first term vanishes at v = 0.
For the second term, we already have seen that (~ ~yi03B5)(u,0,y) = 0 so it
vanishes at v = 0. For higher derivatives we proceed similarly.
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Hence we obtain

Remark. 2013 We can see here that we can’t get an estimation with higher
derivatives than two in v. Indeed, in ~2 ~v203B5(03B5, u, v, y) appears a term
~ ~03B8(03B5(u, 0, y). u, 0, y)~ ~v03B5(u, 0, y) under thé sum on |03B1|  1 03B5 and there’s
no reason for it to vanish. Then if we keep it, the estimation contains a
factor of type c(1 03B5) which is not uniformly bounded as 03B5 goes to 0.

Now we can write that if m &#x3E; n-1 2,

because of the assumptions (3.6) on H, with C4R continuous in all its vari-
ables. Indeed we bound the second factor of the right member above as we
have done in (5.6), by applying the proposition 3.6 page 9 of Taylor [7] with
f = 03B5 (u, v) and g = ~ ~v03B5(u, v), it gives

We integrate the square of this inequality in v on [0; 2R], use that (A+B)2 
2(A2 + B2), thus we obtain by taking the square root and as (A + B) 
~(A) + ~(B),
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Then as ~ ~v03B5(u) is in Hm,1 and as if m &#x3E; n-1 2, we have the embedding
71,,, in Loo, we get

with c continuous.

Now, we estimate the second part of (5.9) corresponding to the second
term. We know that we can commute any partial derivatives in v and in y2
on 03B5. By integrating by parts in each yi on TT, as ~03B2+2 ~v2~y03B203B5 and ~03B2+2 ~v~y03B2~yi03B5
are T-periodic, we obtain 

The first term is less or equal to zero. For the second one, as ~ ~v~ ~yi~03B2 ~y03B203B5
is in C1(I03B5 x [0; 2R] x Tn-1) we can write

Then as 03B5(0, v, y) = 03B5-(v,y), and by the fact that we can commute the
partial derivatives, we have
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We have seen in (5.5) that we can commute 03B5 with the partial derivatives
with respect to y, and ~03B2+1 ~yi~y03B2(03B5, u, v, y) is a sum of

by proceeding as we have done in (5.10) because ’P- is T-periodic, ’P- is a

product with a factor OR and ~03B2+1 ~yi~y03B2-(0, z) = 0. Indeed by (3.4)

by the corner condition ~-(0,y) = ~+(0,y). Now as Il if ~L2(Tn-1
Il f ~L2(Tn-1), we get

by the assumptions on ’P-’
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Finally, we obtain if m &#x3E; n2l,

with C4R continuous in all its variables.

5. Conclusion
Now it suffices to add (5.4), (5.7), (5.8), (5.11), and we can conclude that
if m &#x3E; n-1

with F continuous in both variables.

PROPOSITION 5.2. - If m &#x3E; n-1 2 , there exists a interval [0; BR[ and a
function hR : [0; BR[~ R such that

(i) 03B5 exist on [0; BR[ x [0; 2R] x Tn-1

(ii) we have the following estimation for all u in [0; BR[

with hR continuous in its variable.

Proof.2013 We first apply the nonlinear differential Gronwall’s lemma,
recall if f is C1(I) with I real interval including 0, f(0)  M, df dt  F(f, t).
and F continuous then there exists l(M) including 0 and a continuous
function GM : t ~ GM(t) defined on 7(M) such that f(t)  GM(t) on
I~I(M)~R+.
Hère f(u) =~ 03B5(u) ~2Hm,2([0;2R] Tn-1), f(0) =~ - ~2Hm,2([0;2R) Tn-1)
c(R) and I = I03B5.
So there exists 7(c(R)) including 0 and GR : u ~ GR(u) continuous and
defined on 7(c(R)) such that ~ 03B5(u) ~2Hm,2([0;2R) Tn-1) GR(u) for all u in
I03B5~I(R)~R+.

Let [0; BR[= I(c(R))~R+. Now we want to show that [0; Br[ is included
in I03B5. Let I03B5 =]-T-03B5; T+03B5 the maximal interval of existence of 03B5 with respect
to its variable u. Suppose that T+03B5  BR , we set c2 = max GR(u) then

we have
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Let K = [0; 2T+03B5] , c &#x3E; 0 , by the theorem of Cauchy-Lipschitz, there exists
Tc,K &#x3E; 0 such that the solution of

with the initial value 03B5(t0) (to E K) satisfying Il 03B5(t0) ~Hm,2([0;2R] Tn-1)
 c, exists on [to; to + Tc,K].
Let v03B5(u) = 03B5(u) for all u in [0;T+03B5 - Tc,K 2] , and v03B5(u) solution of (*)
with, at to = T+03B5 - 2 v03B5(T+03B5 - TC2K) = 03B5(T+03B5 - Tc,K 2) (indeed ~ 03B5(T+03B5 -
Tc,K 2) ~Hm,2([0;2R] Tn-1) c ).
Hence v exists on [T+ - 2 T+03B5 + Tc,K 2], v03B5 is a solution on [0; Te + 2
which is contrary of maximality of ] - Tg*; T+03B5[. So we obtain that [0; BR[ is
included in I03B5.

6. Existence of 

We can show now the following proposition

PROPOSITION 6.1. - If m &#x3E; n-1 2 + 2 , there exists a solution cp for the
problem (3.5) with assumptions (3.6), and this solution is in C0([0; R] x
Tn-1). 
Moreover, if m &#x3E; max(n - 1, n 21 + 2) then cp is in C0(I x [0; R] x Tn-1).
Moreover, for all l  2, if m &#x3E; max(n - l, 2 + 4 + l), and if for any
0  a  l - 1, 0  b  l - 1, 0  03B3 + |03BC|  m + 1, DatDbx1D03B303B8D03BCyF is
continuous in all its variables. then  is in Cl (I x [0; R] x Tn-1).

Remark. - We suppose that n  2, the results for the case n = 1 state
in section 8.

Proof of the proposition 6.1. - In the first step we prove the existence
of a solution , then in the second step we study its regularity.

1. Existence of a solution of the problem (3.5).

We have shown in the proposition 5.2 that for any 03B5 &#x3E; 0 , 03B5 exist on
[0; BR[ [0; R] x Tn-1 and Vu E [0; BR[, Il 03B5(u) ~Hm,2([0;R] Tn-1)  hR(U)
with hR continuous. 
So on I = [0; BR 2] we have Il 03B5(u) ~Hm,2([0;R] Tn-1) max i - hR 

= c.

Thus for any u in 1, 03B5(u) is bounded in Hm,2([0; R] x Tn-1). As this space
is reflexive , we can extract a sub-sequence 03B5’ (u) which weakly converges
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to cp(u) in Hm,2 and ~ (u) ~Hm,2  lim inf ~ 03B5(u) ~Hm,2 c so  is in
L~(I, Hm,2([0; R]  Tn-1)).

By compactness of embedding Hm,2  Hm,0 (see lemma 2.3 ), if (03B5’(u))
weakly converges to (u) in Hm,2 , then (03B5’(u)) strongly converges to (u)
in Hm,0 . By interpolation (see lemma (2.4) with 03BD = k 2) , if 0  k  2 we
have

From which we can deduce that (03B5’ (u)) strongly converges to (u) in Hm,k.
In particular, if k = 1 , by inclusion Hm,1 C CO (see lemma 2.2 ) we see
that (03B5’ (u)) strongly converges to (u) in C0([0; R] x Tn-1).
Then by continuity of R , we get ((03B5’(u),u)) strongly converges to
((u), u) in C0([0; R] x Tn-1).
Now by observing that

and that

with Il 03B5’ - Id ~L(L2,H1)~ 0 and ~ (03B5’(u),u) ~C0 bounded, we can show
that

Now we show the convergence of the partial derivative of 03B5’ with respect
to v. We have

and Hm,1 is reflexive so we can extract a subsequence (~ ~v03B5" (u)) of (~ ~v03B5’ (u )
which weakly converges in Hm,1 (then strongly in Hm-1,1 by compactness
of the embedding Hm,1  Hm-1,1) to (u) E Hm,1 and ~ (u) ~m,1  c.
Now we verify that (u) = ~ ~v(u). Weakly convergence in Hm,1([0; R] x
Tn-1) implies weakly convergence in L2([0; R]  Tn-1), itself implies conver-
gence in D’([0; R] x Tn-1). So on one hand, ~ ~v03B5" (u) ~ (u) in D’([0; R] x
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Tn-1) and on another hand 03B5"(u) ~ cp(u) in D’([0;R] x Tn-1) , hence
~ ~v03B5"(u) ~ ~ ~v(u) in D’([0; R] x Tn-1). By uniqueness of the limit in
D’([0; R]  Tn-1) we get (u) = ~ ~v(u).

In the following we see that ~ ~v03B5" (u) converges to ~ ~v(u) in C0([0; R] x
Tn-1). It suffices to apply the argument of interpolation:
for all 03BC such that 1  03BC  m let 03C3 defined by 03BC = 03C3 + (1 - 03C3)m, we have

Thus

In particular, if we choose m - 1  03BC  m, as m - 1 &#x3E; n 21 H03BC,1  Co,
so

Similarly, we can show the following lemma that we need for the moment
with D03B1y = 0394y:

LEMMA 6.1. 2013 If m - |03B1| &#x3E; n-1 2 , D03B1y(u) is in C0([0; R]  Tn-1).

Proof of lemma 6.1. 2013 For all |03B1|  m ,we have ~ D03B1y03B5" (u) ~Hm-|03B1|,2 
~ 03B5"(u) ~Hm,2  c . So we can extract a subsequence (that we will dénote
also 03B5" for more commodity) weakly convergent in Hm-|03B1|,2 then strongly
in Hm-|03B1|,1. Arguing by uniqueness of the limit in D’([0; R] x Tn-1), we
show that its limit is D03B1y(u).
By interpolation, for all 0  k  2 , ~ D03B1y03B5"(u) - D03B1y(u) ~Hm-|03B1|,k ~ 0.
In particular, if k = 1 , as m - |03B1| &#x3E; n-1 2 by embedding Hm-|03B1|,1  C0,
we get

Then as C0([0; R] x Tn-1) is a complète space, we get that D03B1y(u) is in

C0([0; R]  Tn-1). D

By applying this lemma with D03B1y = ~2 ~y2i and adding on i = 1,..., n-1, we
obtain that if m &#x3E; 2 + n-1 2, Dycp(u) is in C0([0; R] x Tn-1). We will deduce
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from these results that cp is a solution of the problem (3.5). Indeed,on one
hand, from the continuity of ~2 ~u~v 03B5" (u) we have

~ ~v03B5" (u) - ~ ~v03B5"(0) = u0 ~2 ~u~v03B5"(03C3)d03C3. Therefore we use the theorem
of dominated convergence of Lebesgue. By the convergence of 0394y03B5" (a)
and (6.1) we can say that, for all 03C3 in I, ~2 ~u~v03B5"(03C3) = 03B5"(03B5"(03C3),03C3) +
Ay (u) converges to ((03C3), a) + 0394y(03C3) in C0([0; R] x Tn-1). And
Il ~2~u~v03B5" ~L~(I,C0([0;R] Tn-1))
= max ~ 03B5" (03B5" (03C3), 03C3) + 0394y03B5" (03C3) ~C0([0;R] Tn-1)  R which is in

L1 ([0, u]).
So fou ~2 ~u~v03B5"(03C3d03C3 ~ fou ((03C3), 03C3)+0394y(03C3)d03C3 in C0([0; R] Tn-1). Fur-
thermore, ~ ~v03B5"(u) - ~ ~n03B5"(0) - for ((03C3),03C3)+0394y(03C3)d03C3 in C0([0;R] x
av ).
On another hand, by (6.2) ~ ~v03B5"(u) - ~ ~u(u) - ~ ~u(0) in
C0([0; R] x Tn-1). Hence by uniqueness of the limit in C0([0; R] x Tn-1) we
get
~ ~v(u) - ~ ~v(0) - ~u0 ((03C3), 03C3) + 0394y(03C3)d03C3.
Then we differentiate with respect to u and we obtain

We notice that (u, 0, y) = 0 is given by 03B5" (u, 0, y) = 0 and the con-
vergence of 03B5"(u) in C0 ([0; R] x Tn-1).
For the last equation of the problem (3.5), we recall that 03B5"(0,v,y) =
03B5"-(v,y), and as

with Il J03B5’ - Id ~£(L2,H1) ~ 0 and ~ cp- ~Co finite, we can show thai

Now with the convergence of 03B5" (0) in C0([0; R] x Tn-1) and the uniqueness
of the limit we can conclude that (0, v, y) = -(v, y).

2. Regularity of cp.

Now we are going to show that  is CO (I x [0 ; R] x Tn-1). To reach
this goal, we will show that  is in C0,1(I, Hm’,1 ([0; R] x Tn-1)) with m’ &#x3E;

(n - 1)/2 By the continuity in v of ~ ~v , we can write:
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Let m’ = m/2 , as we have seen beyond (u+h, 0, y) = 0 and (u, 0, y) = 0,
so

Here we need the following lemma, the proof of which can be found in
appendix B:

LEMMA 6.2.2013 Suppose that f is a function of (s,y) such that for all
0  v  m’, Dvyf is in C0([0;R] x Tn-1), then

Here by using lemma 6.1 with a = v, we get that if m - m’ &#x3E; (n - 1)/2
i.e. m &#x3E; n - 1, then for all 0  |v|  m’ , Dvy(u) is in C0([0; R] x Tn-1).
So we can apply the lemma 6.2 on ~ ~u(u + h,s,y) - ~ ~v(u,s,y), and by
observing that 

On another hand we know that for all 1  03BC  m,

Hence

Recall that ~2 ~u~v03B5" is continuous in all its variables (u, v, y), so we have

Then we need the following lemma, the proof of which can be found in
appendix B:
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LEMMA 6.4. - If (u, v, y) ~ f (u, v, y) is a function such that for all
0  |v|  03BC, 0  a  1, DavDvyf is continuous in all its variables, then

Now we apply the lemma above to f = ~2~u~v03B5" , so we obtain

But

with Il 03B5"(03C3)~L~,03C3,~ 03B5"(03C3) ~H03BC,1,~ 03B5"(03C3) ~H03BC+2,1 bounded on I. Hence,

Thus, we have with 03BC = m’ (as n  2 and m’ = 2 - 2 max(n - 1 ; n-1 2 + 2)
we get 1  m’  m)

From (6.4), (6.5), (6.6), we can deduce that

It means that cp is in C0,1 (1, Hm’,1 ([0; R] x tn-1)).
But C0,1(I,Hm’,1([0;R] x Tn-1)) C C0(I,Hm’,1([0;R] x Tn-1)), and as
m’ &#x3E; (n - 1)/2 i.e. m &#x3E; n - 1 we have C0(I, Hm’,1([0;R] x Tn-1)) C
CO (I, C0([0; R]  Tn-1)) = C0(I x [0; R] x Tn-1), which allows us to conclude
that

Now we show that under certain conditions cp is in C2(I x [0; R] x Tn - 1).
We start by getting ~2 ~u~v cp in C0(I x [0; R] x Tn-1). As  is continuous in

all its variables, we have (u, v, y) t-1- (, u, v, y) is in C0(I x [0; R] x Tn-1).
So it suffices to prove that 0394y is continuous. Here we introduce a lemma
because we will need it later too. Its proof can be found at the end of the
section.
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LEMMA 6.5.2013 If m - |03B1| - 2 &#x3E; n-1 2 , D03B1y is in C0(I  [0;R]  Tn-1).
We apply this lemma to Dy and finally, we obtain that if m &#x3E; max(n -

1, n-1 2 + 4) () + 0394y is in C0(I  [0;R] x Tn-1). Now by the equality
(6.3), we get

Then we show that  is in C2(I x [0;R] x Tn-1). First we can deduce
from the result above that ~ ~v is continuous in all its variables. Indeed

By the definition of _ we see that ~ ~v- (v, y) = ~ ~v~- (v, y) - ~ ~v~(0,0, y) =
~ ~v~-(v,y) - ~ ~v~-(0,y). As ~- is C"2+4, we get

Now by this continuity of tv cp we can write that

We differentiate in u and with (6.7), we get

So

If we differentiate this equality in v, we obtain
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For derivatives in y2 of first and second order we just have to apply the
lemma ? ?.

We differentiate (6.10) in y2 and as cp satisfies the equation (6.3), it gives

If ~ ~yi and ~ ~c are continuous in all their variables that it is the case

by the assumptions on , and if ~ ~yi is continuous in all its variables

that it is the case if m &#x3E; max(n - 1, n-1 2 + 5), we have ~ ~yi ((, u, s, y) +
0394y(u, s, y)) = (~ ~yi)(, u, s, y) + (~ ~03B8)(, u, s, y)~ ~yi+~ ~yi0394y(u, s, y))
continuous in all its variables. So we can commute fô and ~ ~yi and conclude
that 

By the continuity of au we can write

As we have shown that ~2 ~yi~u is continuous, we have

We differentiate this equality in u, thus

For ~2 ~yi~v we differentiate (6.8) in yi and as we have done for a2
we obtain that if m &#x3E; max(n - 1, n-1 2 + 5)

Now we differentiate the equality (6.9) first in y2 , then in v, hencE
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It remains to show that ~2 ~u2  and ~2 ~v2  are continuous. For this we
will see that we need the continuity of ~2 ~y2i 0394y  and so we must take m &#x3E;

max(n - 1, n21 + 6) . We start by differentiating in u the equality (6.10)
and as cp satisfies the equation (6.3), we obtain

We notice that

~ ~u((, u, s, y)+0394y(u, s, y)) = (~ ~u)(, u, s, y)+(~ ~03B8)(, u, s, y,)~ ~u+
~ ~u0394(u, s, y)). The both first terms of the right member are continuous by
the assumptions on  and the results above. For ~ ~u 0394y we look at ~3 ~y2i~u.
If m &#x3E; max(n-1, n-1 2 + 6), ~2 ~y2i0394y is continuous and by the assumptions
on jy, we have the continuity of

So by differentiating the equality (6.12) in y2, we get

Hence

Now we differentiate the equality (6.13) first in yi, then in u, and so we
obtain

It suffices to add on y2 to get the continuity of ~ ~u0394y. Finally we can say
that if m &#x3E; max(n-1, n-1 2 + 6),
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We proceed similarly for ~2 ~v2  (we have supplementary terms, ~2 ~v2-
and ~3 ~y2i~v - which are continuous by assumptions on -). If m &#x3E; max(n -
1, n21 + 6),

At the end, all the results above allow us to conclude that if m &#x3E; max(n-
1, n-1 2 + 6),

For the class Cl we follow the same method and so we take m &#x3E; max(n-
1, n-1 2 + l + 4), but we need also greater assumptions on  and so on H,
that is to say

for any 0  a  l -1, 0  b  l -1, 0  03B3 + |03BC|  m + 1, DauDbvD03B303B8D03BCyH
continuous in all its variables. This is equivalent to the assumptions on F:
for any 0  a  l - 1, 0  b  l - 1, 0  03B3 + |03BC|  m + 1, DatDbx1D03B303B8D03BCyF
is continuous in all its variables. D

Proof of the Lemma ? ?. In the proof of the lemma 6.1 we have seen

that ~ D03B1y03B5"(u) - D03B1y(u) ~Hm-|03B1|,1 ~ 0. So we can write

because of the continuity in all its variables (u, v, y) of ~ ~uD03B1y03B5".
Hence by lemma ?? and by taking the limit, we obtain

But by the continuity of ~ ~uD03B1y ~ ~u 03B5" and the fact that we can commute
the partial derivatives, we have
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The first term of right member vanishes (indeed the third equation of the
problem (4.1) gives that 03B5" (u, 0, y) vanishes, so by differentiating in u and
in y, it also vanishes). By using the second equation of the problem (4.1)
and the result (5.5), we get

Now, we take the norm Hm-|03B1|-2,1 of the both members and we apply
lemma 6.2 on the right one, so

Then by the assumptions on the regularity of , we obtain

because Il 03B5"(03C3) ~L~, 03C3,~ 03B5" (03C3) Il 03B5"(03C3) ~Hm,o are bounded
on I.

Hence

It means that D03B1y is in C0,1(I,Hm-|03B1|-2,1([0; R] x Tn-1)).
But C0,1(I, Hm-|03B1|-2,1([0; R]  Tn-1)) c C0(I, Hm-|03B1|-2,1 ([0; R]  Tn-1)),
and as m-|03B1|-2 &#x3E; (n-1)/2 we have C0(I, Hm-|03B1|-2,1([0; R]  Tn-1)) C
C0(I, C0([0;R] Tn-1) = C0(Ix[0;R]xTn-1), which allows us to conclude
that
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7. Existence and uniqueness
of the solution of the problem (1.1)

We can show now the following theorem

THEOREM 7.1. - If m &#x3E; max(n - 1, n-1 2 + 4), and

(i) F (0, t, xl, y) ~ F(O, t, xl, y) satisfies that for any 0  a  1,
0  b  1,
0 03B3 + |03BC|  m + 1, DatDbx1D03B303B8D03BCyF is continuous in all its

variables

(ii) ~+, ~- are of class Hm+5, and ~+, ~- satisfy the corner condition:
~+(0, y) = ~-(0, y).

(iii) There exists a real T &#x3E; 0 such that F, ~+, ~- are T-periodic in each
yi.

then for all real R &#x3E; 0, there exist some reals R’ &#x3E; 0 and R" &#x3E; 0 such
that there exists a solution cp for the problem (1.1) in the domain 03A9 = {0 
t-x1  R, 0  t + x1  R’, (x2,...xn) ~ Tn-1}~{0  t + x1  R, 0 
t - x1  R", (x2 ..., xn) E Tn-1} where Tn-1 is the torus of dimension
n - 1 and of length T in each direction, and this solution is in C0(03A9).
Moreover, for all L  2, if m &#x3E; max(n - 1, n-1 2 + 4 + l), and if for any
0  a  l - 1, 0  b  l - 1, 0  03B3 + |03BC|  m + 1, DatDbx1D03B303B8D03BCyF is
continuous in all its variables, then cp is in Cl(03A9).

Proof of the theorem. In the first step we prove the existence of a
solution cp satisfying equation (3.1), then in the second one we study its
regularity, after that we show that we can do the same along N+.

1. Existence of a solution c,o.

We set I = [0; R’] and

We notice that
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and

by the definition of - given in (3.4).

Now as we know that

and by the regularity of the functions H, ~-, ~-, we obtain

By the definition of H given in (3.2) we get

To obtain cp solution of the problem (1.1) it remains to show that ~2 ~u~v~ =
~2~v~u~. We differentiate the equality (7.1) first in u, then in v, hence

But we know (see (6.11 ) ) that if m &#x3E; max (n - 1, n-1 2 + 4).

Thus we have

which gives that ’P is a solution of the problem (1.1).
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2. Regularity of (/?.

To study the regularity of ~ it suffices to study the regularity of 03B4(~+, ~-
= ~+(u, y) + (~ ~v~-(0, y) +u0 H(~+(s, y), s, 0, y) +0394y~+(s, y)ds)v because
we have already results about the regularity of cp by the proposition (6.1).

We start by the derivative of first order of 03B4(~+, ~-). We have

and

which are in C0(I x [0;R] x Tn-1) by the assumptions on the functions
H, ~+, ~-. At least, these assumptions on the functions H, ~+, ~- allow us
to commute u0 and ~ ~yi, so we can write

For the derivative of second order of 8(’P+, ~-) we get similarly
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We can see that they are all in C0(I x [0; R] x Tn-1). Now

Thus we can conclude without adding assumptions, that if m &#x3E; max (n -
n21 + 6) the solution cp is in C2(I x [0; R] x Tn-1). We come back to the
variables t and x1 by the fact that t = u + v and xl = v - u, so we get the
same regularity.

We proceed similarly for higher derivatives and we see that the assump-
tions necessarily to obtain ’P of class Cl are not stronger that those neces-
sarily to obtain cp of class Cl.

3. Conclusion.

So we have finally the existence of the solution of the problem (1.1) in
a one-sided future neighborhood of a compact ([0; R] x Tn-1) C N- where
[0; R] is as large as we want.
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To obtain the existence of the solution of the problem (1.1) in a future
timelike neighborhood of a compact ([0; R] x Tn-1) C N+ it suffices to ex-
change the role of u and v and to apply the same method.

For the uniqueness of the solution cp we take a piece of time to examine
the geometry of the problem.
Let r = R 2,  E Rn-1 and P the point of coordinates (r + R’, -T + R’, )
in Rn+1. We consider Jp a part of the past light cone issued of P, precisely

Jp={(t,x1,y) E Rn+1/0 0 t  T + R’,

(t - (T + R’))2 = (x1 - (-T + R,))2 + !./ - |2}.
We recall that N+ is the hypersurface N+ = {(t,x1,y) E Rn+1/t + x =
0, t  0}. It is easy to see that Jp ~N+ is a part of the parabola P
of top P’(03C4, -03C4, ), P = {(t, x1, y) E Rn+1/|y-|2 = 4R(xl + 03C4)}. We
call Up the set Jp intersected with the future of N+ and the future of
N- = {(t, x1, y) E Rn+1/t - xi = 0, t  0}. We can visualize the situation
by the following figure.

We’re going to prove the uniqueness of the solution of the problem (1.1)
found before, in Up. Then we call UP,03C4’ the set Up intersected with the
past of the hypersurface {(t, xl, y) E Rn+1/t = 03C4’} which we denote simply
{t=03C4’}.
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Let ~1, ~2 be two solutions of the problem (1.1). We set cp = ~1 - cp2,
so we have

As âé is continuous (recall that B is the first variable of F) and cpl, ~2
bounded (indeed (u, v, y) ~ ~1(u, v, y) and (u, v, y) ~ ~2(u, v, y) are C2 so
continuous on [0; R] x [0; R’] x Tn-1), we can write that

Furthermore

To prove that ’P vanishes in UP, we first estimate for any 0  03C4’  T + R’
some energy E(03C4’) of ~, namely

Then we show that E( r’) vanishes for any 0  03C4’  T + R’.
For this we use some notions of physics sciences and so introduce a tensor,
called tensor of impulsive energy. As it is usually denoted in differential
geometry literature, we set

where {~03BC} is a basis of local coordinates system of dimension n + 1.
We denote ~03BC a covariant derivative with respect to ~03BC and ~03BC := Ev ~03BC03BD~03BD
where 7y is the diagonal matrix of dimension n + 1 of diagonal: (-1,1,...,1).
Now we consider the tensor T acting on one-vector field, namely
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(03B403BC03BD is the Kronecker symbol i.e. 03B403BC03BD vanishes if 03BC ~ v and equals to 1 if

03BC = 03BD).

Notice that for 03BC = 03BD = 0 we obtain

By the theorem of Stokes we know that, for every open set 03A9,

where dS is the infinitésimal element of surface on ~03A9, more precisely
T(X)dS = 03A3T03BC(X)dS03BC, dV is the infinitesimal element of volume on
03A9, and as we will take a constant vector X (more precisely X = 9o),
div(T(X)) = 03A3~03BC(T03BC03BDX03BD).

Therefore we calculate ~03BCT03BC03BD.

Now we sum on J.1-:

For the first term of the right member of the equality above, we can notice
that

.For the second and third one, we have
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and

Then if ~ is of class C2, it is easy to see that

In particular if v = 0,

We apply the theorem of Stokes with n = UP,03C4’. By looking the intersection
of UP,03C4’ with the hypersurfaces N-, N+ and {t = 03C4’}, we can decompose
~UP,03C4’ in four parts as it follows:

where C,, is the only curved part of ~UP,03C4’.

As cp vanishes on N- and N+, when we integrate on ~UP,03C4’ it only
remains the integrals on UP,03C4’ n {t = 03C4’} and on C03C4’.

For the integral on Cr" we integrate on characteristic hypersurface, by
elementary lorrentzian geometry, we know that integrate on a characteristic
hypersurface is equivalent to integrate only the component in isotropic vec-
tor tangent to this caracteristic hypersurface, but E T03BC03BDY03BCZ03BD  0 when
Y, Z are timelike or isotropic future directed vectors.Hence this integral is
less or equal to zero.

For the integral on UP,r’ n {t = 03C4’}, as the time is constant, all the
elements of surface dS03BC vanishes except of dSo.
So we obtain

On another hand by using (7.3) and (7.2), we have
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By the theorem of Fubini, a 1, we get

Finally for an;

Then we set h(t) = e-ct t0 E(s)ds. We have h’(t) = -ce-ct t0 E(s)ds +
e-ctE(t)  0 so for any 0  t  03C4+03BB, h(t)  h(0) = 0, it means that for any
0  t  03C4+03BB, t0 E(s)ds  0. Hence E(t)  0 almost everywhere on [0; T+À],
and as E is continuous, we can conclude that for any 0  t  03C4+03BB, E(t) = 0.
This implies that ~ vanishes almost everywhere in UP,03C4’, then everywhere
by continuity of cp.
Hence if the functions F, ~+, ~- are periodic in y, we get the uniqueness
in U VR, where VR :== {0  t - x1  R, 0  t + x1  RR, (x2, ..., xn) E

Tn-1}~{0  t + x1  R, 0  t - x1  R"R, (x2,...,xn) ~ Tn-1} (R’R and
RR are the reals found at each R see theorem 7.1). Notice that UVR is a set
of length T in each y2 with a transversal section in (u, v) which looks like a
strip limited from below by N+ U N-, limited from above by an hyperbola,
we can visualize it by the following figure.
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We resume all the results in the following theorem:

THEOREM 7.2. - If m &#x3E; max (n - 1, n-1 2 + 4), and

(i) F : (03B8, t, x1, y) ~ F(03B8, t, x1, y) satisfies that for any 0  a  l,
0  b  1,
0  03B3 + |03BC|  m + 1, DatDbx1D03B303B8D03BCyF is continuous in all its
variables

(ii) ~+, ~- are of class Hm+5, and ~+, ~- satisfy the corner condition:
~+(0,y)=~(0,y).

(iii) There exists a real T &#x3E; 0 such that F, ~+, ~- are T -periodic in each
yi.

then there exists a unique C0-solution ~ for the problem (1.1) in one-sided
future neighborhood U VR of the initial data hypersurfaces N+ and N_.

Moreover, for all l  2, if m &#x3E; max(n - 1, n-1 2 + 4 + l), and if for any
0  a  l - 1,  b  l - 1, 0  03B3 + |03BC|  m + 1, DatDbx1D03B303B8D03BCyF is
continuous in all its variables, then ~ is in Cl.

Remark. 2013 We have worked with the same periodicity T in each y2, but we
can proceed similarly with différent periodicities in each y2, the functions
03A803B1(v,y), and  03A803B1,f &#x3E; will be a little more complicated, but we will get
the sames results.

Now we remove the assumption of periodicity in y. We can consider two
cases: first Y = Rn-1, then Y open set strictly included in Rn-1. If  and

- are defined on a set Y = Rn-1 in their variable y (which is equivalent to
F, ~+, ~- defined on Y = Rn-1 in their variable y), we can work in a torus
T’n-1 ,n-1 of length 2T in each yi, multiply the functions F, ~+, ~- by a cut off
function in y equal to 1 on the torus Tn-1 of length T in each y2 strictly
included in T’n-1, vanishing outside of T’n-1. Then if we replace Tn-1 and
T by (T’)n-1 and T’ (length of T) in all the arguments, we get a solution on
a one-sided future neighborhood 03A9T of N+ and N_ , of length T in each yi.
We do it again with a torus T"n-1 of length 4T in each y2 strictly including
the torus T’n-1, we get another solution on a neighborhood 03A92T, but by
the uniqueness it is the same on the intersection of both neighborhoods. So
we have a solution on 03A9T U 03A92T. By induction we construct a solution on
U 03A92kT.
k~N

Now if Y is an open set strictly included in Rn-1, we can consider some
torus Tn-1 CC (T’)n-1 C Y (where A CC B means A C B). We multiply
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the functions H and ’P- by a cut off function equal to 1 on Tn-1 and
vanishing outside of (T’)n-1 and we replace Tn-1 and T by (T’)n-1 and T’
(length of T’) in all the arguments, so we get a solution. We can’t enlarge
the torus as much as we want, but we can remark that when we consider
again the intersection of the past light cone issued from P(u, v, ù) (u as large
as necessary) with N+, it’s a part of parabola P, which limit when ~ 0 is
a segment {(8, 0,); 0  s  u}. This means that for any u  0, we can find
a v  0 small enough such that the intersection of the past light cone issued
of P(u, v, û) with the future of N+ U N- is a set of points Q(u’, v’, y’) with
y’ in Tn-l. So by eventually reducing the thickness of the neighborhood
obtained in theorem 7.2, the well known uniqueness of a solution of a wave
equation in the past light cone of a point assures that the solution obtained
in our argument is the right one. Hence we will obtain a neighborhood of
N+ U N- which becomes thiner and thiner when we reach the boundary of
each connex component of Y. So we finally get the following theorem:

THEOREM 7.3. 2013 If m &#x3E; max (n - 1, n-1 2 + 4), and

(i) The functions F, ~+, ~- are defined on Rn-1 in y.

(ii) F : (03B8, t, x1, y) ~ F ((), t, Xl , y) satisfies that for any 0  a  1,
0 b 1,
0  03B3 + |03BC|  m DatDbx1D03B303B8D03BCy F is continuous in all its
variables

(iii) ~+, ~- are of class Hm+5, and ~+, ~- satisfy the corner condition:
~+(0,y)=~-(0,y).

then there exists a unique C0-solution ~ for the problem (1.1) in one-sided
future neighborhood of the initial data hypersurfaces N+ and N-
Moreover, for all l  2, if m &#x3E; max(n - 1, n-1 2 + 4 + l), and if for any
0  a  l - 1, 0  b  l - 1, 0  03B3 + |03BC|  m + 1, DatDbx1D03B303B8D03BCy F is

continuous in all its variables, then ~ is in Cl.

8. Case R1+1

We consider the same problem as (1.1) with n = 1, namely
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We proceed similarly as we have done for the case Rn+1. Indeed, we first
change variable (t, x) to (u, v), then we deal with a new equation in , and
we approximate spectrally  by 03B5. But in order to estimate ~ 03B5(u) |Hm,k
we work with the norm H2([0,2R]) = W2,2([0, 2R]). The estimations are
similar but considerably simpler and we need weaker assumptions on the
functions F, ~+, ~-. We obtain the following theorem.

THEOREM 8.1. - For all l  2, if F is of class Cl-1 , ~+, ~- are of
class Cl, and ~-, ~- satisfy the corner condition:
~+(0,y) = ~-(0,y).
then for all real R &#x3E; 0, there exist some reals R’ &#x3E; 0 and R" &#x3E; 0 such

that there exists a unique solution cp for the problem (8.1) in the domain
03A9={0 t - x  R, 0 t + x R’}~{0  t + x  R, 0  t + x  R"}
and this solution is in Cl(03A9).

A. Appendix

1. Hm,k Hilbert space.

We set for any f, g in Hm,k([0, 2R] x Tn-1),

(.,.) is a symmetric and positive definite real valued bilinear form. We show
that Hm,k is complete for the associated norm ~ f ~ = (f,f)1 2.

Indeed, let ( un ) be a Cauchy sequence in Hm,k ([0, 2R] x Tn-1), namely
for all 0  a  k, for all 0  |03BD|  m, (DavDvyun) is a Cauchy sequence
in L2([0; 2R] x Tn-1). As L2([0; 2R] x Tn-1) is a complete space, we know
that for any 0  a  k, any 0  |03BD|  m, (DavDvyun) converges to a
L2-function gav. It remains to state that gav = DavDvyu. We recall that
(DaDvun) converges to (DavDvyu) in D’([0;2R] x Tn-1) (we denote by D’
the set of real-valued linear function defined on D the set of smooth compact-
supported functions). On another hand, for any 0 in D([0; 2R] x Tn-1), by
the Cauchy-Schwarz inequality it is clear that
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So (DavDvyun) converges to gav in D’([0; 2R] x 1rn-l). By the uniqueness of
the limit in D’([0; 2R] x T we can say that gav = DavDvyu. The sequence
(un) converges to u in Hm,k, so Hm,k is a complete space.

2. Proof of lemma 2.1.

We keep the notations introduced in section "Spaces Hm,k". Our goal
here is to prove the equivalence of the Hm,k-norm defined above and the
following one:

We first show that

(N.B.: in this paragraph, for more convenient we set by convention 00 = ]
it avoids to distinguish the cases a = 0, j = 0 ...)
It suffices for that to show that

But we know thaï

So by differentiating in v and y2, we have for any ll, ..., lj in f 1, ..., n - 11

Hence

Then we notice that

Thus we get (A.1).
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Now to obtain the equivalence of the norms it remains to find two
constants K and K’ such that

Thus we can write

We denote

By induction, we can calculate ci such that

(take ci = 1 2, ci+1 = ci 4). Furthermore,
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We deduce from this that

Remark. - As it is done in the classical Sobolev spaces, we extend the spaces

Hm,k to m, k positive reals by the definition below:

3. Proof of lemma 2.2.

We begin by establishing the following embedding.

We recall that

where f a =  03A803B1, f &#x3E;. Therefore

By the Cauchy-Schwarz inequality, we get

But we know that
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These both integrals are convergent if 2k &#x3E; 1 and 2m &#x3E; n - 1 Le. k &#x3E; 1 2 and
m &#x3E; 2 . At last, by using the equivalence of the norms above, we obtain

Now we show that

Let f in Hm,k, for every n in N*, we set f n = 1 n f ( J has been defined
in section " Spectral approximation of "). It is clear that f n are in Hm,k,
and that

Then by the theorem of Plancherel we have Il 1 n v - v ~L2 ~ 0, if we apply
this to v = f,..., DkvDmyf, we get 

The sequence (ln) converges to f in Hm,k, hence (ln) is a Cauchy sequence
in Hm,k, and in LOO by (A.2). Moreover the functions fn are continuous, so
(fn) is a Cauchy sequence in C0([0;2R] x Tn-1). As this space is complete
it implies that (fn) converges to g in C0([0;2R] x Tn-1).
It remains to show that f = g almost everywhere. (fn) converges to g in
L2, indeed

Il fn - 9 ~L2([0;2R] Tn-1)  (2R X Tn-1)1 2 ~ fn - 9 ~L~([0;2R] Tn-1) ~ 0.

But (fn) converges to f in Hm,k, in particular (fn) converges to f in L 2 ,
by the uniqueness of the limit in L2, we can write that f = g almost every-
where.
For the class Cl, it suffices to apply the result above to -9 f , ~ ~yif, ..., Dl Dl
4. Proof of lemma 2.3.

We want to show that if k  k’ then the embedding Hm,k’  Hm,k is
compact. We deal with the equivalent norm 1 f  defined above in paragraph
2 and we will denote it also Il f ~Hm,k. As (1 + 03B10)2k  (1 + 03B10)2k’ it is

clear that Il ... ~Hm,k~ ... ~Hm,k’. Set i : Hm,k’  Hm,k, i is a compact
operator if it changes a bounded set in a relatively compact set. Let ( fn) a
bounded sequence of Hm,k’. We have seen that Hm,k’ is reflexive so we can
extract a subsequence (ln’) of (fn) which weakly converges to f in Hm,k’,
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and Il f ~Hm,k’  lim inf ~ fn’ ~Hm,k’  M. We consider ~ fn’ - f ~2Hm,k and
cut the sum on a E zn in two parts, namely I and II, as it follows

with

The function f ~  03C803B1 , f &#x3E; is a continuous linear form on Hm,k’, hence
 03C803B1, fn’ &#x3E;~ 03C803B1, f &#x3E; i.e.  03C803B1, fn’-f &#x3E;~ 0. It implies that for all 03B51 &#x3E; 0

there exists ~ &#x3E; 0 such that for all n’ &#x3E; ~,  |  03C803B1, fn’ - f &#x3E; |2  03B521.

So

We treat now the second term II. We notice that

Therefore for all 6’ &#x3E; 0, we choose A tall enough to get 4M2 (1+A)2(k’-k)  E2
Then we set 03B51 = 03B5 2(1+A)2k+2m. So there exists ~ in N such that for all
n’  ~,

We obtain that (fn’) converges to f in Hm,k. It means that i(fn) is a

compact set a fortiori a relatively compact set.

We proceed similarly for the compact embedding Hm’,k  Hm,k if m 
m’.
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5. Proof of lemma 2.4.

Here we suppose that f ~ Hm,k ~ Hm,k’ with k  k’, Let 03B3 E [0; 1], it is
clear that Hm,k’ C Hm,03B3k+(1-03B3)k’, so f is in Hm,03B3k+(1-03B3)k’. We know that

If we set

we can write that

Then by using Hôlder inequality, we get

As

we finally obtai]

We proceed similarly for the case f E Hm,k ~ Hm’,k with m  m’, hence we
can say that for all 03B3 in [0; 1] ,
f is in H03B3m+(1-03B3)m’,k and ~ f ~H03B3m+(1-03B3)m’,k ~ f ~03B3Hm,k~ f ~1-03B3Hm’,k.
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B. Appendix

1. Proof of the lemma 6.2:

We notice that

If Dvyf is in C0([0; R] x Tn-1) then

and by the inequality of Cauchy-Schwarz

Thus

Finally we obtain



-101-

2. Proof of the lemma ??:

By definition

And if DavDvyf is continuous in all its variables, we have

We can commute the integration in o- and (v, y) by using the theorem of
Fubini, hence

Then by the inequality of Cauchy-Schwarz used on the integration in (v, y),
we get

The second factor under the integral in 03C3 is independent of 03C3, so we can get
it out, thus

Then if ~ u+hu DavDvyf(03C3)d03C3 ~L2([0;R] Tn-1) vanishes, the inequality we
want to show is trivial. Else we can divide by this positive quantity and so
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obtain

To conclude it suffices to add this inequality on every 0  a  1, 0 |v|03BC.

~

Bibliography

[1] CAGNAC (F.). - Problème de Cauchy sur un conoïde caractéristique pour des
Equations quasi-linéaires, Annali di Matematica Pura ed Applicata (IV), vol.

CXXIX, 13-41 (1980).
[2] CAGNAC (F.) et DOSSA (M.). - Problème de Cauchy sur un conoïde caractéristique.

Applications à certains systèmes non linéaires d’origine physique. (The charac-
teristic Cauchy problem on a conoid. Applications to certain nonlinear systems
of physical origin)., Flato, M. (ed.) et al., Physics on manifolds. Proceedings of
the international colloquium analysis, manifols and physics in honour of Yvonne
Choquet-Bruhat, Paris, France, June 3-5, 1992. Dordrecht: Kluwer Academic Pub-
lishers. Math. Phys. Stud. 15, 35-47 (1994).

[3] COURANT (R.) and HILBERT (D.). 2014 Methods of mathematical physics, vol. II New
York: Interscience (1962).

[4] FRIEDRICH (H.). - On the regular and the asymptotic characteristic initial value
problem for Einstein’s vacuum field equations, Proc. Roy. Soc. London A 375, 169-
184 (1981).

[5] MÜLLER ZUM HAGEN (H.) and SEIFERT (H.J.).2014 On Characteristic Initial- Value
and Mixed Problems, General Relativity and Gravitation, Vol.8, No. 4, 259-301
(1977).

[6] RENDALL (A.D.). - Reduction of the characteristic initial value problem to the
Cauchy probem and its applications to the Einstein equations, Proc. Roy. Soc.
London A 427, 221-239 (1990).

[7] TAYLOR (M.E.). 2014 Partial Differential Equations III: Nonlinear Equations, Ap-
plied Mathematical Sciences 117, New York, NY: Springer-Verlag, pp. 7-11 (1996).


