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Decay of solutions of the elastic wave equation
with a localized dissipation

MOURAD BELLASSOUED (1)

ABSTRACT. - In this paper, we study the stabilization problem for the
elastic wave equation in a bounded domain in two different situations. The
boundary stabilization and the internal stabilization problem. Providing
regular initial data we prove, without any assumption on the dynamics,
that the energy decay is at last logarithmic. In order to prove that result
we bound from below the spectrum of the infinitesimal generator of the
associated semi-group.

RÉSUMÉ. 2013 Dans ce papier on étudie le problème de stabilisation pour
l’équation des ondes élastiques dans un domaine borné et dans deux sit-
uations différentes. On prouve, sans aucune condition sur la dynamique,
que l’énergie décroît au moins comme l’inverse du logarithme du temps
dès que les données sont suffisamment régulières. Pour montrer ce résultat
nous donnons une estimation sur la distance entre le spectre du générateur
infinitésimal du semi-groupe associé et l’axe réel.

Annales de la Faculté des Sciences de Toulouse Vol. XII, n° 3, 2003
pp

1. Introduction and main results

We are mainly interested in the decaying mode of the energy (stabiliza-
tion) of the solution of the initial boundary value problem in a connected and
compact manifold M with compact boundary for the elastic wave equation
as time tends to infinity. We will consider both the boundary stabilization
problems with a boundary damping term supported in the boundary or the
internal stabilization with a damping term supported in the interior of the
domain. On one hand, it is well known that (see Lagnese [10]) the energy
decreases to zero when the damping mechanism is effective in a non empty
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set w C M. On the other hand Bardos-Lebeau-Rauch [2], show that, when
M is of class Coo, the energy of the solution for general second order scalar
initial-boundary value problems with regular coefficients satisfies the expo-
nential decay if and only if the following "geometric control condition" is

satisfied: there exists some T &#x3E; 0 such that every ray of geometric optics
intersects the set w x (0, T). The canonical example of open subset w veri-
fying the "control geometric condition" is when cv is a neighborhood of the
boundary.

Taylor [16] gives a rigorous treatment of the singularity for the elastic
wave equation with Neumann boundary condition, he prove there are three
types of rays that carry singularities. The first types are classical rays re-
flecting at the boundary according to the laws of geometrical optics. The
third type of rays lie on the boundary and singularities propagate along
them with a slower propagation speed CR &#x3E; 0 (the Rayleigh speed).

In [8] Horn prove the uniform exponential decay of solution of elastic
wave equation via linear velocity feedbacks acting through a portion of
the boundary as traction forces. First these results are proven without the
imposition of strong geometric assumptions on the controlled portion of the
boundary, thus extending earlier work which required that the domain be
"star shaped" . Second, the feedback is only a function of velocity, as opposed
to also containing the tangential derivative of the displacement but satisfies
the Lions condition (see [14]).

In the present paper we show that even if the "geometrical control con-
dition" is not fulfilled (i.e. without any assumption on the dynamics) then
the energy decays with respect to time at least as fast as the inverse of the
logarithm, providing the initial data belong to the domain of Ak (A stays
for the infinitesimal generator of the evolution équation).

In order to prove that result we bound from below the spectrum of A.
This bound is obtained by using a Carleman type estimate for the resolvent
of A.

The originality of our method consists in the fact we can give a Car-
leman boundary estimate for the operator of the elasticity (with Dirichlet
or Neumann conditions) without boundary tangential derivative of the dis-
placement. To the best of knowledge, such sorts of estimates are not avaible
in the literature. For the scalar elliptic operator Lebeau-Robbiano [13] ob-
tained a similar estimate, and such an estimate played a crucial role in the
proof of "stabilization" with Neumann dissipation see Horn [8] and Lasiecka
and Triggiani [11]. For this end we use some idea from [3] where we study
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the problem of resonances in exterior domain and we have proved a Carle-
man estimate but with a tangential derivative terms. Here we rafined our
study and we eliminated this tangential derivative terms. Moreover in the
case of bounadry dissipation our boundary operator is different from [3] be-
cause here we have perturbed Neumann boundary operator by first order
operator.

On the other hand, the results in [13]-[10] for the scalar wave equation
need a interpolation estimate. This type of estimates seems difficult to show
it for the elasticity system. In this paper we employ a direct method based
on the Carleman estimate for the stationary associated operator.

1.1. Main results

Let (M, g) be a Riemannian, compact manifold with smooth and compact
boundary ~M. We set

where 03BC, A are real constants satisfy y &#x3E; 0, 203BC+03BB &#x3E; 0, and A, V and div are
the Laplacian, gradiant and divergence operator associated to the metric g.
We consider two classical examples of the elastic wave equation. The first
damped by a boundary scalar velocity feedback ao E C~(~M) and a0  0

Here u(u) is the stress tensor defined by

where 03B5(u) = 1/2(~u + t~u) the strain tensor and v(x) is the unit outer

normal to M at x E ~M.

The second damped system by a internal matrix feedback a E C~(M)
satisfies for any z ~ C, a(x)zz  0 and the set {x ~ M; a(x)zz  03B4|z|2} is

non empty
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The primary consideration of the paper is the decay rate of solutions of
(1.2) and (1.4). For (uo, ul) E H = Hl C L2we define the energy for the
solution of (1.2) or (1.4) as

where dx is the Riemannian volume element in M.

1.1.1. Boundary stabilization

Let Ao the linear operator defined by

Then the system (1.2) is transformed into

The domain of Ao is defined by

Then, the immersion D(A0)  H is compact. With this definition, iAo is
dissipative and is the infinitisimal generator of strongly continous semigroup
eitA0, t  0.

For any solution u(t) of (1.2) the function E(u, t) satisfies the following
identity

and therefore the energy is a decreasing function of time t.
Now we can able to state our first results

As immediate consequence (see theorem 1.6) of the previous theorem, we
get the following result
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THEOREM 1.2. - For any k &#x3E; 0 there exists C &#x3E; 0 such that for
any initial data (u0, u1) E D(Ak0) the solution u(t, x) of (1.2) starting from
(uo, u1) satisfy:

1.1.2. Internal stabilization

Let us introduce the operator A defined as

The domain of A is defined by D(A) = (H,, n H2) E9 L2. Then we have
(A - z) is bijective from D(A) onto H for z in z ~ C ; Imz ~ [0, ~a~L~]}.
The immersion D(A)  H is compact, the spectrum of A is constituted a
sequence zj such that Im(zj) E [0, ~a~L~].

By integration by parts we have:

and therefore the energy is a decreasing function of time t.

Similarly we have the following Theorems

THEOREM 1.3. 2013 There exists Ci, C2 &#x3E; 0 such that if Imz  C1e-C2|Rez|,
|z| &#x3E; 1 we have 

As immediate consequence of the last theorem (see theorem ??), the fol-
lowiong result holds

THEOREM 1.4. 2013 For any k &#x3E; 0, there exists C &#x3E; 0 such that for
any initial data (uo, u1) E D(Ak) the solution u(t, x) of (1.4) starting from
(uo, ul) satisfy

Remark 1. 5. - Theorems 1.1 and 1.2 hold if we change the Dirichlet
condition by the Neumann Condition o-(u) = 0.
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Theorems 1.1 and 1.3 prove in particulary that the resolvants

R(z) = (z - A)-’ and R(z) = (z - Ao)-l are analytic in the region

Theorems 1.2 and 1.4 follows from Theorem 1.1 and 1.3, this is proved in
the general case by Burq ( see Theorem 3 of [6])

THEOREM 1.6 ([6]). 2013 Let H be Hilbert space and iB a maximal dis-

sipative unbounded operator with domain D(B). Assume that the resolvant
R(z) = (z - B)-l is analytic in the region r and satisfies

Then for any k &#x3E; 0 there exist Ck &#x3E; 0 such that the following estimate holds
true

1.2. Some remarks

(i) Theorems 1.1 and 1.3 are the analogous of Lebeau [10] and Lebeau-
Robbiano [13] results in the case of the scalar wave equation, as well
as our result [4] in the case of the transmission problem. Here our
method is different to [13] and consist to use the Carleman estimate
directly for the stationary operator without passing by the interpo-
lation inequality.

(ii) In particular Theorems 1.1 and 1.2 show that

Any constants resolve the problem (1.2).

(iii) Theorems 1.1 and 1.3 are optimal if we do not assume condition on
the dynamic. Moreover 1.1 and 1.2 hold if we change the Dirichlet
condition by the Neumann Condition. We can even show that The-
orem 1.1 is optimal under reasonable geometric framework, and the
damped term a(x) is positive on the whole domain M. Indeed, in this
case the Railegh’s rays on the boundary (with Neumann Condition)
never hits the damped term (see Kawashita [9]).
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(iv) In [5], we study the uniqueness problem for the elastic wave equa-
tion. We prove that we have the uniqueness property across any non
characteristic surface. We also give two results which apply to the
boundary controllability for the elastic wave equation.

(v) To prove theorems 1.1 and 1.3, we make use Carleman estimate to
obtain information about the resolvent in a bounded domain, the
cost is to use phases functions satisfying Hôrmander’s assumption
and thus growing fast. D.Tataru [15] who was the first to consider the
Carleman estimate and the uniform Lopatinskii condition for scalar
operators with CI coefficients. Here our operator is a system with
non diagonal boundary conditions and we can not applied [15].

This paper is organized as follow, in section 2 we gives a Carleman
inequality adapted to our case, in section 3 we prove our results and the
prove of Carleman estimate is in the section 4.

Finally 1 would like to thank Professors L.Robbiano and G.Lebeau for
useful discussion during the preparation of this work.

2. Carleman estimate

The aim of this section is to explain Carleman estimate used to obtain
information about the resolvent in bounded domain.

The point is to show estimations in a bounded domain n C M for the
solutions of

where P(X, D) the differential operator with principal symbol

and the boundary operator

Let ~(x) be a real function in C~ (Rn), we define the operator

with principal symbol given by
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We introduce the scalar partial differential operator

and we define a03B3(x, D, r) by e~a03B3(x, D)e-~ with principal symbo

We assume that cp satisfies Hôrmander’s assumption for the operator a03B3

where {,} denote the Poisson brackets.

We have the following Carleman type estimate

PROPOSITION 2 .1. 2013 Let ~ satisfy (2.8). We assume that ~v~  -Co
(where Co &#x3E; 0 large constant fixed in section 4) in 03A31 C aS2, then there exist
C &#x3E; 0 and To such that for any u E C~(03A9) solution of (2.1), the following
estimate holds

for large enough T &#x3E; To. Here dx’ is the Riemannian surface element in an.

Remark 2.2. - Unfortunately we can not assume that 03A31 = an in the
previous proposition and eliminate the boundary terms ~03A9B03A31. Indeed if
we assume that ~v~  -Co on ~03A9 then the function ~ attain his global
maximum in Ç2 and then the Hörmander assumption (2.8) are not satisfied
(for more details see [3]).

In the next we treat the local extremum of the phase ~.

2.1. Construction and properties of the phases functions

The purpose of this subsection is to construct two phases cpl , ~2 which

satisfy the Hörmander’s assumption, excepting in a finite number of balls,
such that on a ball where one of them do not satisfies these conditions the

second does and is strictly greater.
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PROPOSITION 2.3. - (see [6] and [3]) Let n be a bounded smooth do-
main, and let 03A31, 03A32 two non empty parts of the boundary ~03A9 such that
03A31~03A32=~03A9. There exist two functions 03C81,2 ~ C~(03A9) satisfying ~v03C8i|03A31 0,
~v03C8i|03A32 &#x3E; 0 having only no degenerate critical points, such that when
~03C8i = 0 then ~03C8i+1 ~ 0 and 03C8i+1 &#x3E; 03C8i (where 03C83 = 03C81).

As immediate consequence of the last proposition, the following conclu-
sion holds

COROLLARY 2.4. - There exist a finite number of points xij E 03A9;
i = 1, 2 j 1, ..., Ni and e &#x3E; 0 such that B(xij, 203B5) C 03A9, B(x1j, 203B5) n
B(X2j, 203B5) = Ø and 03C8i+1 &#x3E; 03C8i (where 03C83 = 03C81). Denote ni = 03A9~(~jB(xij, 03B5))c,
and we take cpi = e03B203C8i then for large 03B2 the phases ~i satisfy Hörmander
assumption in ni.

Remark 2.5. - By the previous construction the phases ~1 and cp2 attain
his globals maximum in the portion E2.

3. Proof of mains results

The main idea of our proofs is to use the boundary Carleman estimate
(2.9) in Proposition 2.1 and we find an estimation of the norm of the resol-
vent (A - z) -1 for z in the region

with some constants Ci, C2 &#x3E; 0. Moreover we prove that

3.1. Proof of Theorem 1.3

Let f = (f0, f1) ~ H and u = (u0, u1) ~ D(A) = (H2 ~ H10) 0 L2such that
(A - z)u =  then we have
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Then the solution (uo, ul) of (3.2) satisfies

where 03A6 given by

To prove Theorem 1.3 we need the following result, which is a consequence
of proposition 2.1.

LEMMA 3.1. - There exist a constant C &#x3E; 0, such that for any
(uo, ul) e D(A) solution of (3.2), the following estimate holds

Proof. - We need the following notations. First, denote B4r C M be
a ball of radius 4r &#x3E; 0, such that a(x) &#x3E; 0 in B4r, and we set no = MBBr.
We next introduce the cutoff function X E Cô (Rn) by setting

Next, denote vo = Xuo. First of all, by (3.3), one sees that

Thus, for some constant C &#x3E; 0 we have

Moreover using (3.6) we get

Further, by the boundary condition in (3.3), we get
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Let cpi, i = 1, 2, satisfies the conclusion of Proposition 2.3 with

In order to eliminate the critical points of ~i (and the failure of the Hörmander

condition), let ~i, i = 1, 2, two cutoff functions equal to 1 in (~j B(xij, 2e) r
and supported in (~j B(xij,03B5))c.

By a simple calculus we get for T2 = Re(z 2)

Taking into account the boundary conditions (3.9)-(3.10) and applying Propo-
sition 2.1 with B = I (Dirichlet condition), we arrive at

However, by (3.12) we get

We addition the last two estimates for i = 1, 2 and using the properties of

the phases &#x3E; ~i+1 in (~jB(xi+1,j, 2E» then we can absorb the term
[-~e, ~i]03C50 at the left hand side of (3.14) into the right hand side for large
T &#x3E; 0. More precisely, for large enough T, the following estimate holds

Consequently, by (3.8), and using M = no U B2r, we see that for |Imz|  1,
T = |Rez|, it holds that -
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where we have used Rez =  eCT . 

To accomplish the proof of the lemma we estimate the last two terms in
the R.H.S of (3.16). We set x a cutoff function equal to 1 in a neighborhood
of B3r and supported in -B4r then we have

and hence we get, by elliptic estimates (see for example [19])

Using (3.6) we obtain that supp(x) C B3r and we deduce from (3.18)

Collecting (3.19) and (3.16) we obtain

This complete the proof of lemma 3.1.n

We now turn to the proof of Theorem 1.3. In the next we estimate

the last term of inequality (3.5). In all the estimates that follows, we shall
indicate by C a universal positive constant, possibly different from line to
line, even within the same inequality, depending on n, M and ~a~~, but
always independent of T.



-279-

Integrating by parts we obtain

Keeping only the imaginary part of (3.21), we arrive at the inequality

Inserting (3.22) into (3.5), we get for any e &#x3E; 0

Taking into account (3.4), then for |Imz|  1 2Ce-C and ê = e-2C, the
following inequality holds

On the ohter hand by (3.3) we can obtain easily

Hence (3.25) and (3.24), yield the final inequality

Which completes the proof.

3.2. Proof of Theorem 1.1

Let f = ( fo, f1) E H, and u = (u0, u1) ~ D(Ao) such that (Ao - z)u = f,
which implies further
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then the solution (u0, u1) of (3.27) satisfies

where 03A6 and 03A60 given by

To prove Theorem 1.1 we need the following lemma, which, also, is a con-
sequence of Proposition 2.1.

LEMMA 3.2. - There exist a constant C &#x3E; 0 such that for any
(u0, u1) ~ D(Ao) solution of (3.28) the following estimate holds

Proof. - Hère we are choosing the following partition of 9M = 03A31 ~ 03A32,
where 

Let cpi, i = 1,2, satisfies the conclusion of Proposition 2.3 with El, 03A32
defined by (3.31). Finally let Xi, i = 1, 2, two cutoff functions equal to 1 in

(~jB(xij,203B5)c and supported in (~j B(xij,03B5))c (in order to eliminate
the critical points of the phase function ~i).

By a simple calculus we get for T2 = Re(z2)

Taking into account the boundary conditions in (3.32) and applying Propo-
sition 2.1 with the boundary condition BT uo = u(uo).v + ia0u0 on 03A31, we
arrive at
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However, by (3.32) and (3.31) we get

We addition the last two estimates for i = 1, 2 and using the properties of

the phases &#x3E; ~i+1 in (~j B(xi+1,j, 203B5)) then we can absorb the term
[-~e, ~i]v0 at the left hand side of (3.34) into the right hand side for large
T &#x3E; 0. More precisely we obtain for large enough T the following inequality

Consequently we have

This complete the proof of lemma 3.2. ~

We now turn to the proof of Theorem 1.1. For this end we estimate
the last term of inequality (3.30). In all the estimâtes that follows, we shall
indicate by C a universal positive constant, possibly different from line to
line, even within the same inequality, depending on n, A1 and ~a0~~, but
always independent of T.
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Integrating by part we get

Keeping only the imaginary part of (3.37), we arrive at the inequality

where terms on the boundary have been bounded using the trace theorem,

Combining (3.38) with (3.30) we obtain

Now assume that |Imz| 1 2Ce-C then we have by the previous estimate
and (3.29)

Using (3.28) we get

and hence

then (Ao - z) is injective then bijective in D(Ao) and we get

for any z E {z E C, |Imz|  1 Ce-C|Rez|; |Rez| &#x3E; 1}. This complete the
proof.
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4. Proof of Carleman estimate

The aim of this section is to prove the estimate of Carleman’s type near
the boundary for the solutions of the following boundary value problem

where PT (x, D) a partial differential operator with principal symbol given
by

We prove Propsition 2.1 only in the case of Neumann boundary condition
B(x, D)u = 03C3(u).v + ia0u. The case of the Dirichlet condition can be
proved in the some way and is much simpler (see [3]).

We define the sobolev spaces with a parameter T, HT by

û denoted the partial Fourier transform with respect to x.

We introduce the following norms in the Sobolev spaces Hk(03A9) and
Hk(~03A9)

and we set

For a differential operator

we note the associated symbol by

we define the class of symbols of order m by
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and the class of tangential symbols of order m by

We shall frequently use the symbo

Finally let a(x,03BE’,) E TS2 such that

then we have the following Gàrding estimate

4.1. Réduction of the problems

4.1.1. Réduction of the Laplacian

Let 11 be a bounded smooth domain of Rn with boundary ~03A9 of class Clo.
In a neighborhood of a given xo E ~03A9 we denote by x = (x’, xn ) the system
of normal geodesic coordinates where x’ E ~03A9 and xn ~ R are characterized
by

In this system of coordinates there exist ~(x, 03BE) such that

and the principal symbol of Laplace operator takes the form

where r(x, 03BE’) is a quadratic form, such that there exists C &#x3E; 0

where K is a fixed compact in H. Finally we have the vectors field eo, ~1
satisfying

Let cP(x) be a C~(Rn) function with values in R, defined in a neighborhood
of K. We define the operator
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Denote by

the principal symbol of the operator, and we set

its real and imaginary part. Then we have

Where qI E TS1 and q2 E TS2 are tangential symbols given by

and (x,03BE’,~’) the bilinear form attached to the quadratic form r(x, 03BE’).

4.1.2. Reduction of the elasticity system

In the system of normal geodesic coordinates the principal symbol of elas-
ticity operator can be written as

where ~(x,03BE) defined by (4.4) and ~(x, 03BE)t~(x,03BE) the orthogonal projection
onto the space spanned by ~(x, 03BE). The principal symbol of P(x, D, ) =
(e~(x, D)e-~ - 2Id) is given by

where Pj (x, 03BE’, ) E TSj a tangential symbols defined by
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For a fixed (x, 03BE’) E T*(~03A9) let 03B1(x, 03BE’, ) E C such that

then we have also by (4.7)

the determinant of P(x, 03BE, ) is given by (see [3])

where 03B103B3,(x, 03BE, ) = a(x, 03BE, )-2 03B3.
4.2. Study of the eigenvalues

The proof of Carleman estimate rely on a cutting argument based on the
nature of the roots with respect 03BEn of a03B3(x, 03BE’, 03BEn, T) . 

Let use now introduce the following micro-local regions:

And for fixed (x, ç’ , ) let 03B103B3(x, 03BE’, T) e C such that

Taking into account (4.16) and (4.14) we get
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then we get by (4.15) and (4.11)

For a fixed (x, 03BE’ , ) we decompose a03B3 (x, 03BE, T) as polynomial in Then the
following Lemma holds

LEMMA 4.1. - We have the following:

1. For any (x, 03BE’, T) E 03B5+ the roots z±1, z±2 of a and a203BC+03BB as a polyno-
mial with respect to 03BEn satisfy ±Imz±k &#x3E; 0.

2. For any (x, 03BE’, T) ~ Z03B3, one of the roots ofay is real and the other root
lies in the upper half-plane if ~’xn  0 (resp. in the lower half-plane
if ~’xn &#x3E; 0).

3. For any (x, 03BE’, ) E 03B5- the roots of ay for E {03BC, 203BC + AI are in the
upper half-plane if ~’xn  0 (resp. in the lower half-plane if ~’xn &#x3E; 0).

4. For any (x, 03BE’, T) E M the roots of a203BC+03BB satisfy ±Imz±2 &#x3E; 0 and the

roots of a03BC satisfy 3).

Proof. - The imaginary parts of the roots of a03B3 are

but the lines Re(z) - ±~’xn can be transformed by z ~ z’ = z2 in the
p arabola defined b y Rez’ = (~’xn)2 - |Imz’|2 4(~’xn)2. Then the Lemma is proved
if we change z’ by 03B1203B3 and using (4.18) D

4.3. Proof of the Carleman estimate in the region 03B5+

The purpose of this section is to proof the Carleman estimate in the region
03B5+. In this region we can not need any assumption for ~’xn, indeed by
lemma 4.1 the signes of the imaginary parts of the roots are independent of
the signe of ~’xn. Here we us the methods of pro jectors of Calderon to show
the following proposition. Let ~(x, 03BE’, ) be a homogeneous cutoff function
of degree 0 in the region 03B5+, then we have the following result

PROPOSITION 4.2. 2013 There exist C &#x3E; 0 such that for any large enough
- 

T the following inequality holds
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We consider the boundary operator B(x,D)u = 03C3(u).v + aoiTU, and the
conjugate operator e~B(x, D)e-~ with principal symbol given by (see
[18] and [1])

where Bo E TS0 and BI E TS; two tangential symbols given b

Let u E C~0(K), denote

where op(P) is the differential operator with principal symbol

It is easy to see that

where

It is helpful to replace the system (4.23) by an equivalent first order system.
Put 

then the system (4.23) is reduced to the following systen

Where the principal symbol of op(A) is given by
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and B E TS0 is the tangential symbol

with Bo and BI are defined by (4.21) and F = t(0, P-10).
For (xo, çb, 0) fixed in supp(x) then the eigenvalues of the matrix A are

z±1, z±2 with multiplicity respectively (n - 1) and 1 defined by

Denote by S = (s+1,...,s+n, s-1,...,s-n) the matrix of the eigenvectors
of the matrix A(x0, 03BE’0, To) corresponding to eigenvalues with positive or
non positive imaginary parts. Then we can extended S as a smooth posi-
tively homogeneous function of degree zero in a small conic neighborhood of
(x0,03BE’0,0). Let S(x, Dx’, ) the pseudo-differential operator with principal
symbol S(x, 03BE’, Then by the argument in Taylor [17] (see also Yamamoto
[18]) there exist a pseudo-differential matrix operator K(x, Dx’, T) of order
-1 such that the boundary value problem (4.26) is reduced to the following

where

and op(H) is a tangential operator of order 1 with principal symbol H =

diag(H+,H-) E TS1 which satisfies

We can now state the Lemma which will be the key ingredient in the proof
of the Proposition 4.2

LEMMA 4.3. - There exist Ci, C2 &#x3E; 0 and a tangential symbols
R(x,03BE’,) E TS0, e(x,03BE’,) E TS1 such that

and we have the following properties
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Proof. 2013 Let  the principal symbol of op() where S = (+, -),
and + = S+ the projection of 9 on the subspace generated by the vectors
of S+. First we prove that + is an isomorphism.

Let X = (X1, X2) E Cn ~ en be an eigenvector of A associated to zo.
Then X satisfy

a-Calculus of eigenvector associated to z+1:

where

Now we set the following vector in Cn

then we have by a simple calculation

b-Calculus of eigenvector associated to z+2:
We get

Let now

then we have P(z+2)03C9+n = 0, with reference to (4.32) we denote

and by (b+1, ..., b+n, b-1, ..., b-n) the principal symbol of B. By elementary cal-
culus we get (we refer to Appendix at the end of this paper for the sketch
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of the proof) + = S+ = (b+1, ..., b+n) where

Then we get (see also Appendix)

where Ro is a function given by

We define the characteristic manifold by

Therefore + is elliptic outside Q.

Let zo a root of Ro such that 03BC 03B1(x, 03BE’, ) = zo then we have

then we have in the region 03B5+.

which is again a contradiction if we choose ~’xn &#x3E; Co for large Co &#x3E; 0. Then

03B5+ n Q = 0, and B+ is an isomorphism in the elliptic region 03B5+.

Now let us search that the symetrizer IZ in the form diag(Id, -03C1Id),
p &#x3E; 0, then we have
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and by (4.31) we obtain

which prove the first part of lemma 4.3.

Let now w = (w+, w-) E C2n = Cn C (Cn then we have Bw = 8+w+ +
-w-, since + is an isomorphism, then there exist C &#x3E; 0, such that for
any w E C2n we get

we deduce

Then we have the desirable estimation, for large p. D

4.3.2. Proof of Proposition 4.2

We need the following notations. First, denote by (.,.) the product scalar
in Rn-1 and |.| the associated norm. Let G be a function defined by

Using Dnw - op(H)w = 1/J then we obtain

The integration in the normal direction gives
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Taking into account Lemma 4.3, and   A, we obtain by Gàrding inequality

Moreover by lemma 4.3 (ii) we obtain

Furthermore, for any 03B5 &#x3E; 0, we have

Collecting (4.50), (4.49) and (4.48), (4.47) yields, for large enough T and 6’
small

We now turn to the proof of proposition 4.2.

Using that (4.25)-(4.30) and the ellipticity of the tangential operator

Collecting (4.52)-(4.51), (4.30) yields

This complete the proof of Proposition 4.2.

Remark 4.4. 2013 In the elliptic region 03B5+,  can be degenerate to zero.
But for T = 0 the problem L(x, D)u = 03BC~u+(03BC+03BB)~(divu) with Neumann
boundary condition N(u) = 03C3(u).v is a coercive elliptic boundary problem,
and we can prove the proposition 4.2 in this case (see [3]).
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4.4. Carleman estimate outside E+

To prove a precise Carleman estimates outside 03B5+ we invoque the following
estimate proved in [3] where we have controlled the norm HT (03A9) by the all
traces terms on the all boundary.

PROPOSITION 4.5. - Let ~ satisfy (2.8), with respect P(x, D, ). Then
there exists C &#x3E; 0, and 70 such that for any u E C~(03A9) we have

f or large T &#x3E; 0.

Moreover outside 03B5+ we estimate the tangential derivative by the trace
of displacement. This is possible in this region because  and  03BE’,  &#x3E; are

equivalent. More precisly we have the following Lemma.

LEMMA 4.6. - Let ~(x, 03BE’, ) be a cutoff function homogeneous of degree
zero in the regions Z03B3 U 03B5- U M. Then there exist a constant C &#x3E; 0 such

that

f or any u E C~(K).

Proof. - It is enough to prove that: there exist C such that

 03BE’, T &#x3E; CT for any (x,03BE’, T) E Z1’ U C - U M. We argue by contradiction.
Otherwise there exist a sequence (xk,03BE’k, Tk) E Z03B3 ~03B5- U M and

using that the definition of Z7 U e- U M, if (x, 03BE’, 7) E Z03B3 U e- U M then
there exist -y E {03BC, 2y + 03BB} such that

In particular we obtain
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and by (4.11) we get

Moreover (4.6) implies

Then (4.60) contradict (4.56). This ends the proof of lemma 4.6. D

4.4.1. Carleman estimate in the region 03B5-

The purpose of this section is to prove the Carleman estimate in the region
E- . In this region we prove a better estimates (without boundary traces)
under the condition x &#x3E; 0, this is connected by in this region and under

~’xn &#x3E; 0 there are no roots with respect 03BEn in the upper half-plane Im03BEn &#x3E; 0

for a--y. Let ~1 (x, 03BE’, ) be a homogeneous cutoff function of degree zero in
the region 03B5-. Dénote S = op(~1)u, then we have the following Lemma.

LEMMA 4.7. - There exist C &#x3E; 0 such that for any large enough  we

have

whenever u E Cô (K) . Furthermore if we assume that ~’xn &#x3E; 0 on

supp~1 n {xn = 0}, then there exist C &#x3E; 0 and To such that for any   0
we have

whenever u E Co(K).

Proof. - For the first part of the lemma it is enough to apply proposition
4.5 to op(~1)u and using the lemma 4.6.
Now we will prove the second part. First we take

by an argument similar to the one of section 4.3.1 we have
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and op(H-) is an 2n x 2n square matrix, whose components are tangential
pseudo-differential operators of order 1 with principal symbol rt- E TS1,
such that Im(H-)  C  03BE’, T &#x3E; 12n, let

using (4.64) then we obtain

The integration in Xn gives

By Gàrding inequality we get

Furthermore, for any 03B5

Combining (4.70) (4.69) with (4.68) we obtain

We deduce, by (4.65) and (4.63), the following

This complete the proof of (4.62). 0

4.4.2. Carleman estimate in a non elliptic regions

The purpose of this section is to get the Carleman estimate in the non elliptic
region. Our goals here are firstly estimated the traces of the solution in the
part of boundary where ~’xn has the good sign, second we eliminate the
tangantial derivative (independently to the sign of ~’xn). Precisely we take
a cutoff function Xo (x, 03BE’, T) homogeneous of degree zero in a neighborhood
of the regions Z""( U M. Let  = op(Xo)u, our purpose here is to prove the
following Lemma.
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LEMMA 4.8. - There exist C &#x3E; 0 such that for any large enough T we
have

whenever u E C~0(K).

Furthermore if we assume that ~’xn &#x3E; Co on {xn = 0} n supp~0 then
we have

whenever u E C~0 (K).

To show the first part of the previous Lemma it is enough to apply
proposition 4.5 to op(~0)u and we use the lemma 4.6 in order to eliminate
the tangential derivatives.

To show the second part of lemma 4.8 we need the following estimate.

LEMMA 4.9. 2013 Assume that ~’xn &#x3E; Co on {xn = 0} n supp~0 then the
following estimate holds

whenever u E Cô (K).

To proof lemma 4.9 we need the following notations. First we take

by an argument similar to the one of section 4.3.1, we have

where
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and op(H) is an 2n x 2n square matrix, whose components are tangen-
tial pseudo-differential operators of order 1 with principal symbol H =
diag(H+, H-), such that H- satisfy -Im(H-)  C  03BE’,  &#x3E;.

For the proof of the lemma 4.9 we use the following result which can be
proved in the same way as Lemma 4.4 (see [3] For more détails).

LEMMA 4.10. - Let 7Z = diag(0, -03C1Idn) then there exist C &#x3E; 0 and

e(x,03BE’,) ~ TS; such that

4.4.3. Proof of Lemma 4.9

Denote the function

Taking into account Dnw - op(H)w = 03C8 then we obtain

The integration in the normal direction gives

Taking into account Lemma 4.10,   A, and Gàrding inequality we have
for large T 

and further, for any 

Apply now Lemma 4.10 we obtain
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Collecting (4.83) (4.82) (4.81) with (4.80) we get

This implies, by (4.77) the following inequality

Collecting (4.85) and (4.77) and using that (4.75), we obtain (4.74). Finally
Combining (4.74) with (4.72) we get (4.73). This complete the proof of
Lemma 4.9.

4.4.4. End of the proof of Proposition 2.1

Let ~ satisfy the hypotheses of Proposition 2.1

Via a partition of unity (03B8j)j, near the boundary and by Proposition 4.3,
Lemma 4.7 and Lemma 4.8 the following estimate holds

This complete the proof of Proposition 2.1.

5. Appendix

This appendix is devoted to a proof of (4.37) and (4.38). For this purpose
we need the following

and
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Moreover, for j ~ {1, ..., n - 1}, we have

and

By means of (5.1) and (5.2) we obtain (4.37).

Moreover by (4.37) we have

furether, by (4.17) we have

using that (5.6) in (5.5) we obtain (4.39).
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