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Polynomial hulls and positive currents

TIEN-CUONG DINH (1) AND MARK G. LAWRENCE (2)

ABSTRACT. - We extend the Wermer’s theorem, to describe the poly-
nomial hull of compact sets lying on the boundary of a smooth strictly
convex domain of Cn. We also extend the result to polynomial p-hulls
and apply it to get properties of pluriharmonic or p.s.h. positive currents.

RÉSUMÉ. - Nous décrivons à la suite des travaux de Wermer, l’enveloppe
polynomiale des ensembles compacts contenus dans le bord d’un domaine
lisse strictement convexe de Cn. Nous étendons aussi ce résultat aux p-
enveloppes polynomiales et l’appliquons à l’étude de quelques propriétés
des courants positifs pluriharmoniques ou p.s.h.

Annales de la Faculté des Sciences de Toulouse Vol. XII, n° 3, 2003
PI

1. Introduction

In this paper, we are concerned with the following question - suppose
r c en is compact and has finite 1-dimensional Hausdorff measure: is it

true that the polynomial hull f is an analytic variety or an union of varieties
whose boundaries are included in 0393? The first result in this direction is due
to Wermer [37], who proved that if F is a real analytic curve, then f B r
is subvariety (possibly empty) of en B r. Using a tool developed by Bishop
[10], Stolzenberg [35] was able to extend Wermer’s theorem to the el case;
Alexander [4] extended it to the case where r is connected. Alexander [5] has
also shown that the hull of an arbitrary compact set of finite linear measure
need not be a variety, although the hull in his example is a countable union
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of varieties. It is still an open question wherether the hull of an arbitrary
compact set of finite linear measure is an union of varieties. The reader
can find some applications of Wermer’s theorem in Harvey-Lawson [21],
Dolbeault-Henkin [14], Sarkis [29], Alexander-Wermer [7] and [11, 27].

In [11, 12, 25, 26], the authors extended Wermer’s theorem for geomet-
rically 1-rectifiable compact sets (see the definition in section 3). In this
paper, we show that the Wermer’s theorem is also true for every compact
set of finite linear measure provided that this compact set is lying on the
boundary of a smooth strictly convex domain. We give a notion of polyno-
mial p-hull and prove an analogous result for p-hull of a compact set of finite
(2p-1)-dimensional Hausdorff measure. Our proof use the case p = 1 and a
theorem of Shiffman on separately holomorphic functions. The polynomial
1-hull is the usual polynomial hull.

In the second part of this article, we use the generalized Wermer’s theo-
rem to study some properties of positive plurisubharmonic and plurisuper-
harmonic currents.

Let V be a complex manifold of dimension n. A current T of bidimension
(p, p) or bidegree (n - p, n - p) in V is called plurisubharmonic if ddcT is a
positive current, is called plurisuperharmonic if -ddcT is a positive current
and is called pluriharmonic if ddcT = 0. In particular, every closed current
is pluriharmonic.

Some analytic objects support interesting positive plurisubharmonic and
plurisuperharmonic currents. In [19], Garnett proved that every laminated
closed set supports a positive pluriharmonic current (see also [20, 9]).
Duval and Sibony used positive plurisuperharmonic currents to describe
polynomial hulls of compact sets in Cn [15]. Gauduchon, Harvey, Lawson,
Michelson, Alessandrini, Bassanelli, etc. studied non-Kâhler geometry using
(smooth or not) pluriharmonic currents [1].

The reader can find others properties of theses classes of currents in De-
mailly [13], Skoda [34], Sibony, Berndtsson, Fornoess [31], [9], [17], Alessan-
drini and Bassanelli [2, 3, 8], etc. If T is a positive plurisubharmonic current,
one can define a density v(T, a) of T at every point a. This density is called
the Lelong number of T at a.

We will prove that if the level set {v(T, a)  03B4} is dense in the support
of T for a suitable 8 &#x3E; 0, then the support X of T is a complex subvariety of
pure dimension p and T = ~[X], where ~ is a weakly plurisubharmonic func-
tion on X. In particular, every rectifiable positive plurisubharmonic current
is closed. Moreover, it has the form c[X], where X is a complex subvariety
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and c is essentially equal to a positive integer in each component of X.
We will also prove that if T is positive pluriharmonic (resp. plurisuperhar-
monic) and its support has locally finite 2p-dimensional Hausdorff measure
then the support X of T is a complex subvariety of pure dimension p and
T = ~[X], where ~ is a weakly pluriharmonic (resp. plurisuperharmonic)
function on X.

For closed positive currents, an analogous result has been proved by
King [24] (see also [33, 32]). The proof of King does not work in the case of
plurisubharmonic and plurisuperharmonic currents.

2. Some definitions

Let r C Cn be a compact set. The polynomial hull of r is the compact
set r defined by the following formula

We say that r is polynomially convex if  = 0393. We now introduce the notions
of p-pseudoconcavity and polynomial p-hull.

Let V be a complex manifold of dimension n  2 and X be a closed
subset of V. Let 1  p  n - 1 be an integer.

DEFINITION 2.1. - We say that X is p-pseudoconcave subset of V if for
every open set U C C V and every holomorphic map f from a neighbourhood
of U into CP we have f(X~U) C CpB03A9 where f2 is the unbounded component
of Cp B f(X ~ bU).

This means X has no "local peak point" for holomorphic maps into CP.
In particular, X satisfies the maximum principle, i.e. locally, the modu-
lus of any holomorphic function admits no strict maximum on X. Observe
that if V is a submanifold of another complex manifold V’, then X is p-
pseudoconcave in V if and only if X is p-pseudoconcave in V’.

By the argument principle, every complex subvariety of pure dimension
p of V is p-pseudoconcave. It is clear that if X is p-pseudoconcave, the 2p-
dimensional Hausdorff measure of X is strictly positive. If 1  p  q  n-1
and X is q-pseudoconcave then X is p-pseudoconcave. If g : V ~ Cp-k
is a holomorphic map and X C V is p-pseudoconcave then g-1 (x) n X is
k-pseudoconcave for every x E Cp-k. We have the following proposition.

PROPOSITION 2.2. - Let T be a positive plurisuperharmonic current of
bidimension (p,p) on a complex manifold V. Then the support supp(T) of
T is p-pseudoconcave in V.
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Proof. - Since the problem is local we can assume that V is a ball
in Cn. Assume that X := supp(T) is not p-pseudoconcave. Then there
exist an open set U C C V and a holomorphic map f : V’ ~ CP such
that f(X n U) ~ Cp B f2, where V’ is a neighbourhood of U and 03A9 is the

unbounded component of Cp B f(X n bU).

Let 03A6 : V’ ~ CP x V’ the holomorphic map given by 03A6(z) :=(f(z), z).
Choose a bounded domain U’ in CP x V’ such that U’ n 03A6(V’) = 03A6(U).
Set X’ :== 03A6(X n V’) and T’ :== 1U’03A6*(T). Then T’ is a positive plurisu-
perharmonic current in U’. Let 7r : cn+p ~ CP be the linear projec-
tion on the first p coordinates. We have 7r(X’ n bU’) = f(X n bU) and
7r(X’ ~U’) = f(X n u) e CP B H. The open set 03A9 is also the unbounded
component of CP B 7r(X’ n bU’).

Therefore 7r*(T’) defines a positive plurisuperharmonic current of bide-
gree (0,0) in f2 which vanishes in CP B 03C0(X’). Hence there is a positive
plurisuperharmonic function 03C8 on H, which is zero on CP B 7r(X’) such that
03C0*(T’) = 03C8[03A9] in Q. By plurisuperharmonicity, this function vanishes identi-
cally. Fix a small open W C cn+p such that W~X’~ Ø and 7r(W) C H. Set
03A8 := (idzl A dz1 + ··· + idzp 039B dzp)P. Then the positive measure T’ A 03C0* (03A8)
vanishes in W since so does its push-forward by 7r. This still holds for ev-
ery small linear pertubation 03C0~ of 7r. On the other hand, we can construct
a strictly positive (p, p)-form 03C8 of cn+p as a linear combination of 03C0*~ (03A8).
Then we have T’, 1W03C8&#x3E; = 0. Since T’ is positive, T’ = 0 on W. This is a
contradiction. D

PROPOSITION 2.3. - Let r be a compact subset of Cn. Denote by F the
family of p-pseudoconcave subsets of Cn B r which are bounded in Cn. Then
the union E of elements of F is also belong to F (03A3 is the biggest element
of F).

Proof. - Let Si, S2, ... be elements of F such that Si C Si+1. We show
that S:= USi belongs to F. By the maximum principle, Si C f. Then S is
bounded in en.

Assume that S does not belong to F. Then there are a point p E S, a

neighbourhood U C C en B r of p and a holomorphic map f from a neigh-
bourhood of U into CP such that f (p) belongs to the unbounded component
ç2 of CpBf(S~bU). Fix small neighbourhoods V of p and W of sn bU such
that f(V) is included in the unbounded component of CP B j(W).

For i large enough, we have Si n bU C W and Si n V ~ 0. Moreover,
if p is a point in Si n V, f(p) belongs to the unbounded component of
CP B f(Si n bU). This contradicts the p-pseudoconcavity. Thus S E F.
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Now, by Zorn’s lemma, we can choose an element E’ of F which is
maximal for the inclusion. If 03A3’ ~ 03A3 then there exists an element S E F
such that S % E’. The set S~03A3’ is p-pseudoconcave in (Cn B r and it belongs
to F. This contradicts the maximality of E’. D

DEFINITION 2.4. - Let rand E be as in Proposition 2.3. We say that
E U r is the polynomial p-hull of 0393 and we denote it by hull(0393, p).

The following proposition shows that we obtain the usual polynomial
hull when p = 1.

PROPOSITION 2.5. - We have hull(0393, 1) = for every compact subset
r of Cn.

Proof. - By maximum principle, we have hull(r, 1) C r. Now let

z E r B f, we will prove that z E hull(r, 1). By Duval-Sibony theorem [15],
there are a positive current T of bidimension (1,1) with compact support
in CI and a measure M with support in r such that ddcT = 03BC - 03B4z where
bz is the Dirac mass at z. By Proposition 2.2, supp(T) is 1-pseudoconcave
in (Cn B r. Thus supp(T) C hull(r, 1) and z E hull(r, 1). D

3. Hulls of sets of finite Hausdorff measure

Denote by 1ik the Hausdorff measure of dimension k. A compact set
r C en is called geometrically k-rectifiable if Hk(0393) is finite and the geo-
metric tangent cone of r is a real space of dimension k at Hk-almost every
point in r. If a compact set F is geometrically k-rectifiable, it is (Hk,k)-
rectifiable [28, p.208], i.e. there exist CI manifolds Vl , V2, ... such that

Hk(0393 B ~Vm) = 0 [16, 3.1.16, 3.2.18]. Now, suppose that Vl, V2, ... are C1
oriented manifolds of dimension k in Cn, Ki C Y are compact sets and n1,
n2, ... are integers such that 03A3 |ni|Hk(Ki)  +oo. Then we can define a
current S of dimension k by

for any test form 03C8 of degree k having compact support. Such a current is
called a rectifiable current. We have the following theorem.

THEOREM 3.1. 2013 Let r be a compact subset of Cn. Assume that r is
geometrically (2p - 1)-rectifiable with 1  p  n - 1. Then hull(r,p) B r
is a complex subvariety of pure dimension p (possibly empty) of Cn B IF.
Moreover, hull(r,p) B r has finite 2p-dimensional Hausdorff measure and
the boundary of the integration current [hull(0393, p) B 0393] is a rectifiable current
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of dimension 2p - 1 and has multiplicity 0 or 1 H2p-1-almost everywhere
on 0393.

The last property of the current [hull(r, p) B r] is called the Stokes formula.
In the case p = 1, this theorem is proved in [11, 12, 26] and it generalizes
the results of Wermer [37], Bishop [10], Stolzenberg [35], Alexander [4] and
Harvey-Lawson [21] (see also [14]).

In order to prove Theorem 3.1, we will slice F by complex planes of
dimension n - p + 1 and we will apply the known result in the case p = 1.
We will also use a theorem of Shiffman on separately holomorphic functions.

Set X := hull(F,p) Br. Observe that if L is a linear complex (n-p+1)-
plane then X n L is 1-pseudoconcave in L B r. Thus X n L is included in the
polynomial hull of r n L. Moreover, by Sard theorem, for almost every L
the intersection f n L is geometrically 1-rectifiable (see also [11]). Therefore
hull(0393 ~ L, 1) Br is a complex subvariety of pure dimension 1 of L r. We
need the following lemma.

LEMMA 3.2. - Let V be a complex manifold of dimension n 2 and
X C V a p-pseudoconcave subset. If X is included in a complex subvariety
E of pure dimension p of V, then X is itself a complex subvariety of pure
dimension p of

Proof. - Recall that every non empty p-pseudoconcave set has positive
x2p measure. Assume that X is not a complex subvariety of pure dimension
p of V. Then there is a point a E X such that a is a regular point of E and
a E EBX. Let V’ C V be a small ball of centre a satisfying V n E B X ~ 0.
Since V’ is small, we can choose a projection vr : V’ ~ CP such that 7r is
injective on 03A3~V’. Then 7r(X n W) meets the unbounded component of
CpB03C0(X~bW) for every ball W cc V’of center a such that ~W n 03A3BX ~ 0.
This is impossible. D

Proof of Theorem 3.1. - By the latter lemma, for almost every L (such
that r n L is geometrically 1-rectifiable), X n L is a complex subvariety of
pure dimension 1 of L B r. Let E be a complex (n - p)-plane which does
not meet F. By Sard theorem, for almost every L passing through E, the
intersection r n L is geometrically 1-rectifiable. We deduce that X n E =
(X n L) nE is a finite set. We now use a Shiffman theorem on separately
holomorphic functions in order to complete the proof of Theorem 3.1.

Let a be a point of X. We show that X is a complex variety of pure
dimension p in a neighbourhood of a. Indeed, choose a coordinate sys-



- 323 -

tem such that 03A0(a) ~ n(r), where II : en ~ CP is the linear pro-
jection given by II(z) := (z1, ..., zp). Set 03C0i : Cn ~ Cp-1, 03C0i(z) :=

(z1,...,zi-1,zi+1,...,zp). Using a linear change of coordinates, we may
suppose without loss of generality that for H2p-2-almost every x E Cp-1
and for every 1  i  n, X n 03C0-1i(x) is a complex subvariety of pure dimen-
sion 1 of 03C0-1i(x) B r.

Fix a small open neighbourhood V of n(a) such that 03A0-1(V) n r = 0.
Put z == (z’, z"), z’ : = (z1, ..., zp) and z" : = (zp+1, ..., zn). Let g be a
function which is defined in a subset V’ of total measure of V. This function
is called separately holomorphic if for every 1 i  p and H2p-2-almost
every x E Cp-l the restriction of g on V’ n {zi = x} can be extended to a
holomorphic function on V ~ {zi = x}. For any k  0 and p + 1  m  n,
we define the following measurable function on V

The function

is independent on m and takes only positive integer values.

By the choice of coordinates, gm,k(z’) is H2p-almost everywhere equal
to a separately holomorphic function. Thanks to Shiffman Theorem [30],
gm,k(z’) is equal H2p-almost everywhere to a function m,k(z’) which is
holomorphic on V. In particular, m,0(z’) is equal to an integer r which
does not depend on m and z’.

Now, consider the following equation system:

The set of points (z’,z(ip+1)p+1,...,z(in)n) given by solutions of the system
above is a complex subvariety E of pure dimension p of 03A0-1(V). We have
X ~ 03A0-1(x) C E for U2p -almost every x ~ V. We show that Xnn-1(V) c
03A3. Assume this is not true. Choose a point b E X n 03A0-1(V) B 03A3 and a
neighbourhood W cc n-1(V) B E of b. The set 03A0(X n u’) has zero H2p
measure. But for almost every complex (n - p + l)-plane L passing through
n-1(II(b)), the intersection X n L is a complex subvariety of pure dimension
1 of L Br which contains b. This implies that the set II(X n W) has positive
H2p measure. We reach a contradiction.

Now we have already shown that X n n-1(V) C E. By Lemma 3.2,
X n 03A0-1(V) is a complex subvariety of pure dimension p of 11-1 (V). Then
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X is a complex subvariety of pure dimension p of Cn B F. The rest of the
proof follows along the sames lines as the proof of Stokes formula given in
[25, 11, 12]. D

When r is included in the boundary of a smooth convex domain, its
rectifiability in Theorem 3.1 is non necessary. We have the following result.

THEOREM 3.3. - Let D be a strictly convex domain with smooth bound-
ary of Cn. Let F be a compact set in the boundary of D. Assume that the
(2p - l)-dimensional Hausdorff measure of r is finite. Then hull(r, p) B r
is a complex subvariety of pure dimension p (possibly empty) of Un h.
Moreover, hull(r,p) B r has finite 2p-dimensional Hausdorff measure and
the boundary of the integration current [hull(0393, p) B 0393] is a rectifiable current
of dimension 2p - 1 and has multiplicity 0 or 1 H2p-1-almost everywhere
on r.

We will prove Theorem 3.3 for p = 1. Using the case p = 1, we prove
the general case exactly as in Theorem 3.1.

Given a closed set F C Cn, Tp(F) denotes the tangent cone of F at p.
If L is a real line in en, p e L and ce is some angle, we denote by CL03B1(p) the
cone of angle a around L, opening at the point p; i.e., if p = 0, and L is the
xi axis, then CL03B1(p) = {|y’|  tan03B1|x1|}. Here y’ denotes the other 2n - 1
standard coordinates. We first prove the theorem for minimal subsets of r-

i.e., we assume that a E f B r and that r is minimal with respect to this
property. The existence of minimal subsets follows from Zorn’s lemma.

The proof proceeds in three steps. First, we show that r is (H1, 1)-
rectifiable ; we then show that r possesses a tangent line H1-almost every-
where and we finish the proof using Theorem 3.1.

PROPOSITION 3.4. - Let D be a strictly convex domain with smooth
boundary and r C bD a compact set of finite linear measure. If 0393 is minimal,
then r is geometrically 1-rectifiable.

In order to proof this proposition, we need the following lemmas.

LEMMA 3.5 ([23]). - Let Xl, X2 be two polynomially convex subsets of
Cn and X = Xi U X2. Assume there is a polynomial f such that f(X1) n
{Rez  0} = {0}, f(X2)n {Rez  0} = {0} and f-1(0) ~ X is polynomially
convex. Then X is polynomially convex.

Proof. - We choose two bounded domains 03A91, Q2 in C such that
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1. ni U {0} contains f(Xi).

2. 03A91 n {Rez  0} = {0} and n2 n {Rez  0} = f 01.
3. C B 03A91 U O2 is connected.

In [23], Kallin considers the case where ni are angular sectors. According to
Mergelyan’s theorem, the point 0 is peak for 03A91 U 03A92. Then, Kallin’s proof
works in our case. ~

LEMMA 3.6. - For a point p E r, let Hp denote the real tangent plane
to bD at p. Let lp be a real linear functional with Hp = {ip = 0} and
D C {lp  01. Then for small ~ &#x3E; 0, the set h n {lp = -~} contains at least
two points.

Proof. - Let 03B1p be the complex linear functional with Re(03B1p) = lp.
Choose ô so that for E, 0  E  03B4, {lp  -~} ~ 0393 and {Ip &#x3E; -~} ~ 0393 are both
nonempty. Suppose that 0393 ~ {lp = -~} contains 1 or zero points. By Lemma
3.5, ({lp  -~}~0393)^ = {lp  -~}~  and {lp  -~}~.
This contradicts the minimality of r. 0

LEMMA 3.7. - h is (H1,1)-rectifiable.

Proof. - The rectifiability follows from an application of Eilenberg’s
inequality [16, 2.10.25]: for r C Rm,

where S(p, r) and B (p, r) denote the sphere and the ball of center p and
radius r. Let p E r be arbitrary and let 7rp be the projection onto the
tangent plane of bD at p. After a linear change of coordinates, we can
arrange that the projections of the sets {lp = -~}~bD will be approximately
spheres of radius ~~. We can find a C1 diffeomorphism ~p of Tp(bD) which
sends these surfaces to actual spheres of radius Niè. Each of these spheres
intersects ~p o 7rp(r) in two points; therefore Eilenberg’s inequality shows
that the lower density is 1 at p. We can do the same construction at nearby
points, and since for points close enough to p, the projection map distorts
lengths by a factor arbitrarily close to 1, we see that for 03B4 &#x3E; 0, there is

- a neighborhood of p in which the lower density of r is larger than 1 - 03B4.

By the generalization of Besicovitch’s 3/4-theorem [28, Theorem 17.6], this
shows that r is (H1,1)-rectifiable. 0

Proof of Proposition 3.4. - Recall that (H1,1)-rectifiable sets admit ap-
proximate tangent line at H1-almost every point. We have shown that there
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are v &#x3E; 0 and ro &#x3E; 0 such that, every point w E r will have the property
that H1 (r û B(w, r)) &#x3E; vr, for r  ro. Let w ~ 0393, and suppose that r has
an approximate tangent line L at w but not a geometric tangent line. Since
there is no tangent line at w, there is an angle cx &#x3E; 0 such that for all r &#x3E; 0,

From the definition of approximate tangent line we obtain that H1(B(w, r) n
r B CL03B1/2(w)) = o(r). We can find arbitrarily small r such that there exists
z E B(w, r) n r B CL03B1(w). We may assume without loss of generality that
|z-w| &#x3E; r/2. This, together with the choice of r, implies that for J = 03B1r/8
we have H1(0393 n B(z,8)) = o(03B4). If r is small enough, this contradicts the
property that H1(0393 n B (z, 03B4)) &#x3E; v03B4. Therefore w has a geometric tangent
line. D

Proof of Theorem 3.3 for p = 1. - Theorem 3.1 applies to show that the
minimal components are varieties. The fact that the entire hull is a variety
can be deduced from uniqueness theorem [11, 26]: the multiplicity bound
immediately implies that there cannot be three disjoint varieties which meet
on a set of positive length in r. Now, by Stokes formula (see also Forstneric
[18]) there is a lower bound 03B4(d) on the length of bV, if V is a subvariety
of dimension 1 of D which contains a point of distance at least d from bD.
Putting these two facts together gives that the hull of r is a variety. The
rest of Theorem is proved exactly as in [25, 11]. D

Remark 1. - Under the hypotheses of Theorems 3.1 and 3.3, by Lemma
3.2, every p-pseudoconcave subset of Cn B r which is bounded in en, is a
complex subvariety of pure dimension p of Cn B F and is included in X -
hull(r,p) B F. By Proposition 2.2, every positive current T with compact
support satisfying ddcT  0 in Cn B r has the form ~[X], where ~ is a
weakly plurisuperharmonic function in X (see Definition in Section 4).

Remark 2. - Let K be a convex compact set such that K n D is convex.
If F C bD B K has finite U2p-1 measure, then hull(r U K, p) B (r U K)
is a complex variety. The proof uses the same argument as in the case
of polynomial hull ( see, for example, [35, 12]). This version of Wermer’s
theorem implies that Theorem 3.3 also is valid for D strictly polynomially
convex.

COROLLARY 3.8. - Let V be a complex manifold of dimension n  2
and X a p-pseudoconcave subset of V. Let K be a compact subset of V which
admits a Stein neighbourhood. Assume that the 2p-dimensional Hausdorff
measure of X B K is locally finite in V B K. Then X is a complex subvariety
of pure dimension p of V.
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Proof. - Fix a point a E X B K and B CC V B K an open ball contening
a such that X~bB has finite H2p-1 measure. Then X f1 B is p-pseudoconcave
in B. We can consider B as an open ball in en. Then X f1 B C hull(X~bB,p).
By Remark 1, X n B is a complex subvariety of pure dimension p of B. This
implies that X B K is a complex subvariety of pure dimension p of V B K.

Since we can replace V by a Stein neighbourhood of K, suppose without
loss of generality that V is a submanifold of CN. Observe that X is also p-
pseudoconcave in CN . Let B’ be a ball containing the compact K such that
X n B’ has finite H2p-l measure. Then we obtain X n B’ C hull(X n bB’, p).
By Remark 1, X n B’ is a complex subvariety of pure dimension p of B’.
This completes the proof. D

Remark 3. - We can also deduce this corollary from results of Oka,
Nishino and Tadokoro [36].

4. Positive currents

Let V be a complex manifold of dimension n. Let X be a complex sub-
variety of pure dimension p of V. A function cp E L1loc(X) is called weakly
plurisubharmonic if it is locally bounded from above and ddc(~[X]) is a

positive current. In the regular part of X, cp is equal almost everywhere to
an usual plurisubharmonic function. We say that cp is weakly plurisuperhar-
monic if -cp is weakly plurisubharmonic and that ~ is weakly pluriharmonic
if both cp and -~ are weakly plurisubharmonic.

If ~ is a positive weakly plurisubharmonic function on X, we can define
a positive plurisubharmonic current T := ~[X] as follows:

for every test form 03C8 of bidegree (p, p) compactly supported in V. According
to Bassanelli [8, 1.24, 4.10], every positive plurisubharmonic current with
support in X can be obtained by this way. This is also true for positive
plurisuperharmonic and pluriharmonic currents.

Now, let T be a positive plurisubharmonic current of bidimension (p, p)
of V. Thanks to a Jensen type formula of Demailly [3, 34, 13], if V is an
open set of Cn which contains a ball B(a, ro), the function

is non-decreasing, where w := idz1 A dZ1 + ··· + idzn A dz-,. Therefore, we
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can define

This limit is called the Lelong number of T at the point a. In [3], Alessandrini
and Bassanelli proved that v(T, a) does not depend on coordinates. Thus,
the Lelong number is well defined for any manifold V. We have the following
theorem.

THEOREM 4.1. - Let T be a positive plurisubharmonic current of bidi-
mension (p, p) in a complex manifold V of dimension n. Assume that there
exists a real number 8 &#x3E; 0 such that the level set {z E V, v(T, z)  03B4} is

dense in the support supp(T) of T. Then supp(T) is a complex subvariety of
pure dimension p of V and there exists a weakly plurisubharmonic function
cp on X := supp(T) such that T = ~[X].

It is sufficient to prove that the support X = supp(T) of T is a complex
subvariety of pure dimension p of V. Since the problem is local, we can
suppose that V is a ball in Cn. By Corollary 3.8, we have to prove that X
has locally finite ’H,2p measure and X is p-pseudoconcave. Consider now the
tra ce measure a := T 039Bwp of T.

PROPOSITION 4.2. - Let T be a plurisubharmonic current of bidimen-
sion (p, p) in a complex manifold V. Then for every S &#x3E; 0 the level set

{v(T, a)  03B4} is closed and has locally finite H2p measure. Moreover, under
the hypothesis of Theorem 4.1, we have v(T, a)  03B4 for every a E X and X
has locally finite H2p measure.

Proof. - We may suppose without loss of generality that V is an open
subset of Cn. Set Y := {v(T, a)  03B4}. Let (an) C Y be a sequence which
converges to a point a ~ V. Fix an r &#x3E; 0 such that B(a, r) C V. We have

which implies that

and

Therefore, a E Y and hence Y is closed. We have shown that v(T,.) is u.s.c.
The last inequality also implies that Y has locally finite H2p measure [16,
2.10.19(3)]. ~
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LEMMA 4.3. - Let T be a positive current of bidimension (p, p) in en
with compact support. Let 03C0 : Cn ~ Cp be the linear projection on the first
p coordinates, a E Cn and b :== 7r(a). Assume that T is plurisubharmonic
on 03C0-1(B(b, r)) for some r &#x3E; 0. Then (T, 103C0-1(B(b,r))03A8&#x3E;  2p03C0pr2pv(T, a),
where 03A8 := (idz1 039Bdz1 +··· +idzp039Bdzp)p. In particular, the Lelong number
of 03C0*(T) at b is greater or equal to v(T, a).

Proof. - We may suppose without loss of generality a = 0 and b = 0.
Set z’ := (z1,...,zp), z" := (zp+1,...,zn), w :=idz1039Bd+···+idzn039Bdzn
and fix an E &#x3E; 0. Let 03A6 : Cn ~ Cn be the linear map given by 03A6~(z) :=
(ZI, -Ez") and set T’ := (03A6~)*T. Since the Lelong number is independent on
coordinates [3], we have v(T’, 0) = v(T, 0). By the Jensen type formula of
Demailly, we have

since 03C0-1(B(0,r)) contains the ball B(0,r) in Cn. From this inequality, i
follows that

On the other hand, when e ~ 0, 03A6*~(wp) converges uniformly to 03A8. Thus,

This implie:

which completes the proof. Fi

We deduce Theorem 4.1 from Corollary 3.8 and the following lemma.

LEMMA 4.4. - The set X is p-pseudoconcave.

Proof. - Assume that X is not p-pseudoconcave. Then there exist an
open set U C C V and a holomorphic map f : V’ ---1- CP such that f (X n
U) 5t Cp B H, where V’ is a neighbourhood of U and 03A9 is the unbounded

component of CP B f(X n bU).

Consider 03A6 : V’ ~ CP x V’ the holomorphic map given by 03A6(z) :=
( f (z), z). We next choose a domain U’ CC CP x V’ such that 03A6(U) is a

submanifold of U’. Then T’ :== 1U’03A6*(T) is a positive plurisubharmonic
current in U’. Moreover it is easy to see that v(T’, a)  J’ for some J’ &#x3E; 0

and for every a E X’ := supp(T’). Let 7r : Cp+n ~ CP be the linear

projection on the first p coordinates. We have 7r(X’n bU’) = f(X~bU) and



- 330 -

7r(X’ ~ U’) = f(X n U) et cp B 03A9. The open set Ç2 is also the unbounded

component of Cp B 7r(X’ n bU’).
Therefore 03C0*(T’) defines a positive plurisubharmonic current in 03A9 which

vanishes in CpB03C0(X’). Hence there is a positive plurisubharmonic function
03C8 on S2, which vanishes on CpB03C0(X’) such that 03C0*(T’)=03C8[03A9] in Q. Thus for
every x ~ 03A9 we have v(03C0*(T’), x) = 03C8(x). By Lemma 4.3, we have 03C8(x)  03B4’
for every x E 03C0(X’) n f2.

Now fix a point x in the boundary E of 03C0(X’) in H. Let c E Ç2 B 03C0(X’)
be a point close to x. Let b E 03C0(X’) such that dist(b, c) = dist(03C0(X’), c).
Since c is close to x, we have b ~ 03A3 and B(c, |b - c|) c Q. By the submean
value property of plurisubharmonic functions and the fact that 0 on
B(c, |b- c|), we obtain

By upper semicontinuity, the last limit is smaller or equal to

Thus 03C8(b)  1 203C8(b) and 03C8(b)  0. This contradicts the fact that 03C8(b)  03B4’.
~

COROLLARY 4.5. - Let T be a positive plurisubharmonic current of
bidimension (p, p) in a complex manifold V of dimension n. If T is locally
rectifiable, then there exists a locally finite family of complex subvarieties
(Xi)iEI of pure dimension p of V and positive integers ni such that T =
03A3i~I ni[Xi]. In particular, T is closed.

Remark 4. - King has proved the same result for rectifiable closed pos-
itive current [24]. Harvey, Shiffman and Alexander [6, 22] proved it for rec-
tifiable closed currents (in this case, the positivity is not necessary).

Proof. - By [16, 4.1.28(5)], v(T, a) is a strictly positive integer for a in
a dense subset of X := supp(T). This, combined with Theorem 4.1, implies
that X is a complex subvariety of pure dimension p of V and T = ~[X],
where cp is a weakly plurisubharmonic function on X. Since T is rectifi-
able, the function ~ has integer values H2p-almost everywhere. Therefore
cp is essentially equal to a positive integer in each irreducible component
of X. D
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The following theorem is a variant of Theorem 4.1 (see also Example 1).

THEOREM 4.1’.2013 Let T be a positive plurisubharmonic current of
bidimension (p, p) in a complex manifold V of dimension n. Assume that
supp(T) has locally finite x2p measure and the set 9 := {z E supp(T),
v(T, z) = 0} has zero H2p-l measure. Then supp(T) is a complex subva-
riety of pure dimension p of V and there exists a weakly plurisubharmonic
function ~ on X := supp(T) such that T = ~[X].

Proof. - We only need to prove Lemma 4.4. More precisely, we have to
find a point b G E B 03C0(03B5) such that the upper-density

of 03A9 at b is strictly positive. Following [38, 5.8.5, 5.9.5], the set

03A3’ := {b ~ 03A3, 0398(b) &#x3E; 0} has positive H2p-1 measure. It is sufficient to
take b in E’ B 7r(e). The last set is not empty since H2p-1(03B5) = 0 . ~

For plurisuperharmonic currents, we have the following theorem.

THEOREM 4.6. - Let T be a positive plurisuperharmonic current of
bidimension (p, p) in a complex manifold V of dimension n. Let K be Q
compact subset of V which admits a Stein neighbourhood. Assume that in
V B K the support supp(T) of T has locally finite 2p-dimensional Hausdorfj
measure. Then supp(T) is a complex subvariety of pure dimension p of V
and there exists a weakly plurisuperharmonic function ~ on X := supp(T)
such that T = ~[X]. Moreover, if T is pluriharmonic, then ~ is weakly
pluriharmonic on X .

Proof. - By Proposition 2.2, X := supp(T) is p-pseudoconcave subset of
V. Moreover, by Corollary 3.8, X is a complex subvariety of pure dimension
p of V. The theorem follows. ~

We remark here that Theorem 4.6 is false for positive plurisubharmonic
currents. Consider an example.

Example 1. - Let 03C8 be a positive subharmonic function in C which
vanishes in the unit disk B(0,1). We can take for example 03C8(z) := log |z|
if Izi &#x3E; 1 and 03C8(z) := 0 if |z|  1. Let f be a holomorphic function in
C B B(O, 1/2) which cannot be extended to a meromorphic function on C.
Denote by Y C C2 the graph of f over C B B(0,1/2). Let cp be the subhar-
monic function on Y given by ~(z) := 03C8(z1). Then T :=~[Y] is a positive
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plurisubharmonic current of C2. Its support X C y is not a complex sub-
variety of C2 and cannot be extended to a complex subvariety. We can
construct more complicated examples by taking countable combinations of
such currents.

COROLLARY 4.7. - Under the hypothesis of Theorem 4.1, Theorem 4.1’
or Theorem 4.6, if V is compact, then there are complex subvarieties Xl,
..., Xk of pure dimension p of V and positive real numbers cl, ck such
that T = ci [Xl] + ··· + ck [Xk]. In particular, T is closed.

Proof. - By Theorems 4, 4. l’ and 4.6, X is a complex subvariety of
pure dimension p. Since V is compact, X has a finite number of irreducible
components and ~ is essentially constant in each component. 0
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