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Regularity of C1 solutions of the Hamilton-Jacobi
equation 

ALBERT FATHI (1)

ABSTRACT. - We study Cl solutions of the Hamilton-Jacobi equation.
We will show that they are necessarily Cl,l, generalizing some work of
Pierre-Louis Lions. We will also prove some compactness theorems, and
give some geometrical consequences.

RÉSUMÉ. - Nous étudions les solutions Cl de l’équation de Hamilton-
Jacobi. Nous montrons qu’elles sont nécessairement C1,1, généralisant
ainsi un résultat de Pierre-Louis Lions. Nous démontrons aussi certains
théorèmes de compacité et nous en tirons des conséquences géométriques.
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1. Introduction

To state our results we consider a Hamiltonian H : R x Rk x Rk ~ R,
(t, q, p) H H (t, q, p) . We assume the following conditions on H:

(C1) the Hamiltonian H is Cr with r  2,

(C2) The Hamiltonian H is C2-strictly convex in the fibers, i.e. for each
t E R and each q E M, the second derivative of the restriction
Hlftl x fql x Rk is positive definite as a quadratic form. This can
be written as
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(C3) The Hamiltonian H is superlinear, i.e.

We study C’ Solutions of the Hamilton-Jacobi Equation. Such a solution
is a C1 map u : U ~ R, where U is an open subset of R x Rk and

THEOREM l.l. 2013 If u : U ~ R is a CI solution of the Hamilton-Jacobi
equation then u is Cl,l, i.e. the derivative of u is locally Lipschitzian.

This generalizes some work of Pierre-Louis Lions, see [Li, Theorem 15.1]
and the comments after Theorem 3.3 below.

We will also prove some compactness theorems that do not seem to have
been noticed in that full generality. For example the following theorem seems
to be new:

THEOREM 1.2. - Suppose that H is time-independent and that un is

a sequence of Cl solutions of the Hamilton-Jacobi equation all defined on
the same open subset U of R x Rk. If the pointwise limit u(q) of the se-
quence un(q) exists at every point of U, then u itself is a Cl solution of the
Hamilton-Jacobi equation, and un converges to u in the (compact open) Cl
topology.

In fact, under some fairly general conditions a family of C 1 solutions
of the Hamilton-Jacobi equation, all defined on the same open subset U,
and bounded on compact subsets of U, have derivatives which are equi-
Lipschitzian on compact subsets of U, see the precise formulation given in
§3 and §4 below.

Some versions of these compactness theorems are known to Differential
Geometers or to people working in Lagrangian Dynamics, see the comments
below following Corollary 3.3. We give for example an application to the
smoothness of Busemann’s functions.

Finally we show that the construction of solutions of the Hamilton-
Jacobi equation using the method of characteristics can be done when and
only when we start with a CI,1 function, compare with [Li, Remark 1.1
pages 15-16, and Proposition 15.1 page 265]. These methods can be used
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to show the following fact, if N is a C1 codimension 1 submanifold of the
Riemannian manifold !v!, the distance function q H d(q, N) is Cl on a set
V B N, where V is a neighborhood of N in M, if and only if N is Cl, 1. This
is to be contrasted with the case of higher differentiability, see the work of
Poly and Raby [PR].

It is crucial for the proofs that we can use the dual formalism of the La-
grangian, because action and minimizers will play a fundamental role. The
fact that a Hamiltonian satisfying (C1), (C2), and (C3) comes via Legendre-
Fenchel duality from a Lagrangian satisfying the same assumptions is well-
known. We prefer to state and do things in the invariant framework of
manifolds. We recall this framework in §2 below.

A first (awkward) version of this work was presented at the "Interna-
tional Conference in Dynamical Systems, a Tribute to Ricardo Mané" , held
from March 27 till April 1, 1995 in Montevideo, Uruguay. The final version
was written during a sabbatical semester at the Institut de Mathématiques
de l’Université de Genève in Switzerland in Spring 2000.

2. Convex and superlinear Lagrangians

We will consider a fixed smooth manifold M. We will denote a point
in its tangent space T M by (q, v ) with q E M and v ~ TqM, the space of
vectors tangent to M at the point q. The map 1f : TM ~ M is the canonical
projection (q, v) ~ q. We will denote a point in the cotangent space T* M
by (q, p) with p E Tq M, so p is a linear form on the vector space Tq M. The
map 03C0* : TM* ~ M is the canonical projection (q, p) ~ q.

It is convenient to introduce the Liouville form a on T*M. This is

a differential 1-form. Thus for a given (q, p) E T*M we must define a
linear map Q:(x,p) : T(q,p)(T*M) ~ R. To define it let us notice that if

«q,p),(Q,P)) E T(q,p) T* M, then T03C0*((q,p),(Q,P)) = (q, Q) E TM, and
thus the expression p(Q) makes sense, since it is the evaluation of the linear
form p : TXM - R on the vector Q E TxM. We then set

It is not difficult to see that this defines a differential 1-form Q on the T* M
manifold. If U is an open subset of M and 03B8 : U ~ Rk is a coordinate chart,
we can consider the associated coordinate chart T*03B8 : T*U ~ Rk x Rk on
T*M. If we denote by (q1,..., qk,p1,..., Pk) the canonical coordinates on
Rk x Rk, we see that
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The canonical symplectic form on T*M is 0 = -da. In the coordinate
charts of the type T*9 introduced above we have

It will also be convenient to have some fixed Riemannian metric on M.

For a tangent vector (q, v) E TM, we will denote the length of the tangent
vector for the Riemannian by ~v~.

We will consider a Lagrangian L : R x TM ~ R that satisfies the
following three conditions:

(C1) the Lagrangian L is C’’ with r  2;

(C2) the Lagrangian L is C2-strictly convex in the fibers, i.e. for each t E R
and each q E M, the second derivative of the restriction Lit x TqM
is positive definite as a quadratic form. This can be written as

(C3) the Lagrangian L is superlinear, i.e.

The derivative of L|t x Tq M at the point (q, v), denoted by OL t q, v),
is an element of the dual vector space T*qM. We have

. As is well-known this follows from the convexity assumption (C2). In fac1
the C2 function ~ : R ~ R defined by ~(s) = L(t, q, sv) has a non-negativ
second derivative, hence its first derivative is non-decreasing. By the mea:
value theorem L(t, q, v) - L(t, q, 0) = cp(1) - p(0) = ~’(c) for some c e]0,1

Smce cp is non-decreasing, we get ~(1) - ~(0)  ~’(1) = ~E ~v(t,q,v)(v)
Using
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from (2.1) and the superlinearity condition (C3), it follows that

This shows that the Legendre transform L(t,q) : TqM~T*qM, v ~ ~L ~v(t, q, v)
is a proper map, i.e. the inverse image by £(t,q) of a compact subset is itself
compact. By the convexity condition (C2), the derivative of the Legendre
transform £’(t,q) is non-degenerate at every v E TQAI. It follows that £’(t,q)
is a cr-l surjective diffeomorphism. Hence the global Legendre transform
,C : R x TAI - R x T*M, (t, q, v) ~ (t, q, £’(t,q) (v)) is also a cr-1 surjective
diffeomorphism. For t E R, it is convenient to define the diffeomorphism
£t : TM - T* M, (q,v) ~ (q, £(t, q)(v)).

The Hamiltonian H : R x T*M ~ R is defined by:

This supremum is in fact attained precisely at the unique vector v such that

p = 9L (t, q, v). The function H is obviously Cr-1 because it can be also
defined as H (t, q, p) = p(£-1(t,q) (p)) - L(t, q,£-1(t,q) (p)). A closer look at the
derivatives shows that H is in fact Cr .

From the definition of H it follows that

Moreover

It is usual to define the energy E : R x TM - R associated to the Lagrangian
as E = H o £, so we have

The following lemma deserves to be better known, compare with [Be, §4,
page 61]:

LEMMA 2.1. - For each compact subset K of R x M and each constant
A E R, there exists a finite constant C(A, K)  +~ such that
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Proof. 2013 Since for v E T(t, q) M we have

we obtain from (2.2)

where C1(A, K) = sup{H(t,q,p)| 1 (t, q) ~ K,p E T*(t,q) M, ~p~ = AI which
is finite since the set {(t, q, p) | (t, q) E K,p E T*(t,q) M, 1 IP 11 = A} is compact.

A dual argument proves the second inequality. D

Let us recall that a C1 path q : [a, b] ~ M is an extremal for the
Lagrangian L, if q is a critical point of the map à - J: L(s, 6(s), 6(8)) ds
defined on the space of continuous piecewise C1 paths ô : [a, b] ~ M with
6(a) == 03B3(a) and d(b) = 03B3(b). Such an extremal -y is called a minimizer if

for every continuous piecewise CI path à : [a, b] ~ M with 6(a) = 03B3(a) and
6(b) = -y(b). We will say that 03B3 : [a, b] ~ M is a local minimizer if there is
an open subset V of M such that ,([a, b]) c V and

for every continuous piecewise C1 path ô : [a, b] ~ V with 03B4(a) = 03B3(a) and
03B4(b) = 03B3(b).

It is well known that there exists a cr-l time dependent vector field
XL : R x TM - TTM, (with XL (t, q, v) E T(q,v)TM) such that a CI path
03B3: [a,b] ~ M is an extremal of L if and only if t H (t, 03B3(t), 03B3(t)) E R x TM
is a solution of XL. This vector field XL is called the Euler-Lagrange vector
field of the Lagrangian L. The (time-dependent) flow of XL is defined on
an open subset UL of R x R x TM containing AR x TM, with AR the
diagonal of R x Ilg. We will denote by 0 : uL ~ T M this flow, it is of

class Cr-1 and it is called the Euler-Lagrange flow of the Lagrangian. If
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(t, q, v) E R x TM, then s H ~(s, t, q, v) is a maximal solution of XL with
~(t, t, q, v) = (q, v). We will also write ~s(t, q, v) instead of ~(s, t, q, v), to
emphasize the particular role of the variable s. It is convenient to define
F : uL ~ AI as F = 7r o ~, where 7r is the projection TM ~ M. If (t, q, v) E

R x TM, we have F(t,t,q,v) = g,Df ds(t,t,q,v) = v and s ~ F(8, t, q, v)
is an extremal of L. Moreover, if q : [a, b] ~ M is an extremal of L then
F(s, t, 03B3(t), 03B3(t)) is defined for all s, t E [a, b] and F(s, t, 03B3(t), 03B3(t)) = 03B3(s)
for all s, t E [a,b].

It is also useful to consider the time-dependent flow ~*s defined on

R x T*M by

As is well-known this flow is in fact the Hamiltonian flow associated to H

which means that it is the flow of the (time-dependent) vector field X*P.
on R x T*M defined by d(q,v)H = 03A9(X*H, ·), with f2 = -dcx the canonica
symplectic form on T*M. In a coordinate chart T*03B8: T*U ~ Rk, wher
03B8: U ~ Rk is a coordinate chart on M, and (q1,..., qk,p1,..., pk) are the
canonical coordinates on Rk x Rk, we have

If L (or equivalently H) does not depend on time then 0* s preserves the
hamiltonian H and hence 0, préserves the energy E..

3. Solutions of the Hamilton-Jacobi equation

Let U be an open subset of R x TM. If u : U - R is a C1 function,

for a given (t, q) e U, we will dénote by ~F ~q(t,q) the partial derivative
with respect to the second argument, i.e. the derivative at q of the map

x ~ u t x which is defined in a nei hborhood of . We think of ~u ~q t

as a linear map TqM ~ R. so ~u ~q(t,q) ~ T*qM. Of course, the derivative

We say that such a C1 function u : U - R is CI, 1 if its derivative

du : U ~ T* (R x M) is locally Lipschitzian.
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Let us recall that the notion of locally Lipschitzian for a map 9 from a
(finite-dimensional) C1 manifold N to a (finite-dimensional) C1 manifold P
makes perfect sense. It is simply a map that is locally Lipschitzian when
looked at in charts. If M and N are, for example, C°° and endowed with
smooth Riemannian metrics, then f is locally Lipschitzian if and only if it
is locally Lipschitzian with respect to the distances on N and P obtained
from the Riemannian metrics.

We will prove the following theorem:

THEOREM 3.1. 2013 Let U be an open subset of R x M, and u : U ~ R
be a CI solution of the Hamilton-Jacobi equation

then u is C1,1.

The version where M = Rn and L (t, x, v ) is a function of v only on
R x TRn = R x R" x R" is due to Pierre-Louis Lions, see [Li, Theorem
15.1 page 255]. Lions also observes that it is possible to give a version of his
theorem for more general Lagrangians, see [Li, remark 15.2 page 256]. For
other particular cases, see the comments following Corollary 3.3.

In Theorem 3.1, we can in fact control the local Lipschitz constant of
the derivative du of u. We now explain what this means. We will suppose
that R x M and T*(R x M) are endowed with distances, both denoted by
D, coming from Riemannian metrics and we will set

It is clear that the following theorem is stronger than Theorem 3.1.

THEOREM 3.2. - Let U be an open subset of R x M. For every pai7
of compact subsets K, K’ C U, with K contained in the interior of K’ anG
every constant A  0, we can find a finite constant B such that if u : U ~ R
is a CI solution of the Hamilton-Jacobi equation

with sup 111 ~u ~q (t, q) ~| (t, q) E K’}  A, then
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Using Ascoli’s theorem, we obtain from this theorem the following corol-
lary.

COROLLARY 3.3.2013 Let U be an open subset of R x M. Call s1(U, R)
the set of cI maps u : U ~ R which satisfy the Hamilton-Jacobi equation

Each subset of S1(U,R) which is bounded in the compact-open C1 topol-
ogy on C1(M,R) is a relatively compact subset S1(U,R) (endowed with the
compact-open Cl topology).

Theorem 3.2 and its Corollary 3.3 do not seem to be known as such.
Particular cases of Theorems 3.1, 3.2, and Corollary 3.3 can be found in
Riemannian Geometry (Busemann functions on complete simply connected
Riemannian manifolds are C1,1, see [Kn]), and in Dynamical Systems (Co
Lagrangian invariant graphs are Lipschitz, see [He, Théorème 8.14 page 62]
and [BP, Theorem 6.1 page 192]). The fact that the Aubry and the Mather
sets obtained in Lagrangian Dynamics are Lipschitz graphs [Ma, Theorem
2 page 1811 can also be understood as a generalized version of Theorem 3.1,
see [Fa, Proposition 3 page 1044].

Before proving Theorem 3.2, we must give a functional formulation of
inequality (2.2) and its equality case (2.3). We define gradLU, the gradient
of u with respect to the Lagrangian L, by rad u t q) = f- -1 Ou (t, or
~u ~q(t,q) = L(t,q,gradLu(t,q)). Then (2.2) and (2.3) give

with equality if and only if v = grad L u( t, q).

PROPOSITION 3.4. - Let U be an open subset of R x M. Let u : U ~ R
be a CI solution of the Hamilton-Jacobi equation

Then for each continuous piecewise Cl path 03B3 : la, b] ~ M, a  b, whose

graph {(t, 03B3(t)) | t E [a, b] 1) is contained in U, we have
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with equality if and only if 03B3 is an integral curve of the vector field gradLu.

Proof. - Since u is a solution of the Hamilton-Jacobi equation, the
inequality (3.1) gives

with equality if and only if 7(5) = gradL u ( s, 03B3(s)).

Since d(s,03B3(s))u(1,03B3(s)) ds = u(b, 03B3(b))-u(a, -03B3(a)), this proves the propo-
sition. ~

COROLLARY 3.5. - Under the same hypothesis as in Theorem 3.1, the
integral curves ofgradLu are local minimizers of L. The vector field gradLu
is uniquely integrable. Moreover, if (t, x) E U and 03B3 : ] a,b[~ M is the
extremal of L such that ,(t) = x and ly(t) = gradLu(t, x), then -Y is a

solution of gradLu on the interual]a’,b’[ with a’ = inf f s ~]a,t] | ~s’ E [s, t],
(s’, 03B3(s’)) ~ U} and b’ = sup{s E [t,b[1 Vs’ ~ [t,s], (s’,03B3(s’)) E U}

Proof. 2013 By the Cauchy-Peano Theorem, for some E &#x3E; 0, there exists
a CI solution 7 : ]t -,E, t + e[- M of gradLU with 03B3(t) = x. By Proposition
3.1, on any compact subinterval [tl, t2] c] t - E, t + ~[ is a minimizer for L
among continuous piecewise C 1 curves 8: [t1,t2] ~ M with (s, 03B4(s)) E U
for all s E [t1,t2], hence 7 is an extremal for L.

Because extremals of L are determined by their position and their speed
at one point, we obtain that gradLu is uniquely integrable and that its

solutions are the extremals of L with speed at one point given by gradLU. It
follows that such an extremal 03B3:]a, b[- M is a solution of gradL u on any
interval [a’, b’] such that (8,,( s)) E U for all s E [a’, b’]. D

It is convenient to introduce the following notation

NOTATION 3.6. 2013 For V (resp. U) an open set in M (resp. R x M) and
[a, b] an interval in R, we denote by PC1([a,b], V) (resp. PC1g([a,b],U) the
set of continuous piecewise C 1 paths q : [a, b] ~ M whose image 03B3([a, b])
(resp. whose graph {(t,03B3(t))|t E [a,b]}) is contained in V (resp. U).
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COROLLARY 3. 7. - Let U be an open subset of R x AI. For every com-
pact subset K C U and every constant A  0, we can findeo &#x3E; 0 such that

if ~ ]0,~0], and u : U ~ R is a Cl solution of the Hamilton-Jacobi equation

with sup{~~u ~q(t,q)~ 1 (t, q) ~ K}  A, then for every (t, q) E K

Moreover ; the infimum and the supremum are attained by solutions of gradLu
(which are extremals for L).

Proof. - Since the Legendre transform is a global diffeomorphism f-

R x TM ~ R x T*M, there is a constant B such that sup{~~u ~q(t,q)~|
(t, q) E K}  A implies sup{~gradLu(t,q)~ (t, q) E K}  B. The set
{(t,q,v) E R x TM 1 (t, q) E K,~v~  B 1 is compact, hence, there exists
60 such that F(s, t, q, v) is defined on {(s,t,q,v) E R x TM 1 (t, q) E K,
~v~  B, |s - t|  col and (s,F(s,t,q,v)) E U for all such (s,t,q,v). In
particular, the solution of gradL u at the point (t, q) E K will be defined on
the interval [t-~0, t+~0]. The corollary now follows from Proposition 3.3. D

Proof of Theorem 3.2. - It suffices to consider the case where M = RI
and the Riemannian metric is the usual Euclidean metric. We fix some

Eo &#x3E; 0 such that we can apply 3.7 to K’, and moreover for every (t, q) E K’
and every v E Rn, with ~£(t,q)(v)~  A, the extremal 03B3(t,q,v) of L, such
that 03B3(t,q,v) (t) = q, and 03B3(t,q,v)(t) = v, is defined on [t - 60, t + Eo] and
(s,03B3(t,q,v)(s))~U for each s E [t - Eo, t + 60]. Since the set Z = ((t, q, v)|
(t, q) E K’, ~£(t,q)(v)~  A} is compact and (s, t, q, v) ~ 03B3(t,q,v) (s) is C1
wherever it is defined, the set Y = {(s,03B3(t,q,v)(s),03B3(t,q,v)(s)) 1 (t,q,v) E Z,
s E [t-~0,t+~0]} is a compact subset of U x RI. We choose some a &#x3E; 0 such
that Va (Y), the closed neighborhood of points in R x RI x RI at distance
 a from Y, is compact, and contained in U x RI (the distance used on
R x R" x R" is the Euclidean distance).
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Let us now fix (t, q) E K’ and let q : [t - ~0,t] ~ Rn be the extremal
such that ,(t) = q and §(t) = gradL(t, q). By Corollary 3.7, we have

In the sequel, it will be convenient to introduce the affine bijection 9 :
[t-~0,t] ~ [0,1]. We have

If q E R is such that |~|  Eo / 2 we introduce the affine bijection 03C8~ :
[t - eo, t] ~ [t - Eo, t + ~]. We have

hence

We will also need to know that

and

If q ~ R is such that |~|  Eo /2, and h E R", we define a path ~,h :
[t-~0,t+~]~Rn by

in particular

Moreover, we have

in particular

If we set Ci = supf 11 v Il 1 3 (t, q), (t, q, v) E Y}, which is finite since Y is
compact, using (s, 03B3(s), 03B3(s)) E Y for s E [t - Eo, t] and |(03B3 + ~0)-1|  2 ta l
for |~|  eo/2, we obtain

Remark that Ci depends only on K’, L and Eo .



- 491 -

From the estimates given above, we have

where C2 depends only on K’, L and Eo. Since (s, 03B3(s), 03B3(s)) E Y, for
8 E [t - Eo, t], it follows that, for ~(~, h)~  min(,Eo/2, a/C2), the whole seg-
ment joining the point (s,~,h(s),~,h(s)) to to the point (03C8-1~ (s), 03B3(03C8-1~ (s)),
03B3(03C8-1~(s)) in R x Rn x Rn is contained in the compact subset V03B1(Y) C
U x R’. In particular (s,~,h(s)) E U for all s E [t~0, t + ~]. From the
infimum part of Corollary 3.6, we get

hence using the change of variable r = 03C8~(s)

subtracting the equality case u(t, q) = u(t-EO, 03B3(t-~0))+ L(s, ’Y(s ),-00FF(s)) ds
gives

Since the segment joining (03C8~(s), ~,h(03C8~(s)), ~,h(03C8~(s))) to (s, 03B3(s), 03B3(s))
in R x RI x R" is contained in the compact subset Va (Y) of U x Iaen, taking
into account that 

and
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by Taylor formula applied to L, we have

where the constant C3 is given by

Since we can write

in the following equivalent way

we obtain

We set

which is finite by compactness of Y. Using that (~+~0)~-10 = 1+~~-10  3/2,
for |~|  Eo / 2, and that s E [t - Eo, t], we obtain
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Setting C = 2C4tül + 3C3C2/2, by integration we obtain

Since u is C1 and

is a linear map of (q, h), we must have

Finally we have obtained that for Il (17, h) Il  min (eo / 2, a/C2) and (t, q) E K’

where C does not depend on u provided that ~gradLu(t,q~  A, for all
(t, q) E K’. 

Using the supremum part of Corollary 3.6, in the same way, we obtain
for ~(~,h)~  min(eo/2,a/C2) and (t, q) E K’
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The following lemma implies that u is C1,1 on the interior of K’ with
local Lipschitz constant  6C’ at every point. This lemma can be found
in different forms either implicitly or explicitly in the literature, see [CC,
Proposition 1.2 page 8], [HE, Proof of 8.14, pages 63-65], [Kn], [Li, Proof of
Theorem 15.1, pages 258-259], and also [Ki] for far reaching generalizations.
The simple proof given below evolved from discussions with Bruno Sevennec.

LEMMA 3.8. - Let E be a normed space. Let ~ : B(a, r) - R be a map
defined on the open ball of center a and radius r in E. If there is a finite
constant C  0, and for each x E B(a, r) there is a linear continuous map
px : E ~ R such that

then p is C1,1 with D~(x) = and the Lipschitz constant of the derivative
is  6C.

Proof. Obviously ~ is differentiable at every point x E B(a, r) with
D~(x) = ~x.

Let x E B(a,r) and à = (r - ~x~)/2. If h, k E E both have norms  03B4
then x + h, x + k, x + h + k are all in B (a, r). We do have

Changing the sign inside the absolute value of the first inequality and adding
the three lines gives

If we fix h ~ 0 and remark that the norm of a continuous linear map
03C8 : E ~ R is also given by

we see that

this shows that x ~ px is locally Lipschitz with local Lipschitz constant
 6C. Since B(a, r) is convex, the map x ~ px is in fact Lipschitz on

B (a, r) with Lipschitz constant  6C. 0
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Remark 3.9. 2013 By inspection of the proof, it is possible to obtain some
compactness theorems for families of Lagrangians. For example, if K is a
compact space, and we have a family of Lagrangians Lk, k E K, all defined
on R x TM, satisfying assumptions (Cl), (C2), and (C3), and such that
the map K ~ C2(TM,R), k ~ Lk, is continuous, where C2(TM, R) is

provided with the (compact-open) C2 topology, then the constant Bk given
by Theorem 3.2 applied to Lk can be chosen to be independent of k E K.

It might be worthwhile to consider the case of a time-independent La-
grangian L : TM - R and "time-independent" solutions of the Hamilton-
Jacobi equation. Of course, the Hamiltonian H : T*M ~ R is also time-
independent. In fact, if u : V ~ R is some C1 function defined on the open
subset V of M and such that H(q, dqu) = c is a constant then the function
û : R x V ~ R, (t, q) H -tc + u(q) is a solution of the Hamilton-Jacobi
equation. We will say that such a function u is a time-independent solution
of the Hamilton-Jacobi equation, and we will call the constant c = H(q, dqu)
the Hamiltonian constant of u, we will denote this constant by H(u).

In that setting, Theorems 3.1 and 3.2 can be stated as:

THEOREM 3.10.2013 Suppose that the Lagrangian L : TM ~ R is time-
independent and satisfies assumptions (Cl), (C2), and (C3). Denote by H :
T*M ~ R its associated Hamiltonian. Any C1 time-independent solution
u : V ~ R of the Hamilton-Jacobi equation is C1,1.

Moreover, if we call SI1c(V) the set of such Cl time-independent solu-
tions u : V ~ R of the Hamilton-Jacobi equation, defined all on the same
open subset V of M, and satisfying H(u)  c, then, the family of derivatives
of functions in SI1c(V) is equi-Lipschitzian on any compact subset of V.

It is worth to state the particular case of a Riemannian metric, and to
show how one can obtain easily from it the smoothness of the Busemann
functions for complete simply connected Riemannian manifolds without con-
jugate points (compare with [Es] and [Kn], and notice the strong similarity
of our proof of Theorem 3.1 and their proofs for Busemann functions).

THEOREM 3.11. - Suppose that M is a Riemannian manifold. If V is
an open subset of M, denote by gi(V) the set of Cl functions f : V ~ R,
such that the derivative dx f is of norm 1 at each point x E V. Any function
in QI (V) is C1,1.

Moreover, the set of derivatives of functions in 91 (V) is equi-Lipschitzian
on any compact subset of V.
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In particular, if C is a finite constant and xo is some fixed point, the set
{f E G1(V)| ||f(x0)|  C} is compact for the (compact-open) C1-topology.

It is surprising that such a basic result has not appeared before in this
form in the literature.

Notice that there is no assumption about the completeness of the Rie-
mannian manifold in Theorem 3.11.

We now obtain the smoothness of Busemann functions alluded to above.
Let us recall the definition of Busemann functions. A ray in a Riemannian
manifold M is a curve q : [0, +~[~ M such that d(03B3(s),03B3(s’)) = 1 s - s’l, for
each s, s’ E [0, +oo[, where d is the Riemannian metric. A ray is necessarily
a geodesic parametrized by arc-length. For each t  0, the function bt :
M ~ R, defined by bt(x) - t - d(x, -y(t», is Lipschitzian with Lipschitz
constant 1. From the triangle inequality, we have t  d( ,(0), x) + d(x, 03B3(t)),
and d(x, 03B3(t’))  d(x, 03B3(t)) + t’ - t, for t’  t. This gives bt(x)  d(03B3(0), x),
and bt(x)  bt, (x), for t’  t. It follows that B03B3(x) = limt-+,,,,, bt (x) exists.
The function B-, : M ~ R is called the Busemann function of the ray,. It is
Lipschitzian with Lipschitz constant 1, since all bt have Lipschitz constant 1.

THEOREM 3.12 (Eschenburg-Knieper). - Suppose that M is a com-
plete simply connected Riemannian manifold without conjugate points. If
, : [0, +00[-+ !v! is a ray, its Busemann function B’"’( is C1,1.

Proof. - The main point here is that for each y E M, the distance
function dy : M ~ R, x ~ d(y, x) is C°° on MB{y}. In fact, the exponential
map expy : Ty!v! -+ M is a surjective C°° diffeomorphism, and d(x, y) -
~exp-1y(x)~y. It is not difficult to check that the function x H d(x, y) has a
derivative of norm 1 at each point of M B tyl. If V is an open and relatively
compact subset of M, for t large enough, the functions bt are all C°° and
have derivatives of norm 1 at each point of V. It follows from Theorem 3.11
that B03B3|V is CI,,. r-1

4. The case of an almost complète Lagrangian

DEFINITION 4.1 (Almost complete Lagrangian).- We say that a

Lagrangian L : R x TM - R is almost complete, if for . every curve
q : ]a, b[~ M for L, which is an extreamal for L, and whose graph f (t, 03B3(t)) 1
t ~]a,b[} is relatively compact in R x M, the norm of its speed ~03B3(t))~
(for some or any Riemannian metric on àI ) remains uniformly bounded for
t ~]a,b[ (or equivalently the graph of the speed curve {(t,03B3(t),03B3(t)) 1
t E]a, b[j is contained in a compact subset of R x TM).
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Examples 4.2. 2013 1) Let us recall that a vector field (or its flow) is said
to be complete if its flow is globally defined for all time (or equivalently
maximal solutions are defined on R). If the Euler-Lagrange vector field
XL of the Lagrangian L is complete then it is almost complete. In fact, if
03B3:]a,b[~ M is an extremal curve for such an L with its graph {(t,03B3(t))|
t E]a, b[j relatively compact in R x M then a and b are finite and the
extremal 03B3 can be extended to an extremal defined on R.

2) If L is an almost complete Lagrangian defined on R x TM, then for
every open subset U C M the restricted Lagrangian L IR x T U is also almost
complete.

3) A time-independent Lagrangian is always almost complete. This fol-
lows from Lemma 2.1 and the fact that the flow çlg preserves the Hamilto-
nian.

Here is the property of almost complete Lagrangians that will be used
in the sequel

PROPOSITION 4.3. - Let L : R x TM -+ Iae be a C2 almost complete
Lagrangian.

1) Ifq : ]a, b[~ M is a maximal extremal curve for L and b  +~ (resp.
a &#x3E; -~) then for each compact subset K of M there exists a sequence
ti ~ b(resp. ti a) in ]a, b[ such that 03B3(ti) ~ K.

2) If K is a compact subset of R x M and E is &#x3E; 0. The set E of points
(t, q, v) ~R  TM for which there exists an extremal curve : [t -e, t+ e] ~ M
with (03B3(t), 03B3(t)) = (q, v) and (s, 03B3(s)) E K, for each s E [t - E, t + E] is a

closed subset of R x TM

Proof. 2013 We prove 1). Suppose b  +~ and E ~]0, b-a[. If the extremal
curve 03B3|[b - ~, b[ were entirely contained in the compact set K, its graph
would be contained in the compact set [b - E, b] x K, hence the graph of its
speed curve {(t, 03B3(t), 03B3(t))|t E [b -,E, b[j would be contained in a compact
subset of R x TM, we could then extend this solution of the Euler-lagrange
vector field on M beyond b. This would contradict the maximality of q :
la, b[~ M.

To prove 2), we consider a sequence (ti, qi, vi) E E tending to (too, q.., v~).
Let us prove, for example that the maximal extremal -y : Je, d[~ M with
03B3(t~) = qoo and 03B3(t~) = voe verifies d &#x3E; too+t. If we call 03B3i : [ti -E, ti+~] ~
M with 03B3i(ti) = qi and 03B3i(ti) = vi . We set ~ = inf (~, d-too)’ The continuity
of the Euler-Lagrange flow wherever it is defined shows that for s E [0,,q[ we
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have 03B3(t~) = limi~~ 03B3i(ti). Since the graph {(s, 03B3i(s))| s C [ti - t, ti + ~]}
is contained in the compact subset K, this is also the case for the graph
{(s,03B3(s))|s E [too, too +~[}. The local completeness of L implies that there
exists some 6 &#x3E; 0 such that t~ + q + Ó  d. Hence ~ = inf(~, d - t~) = t,
and d  t~ + ~ + 03B4  t~ +~. D

PROPOSITION 4.4. - Suppose the Lagrangian L almost complete. Let U
be an open subset of R x M. For every pair of compact subsets K, K’ C U,
with K contained in the interior of K’ and every constant A  0, we can find
a constant B such that if u : U ~ R is a CI solution of the Hamilton-Jacobi
equation

with SUP(t,q)EKI u(t, q) - inf(t,q)EK’ u(t, q)  A,

Proof. 2013 Our first objective is to show that there is e &#x3E; 0 such that for
each u as above the solution 03B3 of gradLU starting at (t, q) E K is such that
(t + s,,(t + s)) is defined and remains in K’ for all s E [0,~]. We choose
some Riemannian metric on M. If D  0, the superlinearity of L gives us a
CD such that

Suppose that (t + s, ’Y(t + s)) E K’ for s E [0, a] and (t + a, ’Y(t + 03B1)) is in

8K’ the boundary of K’ and (t, 03B3(t)) E h’. If we denote by l03B3 the length of
03B3|[t,t + a], we have

Since r is an integral curve of gradLu, we have

hence

We set ô = d(K,8K’), where the distance d on R x TM is given by
d((t, m), (t’, m’)) = [(t - t’)2 + d(m, mi)2]1/2 with d(m, m’) the Riemannian
distance in M between m and m’. Since K and ~K’ are disjoint compact
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sets, the constant 03B4 is &#x3E; 0. By the definition of ô and the definition of the
Riemannian distance, we have

Combining inequalities, we ge

We now fix D such that AD-1 is small compared to 6. This implies that
there exists E &#x3E; 0 depending only on 6, A, D, CD such that a &#x3E; E.

Using a symmetric argument, we see that we can find e &#x3E; 0 such that
for each u as in the statement of the proposition the solution -Y of gradL u
starting at (t, q) E K is such that (t + s, 03B3(t + s)) is defined and remains in
K’ for all s E 1 -,E, ~]. We fix now such an E.

Since by (4.1) with D = 1

and by Proposition 3.4

we obtain

This implies that there is some so E [t, t + e/2] such that

Hence the point (so, 03B3(s0), 03B3(s0)) belongs to the set E of points (s, q, v) E
TM such that |v|  2AE-1 + Ci/2, and a - F(u, s, q, v) is defined on

Is - E/2, s + ~/2], with its graph {(03C3 + s, F03C3(s,q,v)) | 03C3 E [-~/2, ~/2]}
contained in K’. By Proposition 4.3, the set E is closed, therefore com-
pact, because it is contained in the compact subset {(s,q,v)| 1 (s,q) ~ K’,
|v|  2AE-1 + C1/2}. The continuity of the Euler-Lagrange flow where it is
defined then implies that there exists a constant B such that

Returning to the situation considered above we have gradLu(t, q) = 03B3(t) and
there exists so with - s0|  E/2 such that (s0, 03B3(s0), 03B3(s0)) ~ E. Since q
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is an extremal, we obtain 03B3(t) = F(t, s0, 03B3(s0), 03B3(s0)), hence gradLu9t,q) =
It follows that

Since the Legendre transform is a diffeomorphism sending gradLu(t,q) to

au t and (t,q) E K, with K compact, it follows that there exists a

constant B2 depending only on L, K and B1 such that ~~u ~g(t,q)~  B2,q
for all (t, q) E K. Since u satisfies the Hamilton-Jacobi equation the is

a constant B3 depending only on H, K and B 2 such that |~t ~u(t,q)| =
|H(t,q,~u ~q(t,q))|  B3. ~

Using Theorem 3.2 and the proposition above we obtain the following
corollary which is reminiscent of Montel’s theorem for holomorphic func-
tions :

COROLLARY 4.5. Suppose the Lagrangian L almost complete. Let U
be an open subset of R x M. Call S1(U,R) the set of maps u : U ~ R of
class C1 which satisfy the Hamilton-Jacobi equation

Any subset of SI (U, R) which is bounded in the compact-open CO topology
on CO (U, R) is a relatively compact subset SI (U, R) for the compact-open Cl
topology on Cl (U, R) -

THEOREM 4.6. - Suppose the Lagrangian L almost complete. Let U be
an open subset of Iae, x M. Let (un)n~N be a sequence of Cl solutions of the
H amilton-J acobi equation, all of them defined on U. Suppose that for each
x E U the limit u(t, q) = limn~~ un (t, q) exists, then u is CI on U and
un ~ u in the compact-open C1 topology. In particular, the map u : U - R
is also a solution of the Hamilton-Jacobi equation.

Proof. - As usual we suppose that M = Rn. By the previous corollary,
it suffices to show that for each (to, qo) E U there is a neighborhood Vo C U
of (to, q0) and a constant C such that

We choose E &#x3E; 0 and r &#x3E; 0 such that [to - 2E, to + 2e] x B(qo, r) C U.
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For (t, q) E [to-t, t0 + ~] x B(qo, r), we can define a path ’Yt,q : [t0 - 2~, t] -

B(q0, r) by 03B3t,q(s) = s-(t0-2~) t-(t0-2~)(q-q0)+q0.
Since t  t0 - ~ and q E B(qo, r), we have ~03B3t,q(s)~  ~-1r. It follows

that there is a constant Ci depending only on e, r and L such that for all
(t, q) E [to - ~, t0 + ~] x B(qo, r) we have, for s E [to - 2~, t], the inequality
L(s,03B3t,q(s),03B3t,q(s))  Ci. Since by Proposition 3.4

and un (to - 2E, qo ) - u(to - 2E, qo ), we can find a constant C2 such that

In the same way, using a path from (t, q) to (to+2,E, q0), we can find constants
C’1, C2’ such that

We would like to prove a version of Corollary 4.5 for a time-independent
Lagrangian and a time-independent solution.

THEOREM 4.7. - Let L : TM ~ R be a time-independent Lagrangian
satisfying the conditions (C1),(C2), and (C3). If V is an open subset of M,
we call SII (V, R) the set of Cl maps u : V ~ R which are time-independent
solutions of the Hamilton-Jacobi equation, i. e. the set of Cl maps u : V ~ R
for which there exists a constant H(u) such that

Any subset of SII (V, R) which is bounded in the compact-open CO topology
on C0(V, R) is a relatively compact subset SII (V, R) for the compact-open
C’ topology on C1(V, R).

We first notice that this is stronger than to apply Corollary 4.5 to the
functions û : Iaex.V -+ R defined, for u ~SI1 (V, R), by û (t, q) = u(q) - H(u)t.
In fact, if we assume that 1 û | is bounded by A on some compact set of
the form [-~,~] x K, with K C V compact and non-empty, and E &#x3E; 0,
we conclude that |H(u)|  2AE-’, but there is no such assumption in our
statement above. The point of Theorem 4.7 is precisely to obtain a bound
for H(u) from a bound on u on a compact subset of V.
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Proof of Theorem 4.7. 2013 By the uniform superlinearity of H above
compact subsets of M, see Lemma 2.1, it suffices to show that H(u) is

bounded above if we assume that u E SI’ (V, R) is bounded in absolute value
on some open non-empty ball contained in V. In fact, this will show that any
bounded subset of SI1(V,R) for the compact-open CO topology on C0(V, R)
is bounded for the compact-open C1 topology on C1(V,R) and hence, by
Theorem 3.10, relatively compact for the compact-open C 1 topology.

As usual, we suppose that V is open in M = Rk, and B(q, r) C V with
r &#x3E; 0. By the uniform superlinearity of L above compact sets, see Lemma
2.1, for each A  0 there exists C(A) E R such that

The vector field gradL u is time-independent, it is uniquely integrable (either
by the same reasoning as in Corollary 3.5, or simply because we now know
that gradL u is locally Lipschitzian by Theorem 3.10), and for each integral
curve -y: [a,b] - V of gradL u we have

We suppose that u is uniformly bounded by B on B (q, r) and we choose A
such that 2B  Ar, this is possible because r &#x3E; 0. Suppose that q : [0, b[~ V
is a maximal integral curve of gradLU with q(0) = q. If 03B3([0, b[) C B(q, r)
then, by compactness of B(q, r), we must have b = oo. In particular, we
obtain 

Since 1 u | is bounded by B on B(q,r), and L is bounded below by C(0)
on B(q, r) x Rk, we must have H(u)  -C(O) + 2B. If on the other hand
03B3([0, b[) is not entirely contained in B(q, r), we can find t &#x3E; 0 such that

’Y([O, tl) C B(q, r) and ’Y(t) E 9B(q, r). We obtain in that case

Moreover, by thé superlinearity of L, and using ~03B3(s) !! ds  d(03B3(t), q) = r,

we know that 10 L(03B3(s), 03B3(s)) ds  Ar + C(A)t. Finally, we see that

Since t &#x3E; 0, and Ar  2B, we must have H(u)  -C(A) D
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5. The method of characteristics

THEOREM 5.1. 2013 Let V be sorrte open set in M and uo : V - R be a
function. There is a Cl solution u of the Hamilton-Jacobi defined on the
open neighborhood U of {0} x V in R x M with u(O, q) = uo (q), for each
q E V, if and only if uo is C1,1.

From Theorem 3.1 we already know that if u is C 1 then it has to be
C1,1, hence its restriction uo to {0} x V is also C1,1.

It remains to show the existence of u on an open neighborhood U of
101 x V, when uo is C1,1.

We will, of course use the so-called Method of Characteristics that usu-
ally people use when uo is C’, see [Be, §8 page 23]. We will see that this
method of constructing solutions of the Hamilton-Jacobi equation works for
CI,1 initial data. This was already observed in [Li, Remark 1.1 page 15], at
least for the case where M = Rk and L(t, q, v) depends only on the vertical
variable v (we use here the canonical identification TR k R k x Rk).

There are several ways to show that the method of characteristics works
for CI,1 initial data, even if none of them seems to our knowledge to be
present in the literature, except for the reference to the work of Pierre-
Louis Lions given above. The case of C2 initial data is well documented and
appears in almost every classical treatise on the Calculus of Variations or

PDE, see [Be].

Since we will be mostly using the geometric framework, we will recall the
geometric setting of the method of characteristics. This will fix the notations
and (we hope!) will help the more analytically minded (or trained) reader
to follow our arguments which are clearly well-known to the geometrically
minded reader (who may skip most of it).

We introduce the (time-independent) flow 03A6s on R x T* M defined by

The (time-independent) vector XH generating lfs is

where X H is the (time-dependent) Hamiltonian vector field on R x T*M
associated with H, and generating ~*s.
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We show that this flow 03A6s preserves the closed 2-form S2H = -daH on
R x T* ]VI, where the differential 1-form aH on R x AI is defined by

and a is the Liouville form on T*M. More precisely, we should write

where p2 : R x T*M ~ T*M is the projection on the second factor, and dt
is the differential on T*M x R of the projection T*M x R - R on the first
factor. We have

where Ç2 = -da is the canonical symplectic form on T*M. In fact, it is easy
to check that 03A9H(*H, .) is identically 0. Since OH is closed, by Cartan’s
formula LX = iXd + diX, this of course implies that 03A6s preserves Ç2H -

If we start with vo : V ~ R a C1 function defined on the open subset V
of M, we can consider the graph of the derivative dvo in T*M

We now "propagate" Graph(dv0) into a Co submanifold of dimension k + 1 of
R x T * M using the flow (D, (here k is the dimension of the base manifold Iv!).
More precisely, call  the open subset R x R x T*M consisting of the points
(s, t, q, p) where 03A6s(t,q,p) is defined. This set " contains {0} x R x T*M.
We set

and we call Vo the propagated graph of dvo. It is easy to check that Vo D
{0} x Graph(dv0), and that it is a C° submanifold of dimension k + 1 of
R x T*M. In fact, it is the image of an open subset of the Co submanifold
R x Graph(dv0) of R x T*M by the C2 diffeomorphism (s, q, p) ~ 03A6s (0, q, p)
= (s, çls (0, q, p) ) which is defined on the open subset {(s, q, p) E R x T*M|
(s,0, q, p) E }.

To simplify a little bit our exposition and take advantage of the geom-
etry of the graph of a derivative, we will explain the classical method of
characteristics for C3 initial data, although most of what we say can be
adapted to the case where uo is merely C2.

From now on, we assume that v0 : V ~ R is a C3 function defined
on the open subset V of M. In that case, both Graph(dv0) and Vo are C2
submanifolds. The submanifold Vo is a graph over the projection IdR x vr* :
R x T*M ~ R x M, (t, q, p) - (t, q) in a neighborhood of {0} x Graph(dv0).
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In fact, at a point (0, q, dqvo) e f 01 x Graph(dv0) the derivative of IdR x 03C0*
restricted to Vo is surjective because its image contains 101 x TqM -
T(O,q,dqvo) [IdR x 7r (T(0,q,dqv0)Graph(dv0)) and the vector T(q, dq v,,) 7r* (XH) +

8t . By dimension argument, this derivative of IdR x 03C0* |03BD0 is an isomorphism
at each point of {0} x Graph(dvo). It follows that this restriction is a local
diffeomorphism at each point in a neighborhood of {0} x Graph(dvo). Since
IdR x 03C0* is a homeomorphism on {0} x Graph(dv0), an adaptation of a well-
known topological argument, see [La, pages 109-110], shows that IdR x 03C0*

is a diffeomorphism from an open neighborhood of {0} x Graph(dvo) onto
its image.

As is well known the Liouville form a restricted to the submanifold

Graph(dvo) is exact. In fact, if we pullback the Liouville form a by the
C2 derivative section q H (q, dqvo) we obtain the differential 1-form dvo
on V which is exact (this can be easily checked in coordinates). Since
the C2 derivative section q H (q, dqvo) is a C2 diffeomorphism of V onto
Graph(dvo), we do obtain that a is exact. More precisely, we can write
aIGraph(dvo) = d[vo o 7r*].

The important observation is that the restriction of the 1-form aH to Vo
is exact. To prove this, we first show that QH = -d03B1H is identically 0 as a
2-form on Vo. In fact, the tangent space of Vo at some point 03A6s0(0, qo, dq0v0)
is the sum of the space generated by X*H = X H + ~ ~t and the image of
the space tangent to Graph(dvo) at (0, q0, dq0v0) by the derivative of the
diffeomorphism 03A6s0. But t he vector *H is such that 03A9H(H,·) = 0, more-
over, the diffeomorphism 03A6s0 preserves OH and the 2-form Ç2H restricted
to 101 x Graph(dvo) is nothing but 0 restricted to Graph(dvo) which is
identically 0. This implies that aH is closed when restricted to Vo.

To show that it is exact, we remark that Vo can be retracted by C2
deformation to its subset tol x Graph(dvo), since, for (q, p) E T * M fixed,
the set of s such that 03A6s (0, q, p) is defined is an open interval of R. Moreover,
the restriction of aH to {0} x Graph(dvo) is nothing but the restriction of
a to Graph(dv0) and aIGraph(dvo) = d[vo o 03C0*]. By Poincaré’s lemma, we
can find a C2 function Sv0 defined on the C2 submanifold Vo such that
03B1h Vo = d,S’vo and v0|{0}  Graph(dvo ) is nothing but vo o 03C0*.

If U is an open neighborhood of 101 x Graph(dvo) in the propagated
graph Vo such that IdR x 7r* induces a diffeomorphism from U onto its
image which we call U, then we can construct a solution v : U ~ R of the
Hamilton-Jacobi equation such that v(0, q) = v0(q) for each q E V. In fact, if
we call u : U ~ U the inverse of the restriction of IdR x x* to Û, we can write
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a*aH = dv, with v = SVQ o a. We do have v(0, q) = vo(q) for each q E V. To
check that v satisfies the Hamilton-Jacobi equation, we use local coordinates
(q1, ... , qk on M, and the associated coordinates (91,..., qk, pq, ..., Pk) on
T*M. In these coordinates aH = 03A3ki=1 pidqi - H(t, 91,..., qk,PI,... ,pk)dt.
Using obvious notations, the équation 03C3*03B1H = du gives ~v ~qi = pi o 03C3 and

~v ~t = -H(t, Q1,..., Qk,P1 o cr,... pk o a). By substitution this does yield

We also remark that the previous argument proves that 03C3(t, q) = (t, q, 9v
for each (t, q) E U. It follows that v is C3, since both a and H are C2.

We summarize what we obtained in the following lemma:

LEMMA 5.2. - Let v0 : V ~ R be a C3 function defined on the open
subset V of M. If we define the propagated graph Vo of dvo as the set of
03A6s(0, q, dqvo) such that q E V and 03A6s(0, q, dqvo) is defined, then the propa-
gated graph Vo is a submanifold of R x T*M of dimension dim M + 1, and
class C2, which contains f 01 x Graph(dvo), where Graph(dvo) = ( (q, dqvo) 1
q E V} is the graph of the derivative dvo. Moreover, there exists an open
neighborhood of {0} x Graph(dvo) in Vo such that IdR x 03C0* induces a dif-
feomorphism from that neighborhood onto its image.

The form aH restricted to Vo is exact and there exists a C2 function
v0 : 03BD0 ~ R such that 03B1h Vo = dv0 and S’vo |{0} x Graph(dvo) is nothing
but vo o 1T’* .

For each CI section a : U ~ R x T*M of IdR x 03C0*, defined on the open
subset U of R x M, with a(U) C Vo, the function v = SVQa is a C3 solution
of the Hamilton-Jacobi equation

with v (0, q) = vo(q) for each q E V satisfying (0, q) E U. The relationship
between v and 03C3 is given by 03C3t q) = (t, q, ~v ~q), for each (t, q) ~ U.

To prove the analogous facts when vo is merely to be C1,1, we will need
to recall a Lipschitz form of the implicit function theorem.



- 507 -

THEOREM 5.3. - Let ~ . Il be some fixed norm on Iaek. If À  1 and

~ B(xo, r) ~ Rk is some Lipschitz map with Lipschitz constant  À,
then the map h = Id + ~ : B (xo, r) ~ Rk has an open image, and is a
bi-Lipschitz homeomorphism onto its image. The Lipschitz constant of its
inverse is  (1 - À)-l and the image contains the ball B(h(xo), (1 - A)r).

Moreover, if cpn : B(xo, r) ~ Rk is a sequence of Lipschitz maps, all

with Lipschitz constant  À, such that ~n converges uniformly to ~, and K
is some compact subset of h(B(x0, r)), then for n large enough the inverse
of the map hn = Id + ~n is defined on K and the sequence of inverses h-1n
converges uniformly on K to h-’. In fact, we have for each n such that
hn(B(x0, r)) D K

The proposition below finishes the proof of Theorem 5.1.

PROPOSITION 5.4. - Let uo : V ~ R be a CI,1 function, where V is
some open set in Af. There is an open neighborhood Û of {0}  Graph(du0) in
the propagated graph Uo of duo such that IdR x 7r* induces a homeomorphism
from that neighborhood Û onto an open subset U of R x AI.

If we call 03C3 : U ~ Û the inverse of the restriction IdR x 03C0*|, we can
find a CI,1 solution v : U’ ~ R of the Hamilton-Jacobi equation, defined
on an open neighborhood U’ of {0} x V in U, such that v(0,g) = v0(q), for

Proof. 2013 We first need to work locally. Rather than introducing coordi-
nates charts, we will assume as usual that M is an open subset of Rk, and
we will work in the canonical coordinates of Rk and T*Rk = Rk x (Rk)*,
where (Rk)* is the dual space of Iaek.

We fix some x E V and choose r &#x3E; 0 such that B(x, 2r) C V. We will
call K a Lipschitz constant for the map x H dxuo E (Rk)* , on the compact
set B(x, 2r). Using an approximation by convolution we can find a sequence
Vô of COQ functions all defined on a neighborhood of B(x, r), and such that

1) the sequence Va converges uniformly to uo on B(x,r) ;

2) the sequence of derivatives dvô converges uniformly to duo on B(x, r);

3) For each n, the map y H dyva has a Lipschitz constant on B(x, r)
which is  K;
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The first two properties imply that there exists some constant A such
that for each n and each y E B(x,r) we have ~dyvn0~  A, and also
~dyu0~  A. We can find some t &#x3E; 0 such that the map (s, y, v)
03A6s(0, y, v) = (s, ~*s(y,p)) is defined on a neighborhood of [-~, e] x B(x, r) x
{p E (Iaek)* | Ilpll  A}. Since thé map (s, y, p) ~ ~*s(y,p) is e2 and

~*0(y,p) = (y,p), we can write ~*s(y,p) = (y,p)+s03B8(s, y, p) with 9 of class C1.
In particular, the map 03B8 is Lipschitz on the compact set [-6, 6] x B(x, r) x
{p E (Rk)* |~p~  A}. We will denote by Ki a Lipschitz constant of 03B8 on

that last set.

We claim that there exist Eo &#x3E; 0 and ro &#x3E; 0 such that

(i) the map (s,y,0) ~ (IdR 03C0)o03A6s(0,y,dyu0) - 
a homeomorphism h from the open set] - ~0, ~0[ B(x, r) to some open
subset of R x R* containing the compact set [-~0/2,~0/2] x B(x, ro);

(ii) for each n, the map (s, y, 0) ~ 03C0*03A6s(0,y,dyvn0) = (s,03C0*~*s(0, y, dyvn0))
is a homeomorphism hn from the open set ] - to, ~0[ B(x, r) to some
open subset of R x R* containing the compact set [-~0/2, ~0/2] x
B(x, ro);

(iii) the sequence of homeomorphisms h-1n converges uniformly to h-1 on
the compact set [-~0/2, ~0/2] x B(x, r0).

In fact, we have h(s, y) = (s, y + s03B8(s,y,dyu0)), and hn (s, y) =
( s, y + s03B8(s,y,dyvn)). For s fixed, the maps y ~ s03B8(s,y,dyu0) and

y ~ s03B8(s, y, dyvn) have Lipschitz constant  |s|K1K. If we choose t1 &#x3E; 0

such that ~1K1K  1 and we set 2ro = (1-~1K1K)r, we can apply the Lips-
chitz form of the implicit function theorem to conclude that, for s ~]-~1, 61 [,
each one of the maps y ~ s y + 03B8(s, y, dy u0) and y+ ~ H s03B8(s, y, dyvn) is

a homeomorphism from B(x, r) onto some open subset of Rk that con-
tains the open ball of radius 2ro around respectively x + s03B8(s, x, dxuo) and
x + s03B8(s, x, dxvn0). Since dxu0 and dxvn0 are both of norm  A and 03B8 is

continuous we can find Eo ~]0, ~1] such that s03B8(s, x, dxu0) and s03B8(s, x, dxvn0)
are both of norm  ro for Isi  60. It follows easily that with these choices
we do satisfy both (i) and (ii) above. Property (iii) follows from the last
part of the Lipschitz form of the implicit function theorem, and what we
just imposed on s03B8(s,x,dxuo) and s03B8(s,x,dxvn0).

We now return to the case where M is a general manifold.

It follows from (i) above that IdR x 03C0* restricted to the propagated graph
Uo is a local homeomorphism in a neighborhood of {0} x Graph(duo). Using
the same topological argument as before (see [La, pages 109-110]) there is
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an open neighborhood U of {0}  Graph(duo) in Llo such that IdR x 7r*
induces a homeomorphism from U onto some open set U. This of course
finishes the first part of the proof.

We want now to show that for each qo e V there is an open neighborhood
Nqo of qo in V and some eq,, &#x3E; 0 such that we can find a C1 function
uqO ] -~q0, ~q0[ Nq ~ W with ] - ~q0, ~q0[ Nq0 C U, and

where : U ~ U is the inverse of IdR x 7T’*IÛ. To show this we apply (ii)
above to find some open sets 0, Nqo C V, some ~q0, and a sequence of C°°
functions Vû : 0 --+ R with

a) the sequence vn : O ~ R converges uniformly to us 10

b) each of the propagated graphs 03BD0n of the dvn contains an open set Un
such that IdR x 03C0* induces a homeomorphism onto some open subset
Un of R x M with Un ~] - ’Eqo ~q0[ Nq;

c) if we call 03C3n : Un ~ Un the inverse of IdR x 03C0* 1 ûn then an converges
uniformly to 03C3 on ] - ~q0, tqO [x Nq.

By Lemma 5.2 above for each we can find a C3 (in fact C~.) function
un : - Eqo , ~q0 [ Nq0 such that for each (t, q) ~] - Eqo , tqO [ Nq0

and vn(o, q) = v’ (0, q), for each q E Nqo’ By condition a) and b) above
it follows that the sequence vn converges uniformly in the C 1 topology to
the required function uq0 :] - ~q0, ~q0[ Nq0. Remark that two such local
solutions corresponding to the points qo and q’ 0 are equal on the intersec-
tion of their domain of definition because this intersection is of the form

] - ~,~[ V with N = Nqo n Nqj and E = inf( tqo’ ~q’0), the two functions
coincide on 101 x V, and they have the same derivative which is entirely
determined by the section 03C3. We can then define u on ~q~V]-~q, tq [x Nq by
u|] - eq, ~q[ Nq = uq. 0

Remark 5.5. 2013 A crucial step in the proof above was to show that in a
neighborhood of {0} x V the propagated graph Llo is in fact a graph above
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some open set of the base for the projection IdR x 7r* : R x T*M ~ R x M.
One can ask what such a property implies when uo is merely CI, compare
with [Li, Remark 1.1, pages 15-16, and Proposition 15.1, page 265]. The
following theorem settles this question.

THEOREM 5.6. 2013 Let u0 : V ~ R be a CI function, where V is

some open set in M. Suppose that the projection IdR x 7r* restricted to
the propagated graph Uo is a local homeomorphism in a neighborhood of
{0} x Graph(duo). If the Lagrangian L is almost complete, then the func-
tion uo is in fact C1,1.

Proof. - Since this is a local result, we can assume that M = R k
that V is compact, and that uo is Lipschitzian and bounded in V. For
future reference, we will denote by K a Lipschitz constant for uo on V.
We can also assume, restricting V if necessary, that there exists a 6 &#x3E; 0

such that the projection IdR x 7r* induces a (global) homeomorphism from
u0~]-03B4,03B4[ T*M onto some open subset U of ] - 03B4,03B4[ M.

Since V is compact, for each A  0, we can find a constant C(A) such
that

We use the well-known Lax-Oleinik formula to show that there exists a

solution of the Hamilton-Jacobi equation, see for example [Be, Theorem 5.1
page 66].

We will need the notion of absolutely continuous curve. A curve
03B3 : la, bl ~ Rk is said to be absolutely continuous, if the derivative

b
03B3’(s) exists almost everywhere, the integral ~03B3’(s)~ds is finite, and

We define a function u : [-1, 1] x V ~ R by

where the infimum is taken over all absolutely continuous curves q : [0, t] ~ V
with 03B3(t) = q;
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where the supremum is taken over all absolutely continuous curves

03B3 : [0, t] ~ V with q(0) = q; and

Claim. - The function u is indeed finite everywhere. There is an ope
neighborhood U’ of tOI x V in [-l, 1] x V such that ulU’ is continuous, an,
u restricted to U’ B f 01 x V is locally Lipschitzian. Moreover, at each poin
(t, q) E U’ B tOI x V where u is differentiable we have

Let us show how to finish the proof of the theorem using the claim. Since
u is locally Lipschitzian on U’B{0} V, it is differentiable almost everywhere.
Using (5.2), and the fact that IdR x ir* induces a (global) homeomorphism
from u0~]-03B4,03B4[ T*M onto the open subset U, we see that the derivative
map (t, q) H d(t,q) u, which is defined almost everywhere can be continuously
extended to U n U’. Since the map u restricted to U~U’B {0} x V is locally
Lipschitzian, we see that it is in fact Cl on Un Ul B 101 x V; since the subset
{0} x V is contained in a hyperplane, we can then conclude that u is in fact
Cl on U n U’. By continuity of the derivative and (5.2), the function u is a
C1 solution of the Hamilton-Jacobi equation, it follows from Theorem 3.1
that u is Cl, but uo(q) = u (0, q), for q E V. Hence, the function uo must
also be Cl,’.

It remains to prove the claim. We will do that for points (t, q) with t  0,
leaving the case of negative t to the reader. The proof of the claim relies on
arguments which are essentially well-known, see for example [FI, Theorem 1,
page 518] or [Be, §5 page 64].

If q : [0, t] ~ V is a continuous piecewise C 1 curve, by integration of
(5.1), we have

where ~(03B3) = t0~03B3’(s)~ ds is the length of 03B3, and K is here as abovi

the Lipschitz constant of uo on V. For a path such that 03B3(t) = q, usini
luo(q) - u0(03B3(0))|  Kd(q,03B3(0))  K~(03B3), we obtain 
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This gives

If we consider the constant path qq : : [0, t] ~ V, s ~ q, and set

A = sup{L(t, q, 0) t E [-1, 1], 1 E V}  oo, we find

It follows that

This shows that u is finite everywhere, and continuous at each point of
{0} x V, since uo is itself continuous.

We fix now qo E V and choose r &#x3E; 0 such that B(qo, 3r) C V. Using
what we have done above, to compute u(t, q) we can restrict to absolutely

t
continuous curves -y : [0, t] ~ V such that 10  + uo (-y (0»
 At + uo (q). From (5.4), such a curve must satisfy ~(03B3)  (A-C(K+1))t.
If we now fix to &#x3E; 0 such that (A - C(K + 1))t0  r, we find that for

t cz [0, t0] and q ~ B(q0, r), we have

where the infimum is now taken over all absolutely continuous curves q :
[0, t] ~ B(q0,2r) with 03B3(t) = q. Since B(q0,2r) is compact, Tonelli’s the-

orem, see [Cl, page 30], implies that, for each q E B(qo, r), there exits an
absolutely continuous curve 03B3(t,q) : [0, t] ~ B(q0, 2r) with 1(t,q)(t) = q, and
such that

By definition of the function u, such a curve minimizes action among all ab-
solutely continuous curves with values in V and having the same endpoints.
Thus such a 03B3(t,q) is what is called a local minimizer. Although generally for
time dependent Lagrangians an absolutely continuous local minimizer is not
necessarily C2, this is indeed the case when the Lagrangian is almost com-
plete. In fact, the classical argument (see for example [Ma, page 175]) that
shows that absolutely continuous local minimizers are C2 extremal curves
for a corrtplete Lagrangian works also for almost complete Lagrangians.

It follows that each curve 03B3(t,q) is a C2 extremal curve for the Lagrangian.
Using the first variation formula, and the fact that u (q, t) is defined as an



- 513 -

infimum, it is not difficult to show that the derivative of uo at "Y(t,q) (0) is

Since u is Lipschitzian with Lipschitz constant

K, we conclude that the points ("Y(t,q) (0), 03B3(t,q)(0)) are all contained in the
compact subset K of TM defined by

Let t’0 &#x3E; 0 be such that ~s(0, , v) be defined for all (s, , v) E [0,t’0]  K
If we consider only points (t, q) E [0, min(to, t’0)] and numbers s E [0, t], we
conclude that the points (03B3(t,q)(s), 03B3(t,q)(s)) are all contained in the samE
compact subset Us~[0,t’0] ~s({0} xK). Using a similar (but simpler) argumen1
than the one used in the proof of Theorem 3.2, relying basically on the fac1
that L is Lipschitzian on a neighborhood of the compact set [0, min(to, t’0)]
Us~[0,t’0] ~s({0}  K), it can be shown that u is a Lipschitz map on each sub
set of the form [03B4, min(to, t’0)]  B(qo, r) with 0 &#x3E; 0. It remains to identify the
derivative of u when it exists at a point (t, q) e [03B4, min(t0, t’0)]  B(q0, r)
It follows from the first variation formula, and the definition of u, tha1

~u ~q(t,q) = ~L ~u(t,q,03B3(t,q)(t)). Since thé curve 03B3(t,q) is an extremal curve fo
the Lagrangian L, we have (q, 03B3(t,q) (t)) = ~t(0, 03B3(t,q)(0), 03B3(t,q)(0)), hence, by
thé dennition (2.4) of ~*s, we obtain (q, ~u ~q*(t,q)) = (q, ~L ~v(t,q,03B3(t,q)(t)) =

By what we saw above, we hav

the equal i ty ~L ~v(0, 03B3(t,q)(0), 03B3(t,q)(0)) = d03B3(t,q)(0)u0, therefore (t,q,~u ~(t,q)
is indeed in the propagated graph Uo. To compute the partial derivativ

~u ~t(t,q), we first observe that the definition of u as an infimum forces the
equality

Taking derivatives at t’ = t, we obtain

But 
we have already seen that 9q q) 

= 9v a, 03B3(t,q)(t)). Since H(t, q,p) =

,9v (t, q, v) [v] - L (t, q, v), when p 
= 

âv (t, q, V), 
we indeed obtain the equality

~u ~t(t,q) = -H(t,q,~u ~q (t,q)). D
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It is possible to give a particular geometric formulation of some of the
results given here.

THEOREM 5.7. - Suppose that AI is a Riemannian manifold, and’N C
M is a CI codimension 1 submanifold, and assume that the submanifold
topology is the same as the topology induced from M. We denote by dN :
M ~ R the distance function dN(q) = d(q, N) = infq/EN d(q, q’). The dis-
tance function dN is differentiable at every point of V B N, where V is someopen neighborhood of N in AI if and only if N is C1,1. In that case, the
function dN itself is C1,1.

It follows from [PR] that dN is Cr, r  2 on V B N, where V is some
open neighborhood of N in M, if and only if N is itself Cr . This is of course
false for k = 1 by Theorem 5.7. The case where M is 2-dimensional can be
proven in a different way see [Ze, §1.1].

Proof of Theorem 5.7. - The argument is essentially local, so we can
assume that M is an open subset of R k and that N is closed in M, connected
and orientable. Replacing M by a neighborhood of N, we may assume that
M B N = O+ U O_, where O+ and 0- are two disjoint open subsets of M.
We then define u : M ~ R by u|N = 0, u|O+ = dN, u|O_=-dN. It is
clear that u is Lipschitzian with Lipschitz constant 1, and it is differentiable
at q E M B N if and only if dN is. Suppose that u is differentiable at q E 0+
(resp. q E 0 ) if q is close enough to N, there exists a point q’ E N such that
dN (q) = d(q’, q), and a geodesic curve q : [0, dN(q)] ~ M, parametrized by
arc-length, such that 03B3(0) = q’ and 03B3(dN(q)) = q. It is clear that we must
have u(03B3(s)) = s (resp. u(03B3(s)) = -s), and that 03B3(0) is a unit vector

orthogonal to Tq,N and pointing toward O+ (resp. O_). Differentiating
u(q(s)) = s (resp. u(03B3(s)) = -s), at s = dN (q), we see that dqu(03B3(dN(q)) = 1
(resp. dqu(03B3(dN(q)) = -1. Since both ~03B3(dN(q))~  1 and ~dqu~  1, we
must have that lldqUI1 = 1, and -03B3(dN(q)) (resp. -03B3(dN(q))) is the only
vector v e TqM such that dqu = (v, ·) . When u is differentiable on V B N,
where V is some open neighborhood of N in M, it then follows that the
derivative q ~ dqu extends continuously to N. The value at q’ E N being
(V(q’), .), where v(q’) E Tq,M is the unit vector perpendicular to Tq,N and
pointing to O+. Since u has a derivative of norm 1 everywhere on V, it must
be C1,1, and therefore q’ ~ v ( q’ ) is a locally Lipschitz map on N, hence N
itself is C1,1.

We let the reader prove, using the Lipschitz version of the implicit func-
tion theorem, that when N is C 1’ 1, the exponential map of the Riemannian
metric restricted to the normal bundle v(N) of N in M is a homeomor-
phism from an open neighborhood of the zero section in v(N) onto some
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open neighborhood of N in M. This in turn implies that the derivative of the
Lipschitz map u, which exists almost everywhere by Rademacher theorem,
extends continuously to a neighborhood of N, hence u must be C1. D

Remark 5.8. 2013 1) The argument given above works even when N is
merely a C° codimension 1 submanifold. In fact localizing as in the proof
above, and using some arguments from Algebraic Topology (essential equiv-
alent to Jordan’s theorem) we see that M B N = O+ U O-, where O+ and
0- are two disjoint open subsets of M satisfying N C O+ and N c Ô- - If
dN is differentiable on M B N, it can be shown that if q E N is fixed, then
for any r &#x3E; 0 small enough there exists q+ E O+ and q- E 0- such that
dN(q+) = d(q, q+) = r and dN(q_) = d(q, q-) = r. Moreover, if q+ E 0+
and q- ~ O_ are such that dN(q+) = d(q, q+) and dN (q-) = d(q, q-), as
soon as q, q+, q- are close enough to define a geodesic triangle this geodesic
triangle must be degenerate with a flat angle at q, since the geodesic be-
tween q+ and q- must intersect N. It is then not difficult to see that the

tangent unit vector at q to the geodesic joining q and q+ depends only on
q and not on the choice of q+ E O+. This defines a normal vector at every
point of q E N. The arguments in the proof above can then be adapted to
show that u is C1,1, with a derivative of norm 1 everywhere. It follows that
N = u-1(0) must be a C1,1 submanifold.

2) If N is a closed subset of the Riemannian manifold M, its caustic CN
is the subset

CN = {q E M | q1, q2 ~ N,q1 ~ q2, dN (q) = d(q, q1) = d(q, q2)}.

When N is a Co codimension 1 submanifold, it is not difficult to obtain

from what we have seen above that N B Cnr is the (open) set of points
q E N such that there is an open neighborhood Oq of q in N which is a CI,1
submanifold of M. In particular, if N is nowhere C1,1, then the caustics
accumulate everywhere on N.
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