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Motion of concentration sets in Ginzburg-Landau
equations (*)

FABRICE BETHUEL (1), GIANDOMENICO ORLANDI (2)
AND DIDIER SMETS (3)

Annales de la Faculté des Sciences de Toulouse Vol. XIII, n° 1, 2004

ABSTRACT. - We discuss a number of results which relate the parabolic
Ginzburg-Landau equation with motion by mean curvature. We describe
the various concentration phenomena underlying this analysis.

RÉSUMÉ. - Nous décrivons quelques résultats qui relient l’équation
de Ginzburg-Landau parabolique au mouvement par courbure moyenne.
Nous discutons les différents phénomènes de concentration liés à cette
analyse.

1. Introduction

The asymptotic analysis for Ginzburg-Landau evolution equations has
been broadly investigated in the last decade. The purpose of this paper is
to review some results both in the scalar and complex case. In particular we
try to emphasize some analogies and differences between the two theories.

Our main focus will be the parabolic Ginzburg-Landau equation
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for functions Ug : R N x R+ ~ Rd, N ~ 1, d ~ 1, and V represents a non-
convex smooth non-negative potential on Rd. Here 03B5 &#x3E; 0 denotes a small

parameter (a characterisitc length), and we are specially interested in the
asymptotic limit 03B5 ~ 0.

This equation corresponds to the heat-flow for the Ginzburg-Landau
energy

The set

which we assume to be non-void, is sometimes called the vacuum manifold
in the physical literature and plays an important role in the asymptotic
analysis. Indeed, since the potential is non-negative, it achieves its infimum
on 03A3, and therefore the motion law forces Ug to take values close to E for
small 03B5 as time evolves, and in appropriate energy regimes. This however
cannot be true uniformly on space-time since the initial data 03BC003B5 may not
be uniformly close to E. We will call defects the points where Ug is far from
E. As time evolves these defects will disappear. An important aspect of our
discussion will be to show that the defects related to the topology of E
survive up to a time which is independent of 03B5, whereas the non-topological
ones essentially have a life-span which shrinks with 6’. For that reason the

topology of E will enter directly in the discussion.

The energy 03B503B5 has been introduced in the early fifties by Ginzburg and
Landau in order to describe phase transitions in condensed matter Physics
(more precisely, at low temperature). The nature of the predicted defects
(e.g. points, lines, walls) depends crucially on d and E (see [36]). Among
the many variants of Ginzburg-Landau functionals, there are in particular
those including electromagnetic effects, as for instance in superconductivity.
Related models have been developed in particle physics (as for example,
Yang-Mills-Higgs theory).

In this paper we will focus on the cases d = 1 and d = 2 (i.e. u real or
complex-valued). Moreover we assume that the potential is given by

Note that in this case
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where S1 is the unit circle in R2. In the first case, i.e. d = 1, the non-
connectedness of E yields typically codimension one defects, whereas in the
second case, i.e. d = 2, E is not simply connected and allows for defects of
codimension two. In Section 2 we will briefly show that the typical energy
needed to observe a topological defect for d = 1 is of order 03B5-1, whereas it
is of order |log 03B5| for d = 2.

With this choice of potential, (PGL)g writes

It is well known that (PGL)g is well-posed for initial datas in H1loc with
finite Ginzburg-Landau energy 03B503B5(03BC003B5). Moreover, we have the energy iden-
tity 

We assume that the initial condition 03BC003B5 verifies the bound

where Mo is a fixed positive constant, and the definition of k03B5 depends on
the dimension d, namely we set

The definition of k03B5 in both cases d = 1 and d = 2 should be related to the
energy cost needed for a single defect (we will develop this notion later)
Notice that, in view of (1.1), we have

In order to analyze the asymptotic properties of solutions to (PGL)g we
consider two kinds of objects.

The first ones describe the topological defects of 03BC03B5: for d = 1 it is simply
given by the gradient ~03BC03B5, whereas for d = 2 it is the jacobian Ju,, defined
as the 2-form
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Although this may not be obvious at first glance, they are bounded in
suitable norms independently of 6 and therefore do not need any kind of
renormalization. It can be shown (see Section 3) that in the asymptotic limit
03B5 ~ 0 they concentrate on codimension d rectifiable sets in RN x R+, called
respectively the jump set and the vorticity set. This fact is not related to the

. equation (PGL)03B5, but due only to the energy bound (1.2) and properties
of the functional Eg. Passing to subsequences, the limiting object J* is a

bounded vector measure on RN x R+, as well as its restriction Jt* on each
time slice RN x {t}. In Section 2 we will discuss in more details the structure
of J*.

The second objects are the renormalized energy densities given by the
Radon measures 03BC03B5, defined on RN x [0, +~),

and of their time slices 03BCt03B5, defined on RN x {t},

so that in particular 03BC03B5 = 03BCt03B5 dt. In view of assumption (Ho) and (1.2), y,
is a bounded measure, independently of 03B5. We may therefore assume, up to
a subsequence 03B5n ~ 0, that there exists a Radon measure 03BC* defined on

RN x [0, +00) such that

In view of the semi-decreasing property of the measures 03BCt03B5 (see [26, 13]),
passing possibly to a further subsequence, we may also assume that

t ~ 03BCt* as measures on RN x {t}, for all t ~ 0.

In the asymptotic limit c ~ 0, there is a simple relation between the
quantities introduced so far, namely

where Ci = 2/3 and C2 = 1. Moreover these bounds are sharp. This
relation will be discussed in Section 2. The evolution of 03BCt* is easier to

analyze than that of Jt*. Indeed, it is possible to derive directly equations
governing the motion of 03BCt*, using (PGL)03B5, whereas this is not clear for Jt*.
The structure of 03BCt* can be summarized as follows.
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THEOREM 1.1 (Structure of 03BCt*). 2013 There exists a subset 03A303BC in
RN X (0, +~), such that the following properties hold.

i) 03A303BC is closed in RN x (0, +~) and for any compact subset K C RN

ii) For any t &#x3E; 0, 03A3t03BC ~ E ~ RN x {t} verifies

iii) For each t &#x3E; 0, the measure 03BCt* can be exactly decomposed as

iv) In case d = 1, g ~ 0, while for d = 2, g = |~03A6* 12, where the function
03A6* verifies the linear heat equation on RN x (0, +~).

v) the function ~*(·, t) is bounded, and there exists a positive function
~ defined on R+ such that, for almost every t &#x3E; 0, the set 03A3t03BC is

(N - d) -rectifiable and

In the case d = 1, Theorem 1.1 has been proved by Ilmanen [26]; earlier
related results have been provided, among others, in [15, 16, 17].

In the case d = 2, Theorem 1.1 has been proved in [9] (see also related
results in [31, 32, 29, 28]). Many arguments rely on the elliptic theory de-
veloped in particular in [5, 49, 10, 43, 33, 34, 6, 30, 12, 8]. Some elements
in the proofs will be discussed in Section 3 and 4. 

In view of the decomposition (1.4), 03BCt* can be split into two parts. A
diffuse part |~03A6* 12 , and a concentrated part

An important différence between the scalar and the complex case is that
in the scalar case there is no diffuse part (i.e. g ~ 0). The presence of the
diffuse term in the complex case is due to the possible oscillating behavior of
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the phase. This part evolves in time according to the linear heat equation.
In other words, in the complex case, the energy has two différent modes:

- the linear mode, corresponding to q)*;

- the topological mode, corresponding to v*.

Concerning J* we have also, as a consequence of (1.3),

In some cases the inclusions in (1.5) are strict.

Note also that in the critical dimension N = d the concentration set 03A3t03BC
reduces to a finite set, in particular the measures vt* are given by a finite
sum of Dirac masses with positive coefficients bounded from above and from
below.

The next step is to derive the motion law for the concentration set Et. In
the critical dimension N = d, it turns out that the points of Et do not move
at all in the given time scale. A rescaling of time depending on 03B5 is needed
to see the defects move in the singular limit (see Section 3): this is the so-
called "slow motion" phenomenon of point defects (see [15, 16, 28, 31]. We
will not discuss this here.

If N &#x3E; d, then we will see in Section 4 that the concentration set Et
evolves according to motion by mean curvature.

2. Analysis of the topological defects

In this Section we review some results concerning the jumps and vor-
ticity sets. As mentioned, the results here rely only on properties of the
Ginzburg-Landau functionals 03B503B5 and are completely independent of the
equation (PGL)03B5.

2.1. The scalar case

The properties of the Ginzburg-Landau functional 03B503B5 in the scalar case
d = 1 have been extensively investigated in the 80’s, in particular by the De
Giorgi school (starting with the seminal work by Modica-Mortola [39], and
[38]) and also, motivated by physical questions, since the works by Gurtin
and Sternberg [24, 47]. To simplify a little the arguments, we will restict the
attention to a bounded domain n C R N say for instance the unit ball BI,
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and consider families {v03B5}003B51 of scalar functions defined on Q, verifying
a bound of the form

where Mo &#x3E; 0 is independent on e. Clearly such a bound does not yield any
control on the L2 norm of the gradient. However, estimate (2.1) is sufficient
to derive some compactness, in particular for the jump set. More precisely,
the following holds.

PROPOSITION 2.1. - Let (v03B5)03B5&#x3E;0 a sequence such that

Then, for a subsequence 03B5n ~ 0,

where

Sketch of proof. - We have

Hence, from the inequality ab ~ 1 2(a2 + b2), it holds

that is

where 03B6(t) = t - t3/3. This yields a uniform bound in W1,1 for 03B6(v03B5), and
a subsequence 03B6(v03B5n) converges therefore weakly in BV(03A9), hence strongly
in L1. So does Vgn = 03B6-1(03B6(v03B5n)). Moreover, since 03B6(v*) = 2 3v*, we have

by (2.3) and lower semicontinuity of total variation. Hence v* E BV(f2). D

Notice that Proposition 2.1 states that ~v03B5n converges in W-1,1 to
J* = ~v*, and that the limiting jump set J* is a bounded measure.
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Remark 2.2. 2013 i) Let us emphasize that condition (2.1) does not imply
that the sequence v03B5 is bounded in BV. A simple example in dimension one
is given by

Clearly the maps Vg satisfy (2.1) but they are not equibounded in BV.

ii) On the other hand, one may prove that given any sequence v03B5 sat-
isfying (2.1) there exists another sequence Vg verifying also (2.1) which is
equibounded in BV and which is close to the original sequence Vg in the
following sense:

The main point is to get rid of the possible small oscillations of v03B5 on the set
where it takes values close to +1 and -1. This is achieved by a composition
with a suitable projection on 03A3 = {-1,1}.

The fact that v* E BV(03A9) and Iv* 1 = 1 a.e. in Q yields some important
properties for the jump set. In order to get some insight for this type of
result, let us first consider the one dimensional case, which captures already
some of the essential features of the problem.

2.1.1. The case N = 1

Let 0 = I be a bounded interval of R. We have

PROPOSITION 2.3. - Let v E BV(I), |v| = 1 a.e.. Then v has only a
finite number f o f jumps a1, ... , a~, and there exists X ~ {-1,1} such that

Proof. 2013 The result follows immediately from the definition of the BV
norm in dimension one: it is the sum of the L1 norm and the total variation
VI, defined by VI(v) = sup{03A3 |v(xi+1)-v(xi)|, {xi} partition of I}. D

Remark 2.4. 2013 Note that if v* is given by (2.5), then J* = ~v* =
2~03A3~i=1(-1)i03B4a2, and in particular ~J*~ = 2~.
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Next we show inequality (1.3) in dimension one, that is

. PROPOSITION 2.5. - i) Let v* given by (2.5). Then for any sequence
(v03B5)003B51 such that v03B5 ~ v* in L1 as 03B5 ~ 0, we have

ii) The bound (2.6) is sharp, i. e. there exists a sequence (u03B5)003B51 such
that u03B5 ~ v* in L1, as 03B5 ~ 0, and

Proof. - i) Going back to the first inequality in (2.2), we have

On the other hand, 03B6(v03B5) -t «(v*) in LI, and lower semicontinuity of the
total variation gives

Since 03B6(v*) = 2 3v*, we have ~03A9 |~03B6(v*)| = 3 4~, and (2.6) follows.

ii) The main idea is to construct an optimal profile (on the whole of R)
for the transition from -1 to +1. Indeed, consider the problem

Actually, it is elementary to show that the solution is the unique minimizer
(up to translations) of 03B51 subject to the above boundary conditions. It is
explicitely given by the formula v(x) = tanh(x 2).

Next set

A few computations show that u03B5 ~ v* in LB and 

for some constant K &#x3E; 0.
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Remark 2.6. 2013 Multiplying equation (2.10) by v we obtain the pointwise
equality 

This yields the equipartition of energy for u,

More generally, for any sequence w03B5 verifying statement ii), it is elementary
to prove equipartition of the energies

This equality holds also in higher dimensions (see Proposition 2.9).

We would like to draw the attention of the reader that in the scalar case

considered here the exact form of the optimal profile plays a central role
in the analysis. We will see that in the complex case the exact form of the
optimal profile does not really enter in the corresponding theory.

Remark 2.7. In view of (2.12), we see that the interaction between
jumps is exponentially weak.

2.1.2. The case N ~ 2

Let n be a bounded domairi in RN, N ~ 2. As in dimension one, the
fact that v* E BV(03A9) and |v*| = 1 a.e. in 03A9 allows to deduce regularity
properties for the jump set of v*, which are best expressed in the language
of Geometric Measure Theory. More precisely, we have

PROPOSITION 2.8. - Let v* E BV(03A9), |v*| = 1 a. e.. There exists a set
E C H of finite perimeter in S2, such that v* = 2~E - 1, where XE is the
characteristic of E. In particular, the jump set of v* is (N - 1) -rectifiable,
and 2Per03A9(E) = ~03A9|~v*| = ~J*~.

Comment. - i) We recall that a set E C R N is k-rectifiable, for 1 ~
k ~ N, if it has locally finite k-dimensional Hausdorff measure Hk, and is
contained, up to an Hk-negligible set, in a countable union of k-dimensional
surfaces of class Cl. For such sets, the tangent space Tan(E, x) is well-defined
in a measure theoretic sense for Hk a. e. x E E. An important aspect
of rectifiable sets is that they are limits of finite unions of k-dimensional
polyhedral sets in a suitable weak norm.
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ii) The proof of Proposition 2.8 is far from being elementary, and relies on
De Giorgi’s theory of finite perimeter sets. More precisely, let w* E BV(f2)
(so that Dw* is a measure), and |w*| = 1 a.e.. Let 03A9±* = {x E 0, w.(x) =
±1}. Then Dw* is supported on the (N-1)-rectifiable set ~*03A9±*, the reduced
boundary of 03A9±*. [For the definition of reduced boundary, see e.g. [45]; the
reduced boundary is included in the usual topological boundary. In the
smooth case they actually coincide, but in general they may be différent].

The N-dimensional analog of Proposition 2.5 is the following

PROPOSITION 2.9. - i) Let v* E BV(03A9), |v*| = 1 a. e.. Then for any
sequence (v03B5)003B51 such that v03B5 ~ v* in L1 as 03B5 ~ 0, we have

lim inf

ii) The bound (2.16) is sharp, i. e. there exists a sequence (u03B5)003B51 such
that u03B5 ~ v* in L1, as 03B5 ~ 0, and

Comment. - The previous proposition is. a classical example of

r-convergence (see [39])

Sketch of the proof. - The proof of i) is identical to the proof of i) in
Proposition 2.5.

The easiest way to prove ii) is to use an approximation of E by a set with
a polyhedral boundary in 03A9. Then the Ug are constructed using essentially
the optimal profile (rescaled at the level 03B5) in the orthogonal direction to
the approximating boundary.

2.2. The complex case

Here we will consider ic : 0 -t C ~ R2, so that 03A3 = {y ~ C, V(y) = 0}
= {y E C, |y| = 1} = S’. A new type of singularity can appear here, due to
the fact that 03C01(S1) = Z ~ 0. Interesting new cases of topological defects
appear therefore for planar 03A9, i.e. for N = 2 (this is somewhat similar to
the one dimensional case for scalar problems).



- 14-

Fabrice Bethuel, Giandomenico Orlandi, Didier Smets

2.2.1. Vortices

We start the discussion here with a minimization problem which, in
a vague sense, corresponds to the selection of optimal profiles. For that
purpose, let Ç2 = D2 = {z E (C R2, |z| ~ 1}, and consider a regular
function

with winding number d =1= 0. In contrast to the scalar case, there is of course
a large choice of boundary conditions verifying Igl = 1. Let us consider next
the minimization problem

If d =1= 0, any minimizer for 03B503B5 has to vanish at some points. Moreover, it
can be proved that H1g(D2, S1) = 0, and therefore I03B5 diverges as 03B5 ~ 0. The
asymptotic analysis here is of course more involved, since we have PDE’s
instead of ODE’s. It was initiated in [5], where the following was established.

PROPOSITION 2.10. - Assume d &#x3E; 0, and let Ug be a minimizer for C,.
Then we have

Moreover, there exists d points a1,..., ad in 03A9, and a harmonic function
cp : 03A9 ~ R such that u03B5 ~ u* as 03B5 ~ 0 in W1,p(03A9) for any p  2, and in

Ckloc(03A9 / {a1, ..., ad}), where

The points ai are usually called "vortices" (in analogy with the termi-
nology of fluid dynamics). Since ~ is harmonic, it is completely determined
by the boundary condition and the location of the points ad. As a matter
of fact it can be proved that the configuration (ai, ... , ad) is not arbitrary,
but minimizes a suitable renormalized energy (i.e. independent of 03B5). Again,
the boundary condition enters in an essential way in the definition of this
energy. 

Remark 2. 11. As the reader . might already have noticed, there are
strong analogies between the 1-dimensional scalar case and the planar com-
plex case: clearly vortices and jumps play a somewhat similar role. Let us
stress however a few differences:
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i) the typical energy necessary to the formation of a vortex is of order
|log 03B5|, whereas for jumps it is 03B5-1;

ii) from (2.18) one sees that there is no energy balance in the complex
case, and the diverging part of the energy is concentrated in the gradient
term; 

iii) in a (vague) sense, jumps do not "interact", whereas vortices do.
Their interaction is governed by the renormalized energy.

Another striking différence concerns the way the theory has been de-
veloped in both cases. Indeed, PDE techniques have played an important
role in the starting development for the complex case, while the emphasis
was put first, for the scalar case, on variational methods (e.g. compactness,
0393-convergence...).

Remark 2.12. - Consider the boundary condition g(z) = z = IdS1,
which is the simplest possible with non-zero winding number.

It is natural, due to the symmetries in the problem, to seek solutions of
the form

where z = r exp(i03B8) (in polar coordinates), and f03B5 : R+ ~ R is smooth and
such that

a simple computation shows that

which establishes the upper bound for 7g-. Actually, it has been proved that
the minimizers u03B5, for small 03B5, do have radial symmetry [37, 40]. Moreover,
as in the scalar case, we may define an optimal profile (although it is not
given by an explicit formula). More precisely, there exists a unique function
f : ]R+ -t R satisfying

Then we have
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and

and in Ckloc(D2 / {0}). The map u* (z) = z/ 1 z 1 realizes thus the prototypical
singularity that can appear in the asymptotics for minimization problems.

2.2.2. The quest of compactness

As in the scalar case, the energy bound 03B503B5(v03B5) ~ M0|log 03B5| enables to
derive some compactness for the sequence (v03B5)003B51. However the discussion
is a little more involved. Indeed, a simple example shows that no general
compactness result for reasonable norms can be derived, due to possible
divergences in the phase. Take, for instance

with ~ : 03A9 ~ R a non-constant smooth function. We have |w03B5| = 1, hence

On the other hand, |~w03B5| = O(|log 03B5|1/2), so that any norm of the gra-
dient will diverge as 03B5 ~ 0. Actually, even for solutions of the stationary
Ginzburg-Landau equation, no compactness has to be expected even in LI
(see [14]).

However, one may split the contribution of the "topological" part from
the rest of the phase to assert, in analogy with Remark 2.2, ii), (see [2])

PROPOSITIOI

Let G cc 03A9 be a smooth open simply connected set. Then, there exists a
subsequence En ~ 0, ~ points a1, ..., a~ E G, integers dl, ... , d~ ~ 0, with
03A3~1 |di| ~ K’, for some constant K’ depending only on Mo, and functions
~03B5n : G ~ R such that

and
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Notice that in the previous example, ~ = 0 (i.e. there are no vortices)
and taking ’Pg = ’P . |log 03B5|, one may write, as above,

Sketch of proof. - The idea is to introduce a regularization of v03B5 in

order to get rid of possible "small dipoles" (i.e. pairs of vortices having
opposite multiplicities and whose distance is say o(03B51/2)), and to keep only
the "relevant" part of the vorticity of Vg.

Assume for simplicity that |v03B5| ~ 2, and consider a minimizer w03B5 of

Then Wg verifies the perturbed Ginzburg-Landau equation

One can easily show that 03B503B5(w03B5) ~ 03B503B5(v03B5) ~ M0|log 03B5|, and

Performing a change of scale, and denoting

we are then led to the equation

and the left hand side in (2.23) is bounded in Loo. Many techniques de-
veloped in the context of the stationary Ginzburg-Landau equation (see
[5, 47, 10]) apply to (2.23). In particular, on G, the maps Wg will have a
finite number of vortices, bounded independently of 6’. More precisely, for
any 1/2 ~ 03B4  1, there exists points a i , ... , a03B5~, integers d i , ... , d03B5~, and a
constant B &#x3E; 0 such that |w03B5| ~ 03B4 on G B ~~1B(a03B5i, 03BB03B5), and
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where ~03B5 : G ~ R are suitable functions. Moreover, we have

. so that, fors  1, ~w03B5 - v03B5~Hs ~ Ce’, for some 0  a  1, and after a few
simple computations the conclusion follows. D

Comment. - i) Proposition 2.13 shows that the possible lack of com-
pactness is merely due to the phase (which is a real-valued function). On the
other hand, the "topological" contribution due to the vortices is essentially
compact.

ii) In view of the previous remark, some topological properties of the
level sets of 03B503B5 can be reduced to the properties of the level sets of the
renormalized energy on the space of configurations of vortices (which is
finite dimensional). This fact has been used in [2, 44, 51, 11] in order to
find solutions to the stationary equation by variational methods (mountain
pass, Ljusternik-Schnirelman theory, etc...).

2.2.3. Compactness for Jacobians

A related but conceptually different approach for locating the vorticity
for maps Vg satisfying the bound 03B503B5(v03B5) ~ M0|log 03B5| has been proposed first
in [30] and, independently, in [1].

The main idea here is to look at the Jacobians of Vg, which allows to
characterize its topological part. More precisely, for v = (v1,v2) : 03A9 ~ R2
a smooth map, its Jacobian Jv is the 2-form defined by

In two dimensions, it may be identified with a scalar function, namely

where, for a, b E R2, a x b = alb2 - a2bl. Note that vx x vy = 0 whenever
Vx and vy are colinear. Hence, when Ivl = 1, we have Jv ~ 0. In particular,
oscillations in the phase of v are not "seen" by its Jacobian Jv.

It is then proved that

PROPOSITION 2.14. - Let v03B5 : 03A9 ~ R 2 such that 03B503B5(v03B5) ~ M0|log 03B5|.
Then there exists a subsequence 03B5n ~ 0, ~ points a|, ..., a~ E 03A9, and integers
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dl, ... , dî ~ 0, with 03A3~1 |di| ~ K’, for some constant K’ depending only on
M0, such that

Remark 2.15. - i) Recall that the corresponding result in the one di-
mensional scalar case would be v03B5n ~ 2~03A3~i-1(-1)i03B4ai (see Remark 2.2).

ii) Proposition 2.8 could also be derived using Proposition 2.13. However,
the approaches in [30, 1] are more complete and give also interesting results
for higher energy levels than the ones considered here.

2.2.4. r-convergence

The following result, stated in [30, 1], has to be compared with Propo-
sition 2.5.

PROPOSITION 2.16. - i) Let J* be as in (2.26). Then for any sequence
(v03B5)003B51 such that Jv03B5 ~ J* in [C0,ac(03A9)]* as 03B5 ~ 0, we have

ii) The bound (2.27) is sharp, i. e. there exists a sequence (u03B5)003B51 such
that Ju03B5 ~ J* in [C0,03B1c(03A9)]* as 03B5 ~ 0, and

Proof. - i) If the I.h.s. of (2.27) is equal to infinity there is nothing to
prove. Therefore we may assume without loss of generality that 03B503B5(03C503B5) 
M0|log03B5|. Thus, going back to Proposition 2.13, we have 03B503B5(03C903B5)  03B503B5(03C503B5),
and J03C903B5 ~ J* as c ~ 0 by (2.25), and we may work now on We instead
of Vg. The main advantage is that the vorticity of Wg is located, in view of
(2.24), in a finite number of disjoint balls of size e, and |03C903B5| &#x3E; 03B4 outside the
balls, where 1/2  b  1 is fixed. Then, elementary computations (see [5],
Chapter 1) show that
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for a constant K &#x3E; 0 independent of e. The conclusion follows by letting
03B5 ~ 0 and then 03B4 ~ 1.

ii) For j = 1,..., di, let b03B5i,j = ai + |log 03B5|-1 exp(i203C0j/di). Consider the
map 

where is defined as in (2.19). Elementary computations show that the
sequence u03B5 enjoys the desired properties. D

2.2.5. The case N  3

Since in dimension two vortices are points, and therefore codimension
two defects, one expects, likewise, that in higher dimensions defects for the
complex Ginzburg-Landau functional will concentrate on sets of codimen-
sion two. The following result, first proved in [30] gives a precise formulation
of that.

PROPOSITION 2.17. - Let (v03B5)003B51 be a sequence such that

03B503B5(03C503B5)  M0|log 03B5|. Then, for a subsequence 03B5n ~ 0,

where 1 03C0 J* is an (N - 2)- (integer multiplicity) rectifiable current without
boundary.

Comment. - i) We recall some terminology from Geometric Measure
Theory. A k-dimensional current on n is an element of the dual of the
space of smooth k-forms with compact support in Q. A k-current is called
rectifiable if it can be represented by integration over a k-rectifiable set,
with an integer valued density function.

ii) The proof of Proposition 2.17 in [30] relies on reduction to the two
dimensional case by slicing arguments.

A different proof has been derived independently in [1]: the strategy is
to approximate the Jacobian of Ve by polyhedral currents with uniformly
bounded mass, and then apply the classical Federer-Fleming compactness
theorem.

The corresponding r-convergence result (i.e. the generalization of Propo-
sition 2.16 to higher dimensions) is proved in [1].
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To conclude Section 2, we emphasize once more that, for maps Vg veri-
fying the energy bound

the topological defects concentrate on N - d-dimensional sets with some
regularity (i.e. they are rectifiable). In view of inequalities (2.16), (2.27),
the concentration set for defects is also a concentration set for the energy

(however, for arbitrary maps, energy might concentrate outside J*).

Finally, we also would like to point out that, even though J* is rectifi-
able, its geometrical support might not be closed, so that in particular, the
distributional support could be the whole domain.

3. Some properties of (PGL)03B5

In this section we discuss some properties of solutions Ug to equation
(PGL)03B5, which will enter directly in the proof of Theorem 1.1. If not other-
wise stated, proofs are provided in [9].

We begin with pointwise estimates for Ug and its derivatives.

PROPOSITION 3.1. - Let u03B5 be a solution of (PGL)03B5 with 03B503B5(u003B5)  +~.

Then there exists a constant K &#x3E; 0 depending only on N such that, for
t  03B52 and x E RN, we have

where K is independent of the initial data.

The proof relies on the maximum principle and the construction of suit-
able supersolutions.

Remark 3.2. - Equation (PGL)g has standard scaling properties. If u,
is a solution to (PGL)g, then for R &#x3E; 0 the function

is a solution to (PGL)R-1,. The bounds (3.1) are thérefore coherent with
this invariance.

As mentioned in the Introduction, the evolution properties of the energy
density can be directly inferred from (PGL)03B5. This is presumably well re-
flected in the results of the next section, which are the starting point in the
proof of Theorem 1.1.
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3.1. Monotonicity formulas

Let be a solution to (PGL)g verifying (Ho). For (x*, t*) E RN x R+
we set z* = (x*, t*).

For 0  R  t* we define the weighted energy

We emphasize the fact that the above integral is computed at the time
t = t* - R2, and not at time t = t*, i.e. a shift in time 8t = -R2 has been
introduced. Note also that in (3.2) the weight becomes small outside the
ball B(x*, R). More precisely, the following inequality holds

The right-hand side of (3.3) arises naturally in the stationary equation,
where its monotonicity properties (with respect to the radius R) play an
important role. In our parabolic setting, the time t at which Ew is computed
is related to R by t = t* - R2 and this is consistent with the parabolic scaling
(for À &#x3E; 0) x ~ Àx, t ~ À2t, which leaves the linear heat equation invariant,
and which we mentioned earlier.

In this context, the following monotonicity formula was derived first by
Struwe [48] for the heat-flow of harmonic maps (see also [18, 25]). In a
different context Giga and Kohn [23] used related ideas.

PROPOSITION 3.3. - We have

i. e. in particular the quantity R2-N E03C9(z*, R) is non-decreasing in R. Pass-
ing to the limit 03B5n ~ 0 we have therefore
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As a consequecence of Proposition 3.3, and in view of (3.3) and (Ho)
we have

where C(t) is a constant depending only on t. Loosely speaking, estimate
(3.6) shows that if concentration of energy does occur, the Hausdorff di-
mension of the concentration set has to be at least N - 2. This is consistent

with the analysis of Section 2, but the context is completely différent. In
the complex case (d = 2), the fact that the dimension is exactly N - 2 will
follow from the monotonicity formula and the Clearing-Out Lemma below.
However, for the scalar case (d = 1) , another monotonicity formula has to
be worked out as follows (see [26]).

PROPOSITION 3.4.

where

is called the "discrepancy" term.

This inequality is less satisfactory than inequality (3.4), unless one is
able to prove that the discrepancy term is negative (or small). Using the
maximum principle, Ilmanen proved negativity of the discrepancy term un-
der the condition it is negative at initial time. Soner [46] however proved
that the r.h.s. is small after time t  s, so that in the limit s ~ 0, we have

Here again, (3.9) shows that concentration of energy can occur only on sets
of dimension at least N - 1. The Clearing-Out Lemma is needed as well to
prove that it is exactly N - 1.

3.2. Clearing-Out

In this section we discuss the various versions of Clearing-Out needed.
We start with the following
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THEOREM 3.5. - Let 0  03B5  1, u03B5 be a solution of (PGL)03B5 with

03B503B5(u003B5)  +~, z* = (x*, t*) and 03C3 &#x3E; 0 be given. There exists 7/1 = ~1(03C3) &#x3E; 0

depending only on the dimension N and on 03C3 such that if

then

Sketch of proof for d = 1. - By ïnvariances of the equation, it suffices
to consider the case z* = (0,1). We apply the monotonicity formula (3.7)
at the point z* = (0,1) between R = 1 and R = 03BB03B5. We have

In particular, in view of (3.3), the mean-value of (1 - |u03B5|2)2 on BÀg, which
is achieved at some point xo, verifies

Combining (3.13) with the pointwise estimates (3.1), we obtain

We first choose À such that K(03BB + 03BB2)  0’2/2, then we choose ~1 so that
K~1/03BB  03C32/2. D

The case d = 2 is much more involved, and we refer to [9] for a proof. A
similar result was obtained earlier for N = 3 in [35], and for N = 4 in [50].
The corresponding result for the stationary case was developed in a series
of papers (see [10, 47, 43, 33, 34, 6, 8]).

The condition in (3.10) involves an integral on the whole of RN. In some
situations, it will be convenient to integrate on finite domains. From this
point of view, assuming (Ho) we have the following result, in the spirit of
Brakke’s original Clearing-Out [13], Lemma 6.3, but for jumps and vorticity
here, not yet for the energy!
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PROPOSITION 3.6. Let u03B5 be a solution of (PGL)03B5 verifying assump-
tion (H0) and 03C3 &#x3E; 0 be given. Let xT E RN, T &#x3E; 0 and R  203B5. There
exists a positive continuous function 03BB defined on R+* such that, if

then

Here To and Tl are defined by

Theorem 3.5 and Proposition 3.6 have many conséquences. Some are of
independent interest. For instance, the simplest one is the complète annihi-
lation of the topological defects for N  d + 1.

PROPOSITION 3.7. Assume that N  3. Let u03B5 be a solution of (PGL)03B5
verifying assumption (H0). Then

where

Remark 3.8. - The result of Proposition 3.7 does not hold in the crit-
ical dimension N = d. As already mentioned, this is related to the so-called
"slow motion" phenomenon (see [15, 16, 28, 31]).

3.3. Improved pointwise energy bounds

In this section we analyze the situation where |u03B5|  1 - a on some
standard cylindrical domain. Note that such a situation may occur when it
is possible to apply Theorem 3.5. 

THEOREM 3.9. - Let B(xo, R) be a ball in RN and T &#x3E; 0, 0394T &#x3E; 0 be

given. Consider the cylinder
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There exists a constant 0  03C3  1 2, and 03B2 &#x3E; 0 depending only on N, such
that if

then

where the functions 03A603B5 and 03BA03B5 are defined on Ai and verify

More precisely, writing u, = 03C103B5 exp(i~03B5), where 03C103B5 = |u03B5| and ~03B5 is a suit-

able smooth real-valued function, we have

Remark 3.10. - In the scalar case d = 1, then obviously |~03A603B5|2 vanishes,
so that in particular e03B5(u03B5) = o(k03B5).

We briefly sketch the proof in the case d = 1. Set 03B8 = 1- 03C103B5 . The function
03B8 verifies the equation .

where c(x) = (1 + (O(x) - 1)2). Then one proves first using a suitable su-
persolution for (3.21) (see [9], Lemma 1.1) that

on a slightly smaller cylinder, so that

The gradient term can be treated similarly with a few computations.

Combining Theorem 3.5 and Theorem 3.9, we obtain the following im-
mediate consequence.
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PROPOSITION 3.11.2013 There exist an absolute constant ~2 &#x3E; 0 and a

positive function 03BB defined on R+* such that if, for x E RN, t &#x3E; 0 and
r &#x3E; 203B5, we have 

then

in 039B1 4 (x, t, r) ~ B(x, r 4) X [t + 15 16r2, t + r2], where 03A603B5 and 03BA03B5 are as in

Theorem 3.9. In particular, if d = 1,

whereas, for d = 2,

Remark 3.12. - The constant 7/2 is actually defined as 7/2 = ~1 (03C3), where
(7 is the constant in Theorem 3.9 and 7/1 is the function defined in Proposition
3.6.

The previous result allows to deduce, passing to the limit as 03B503BC ~ 0, the
following properties of the limiting measure 03BC*.

THEOREM 3.13. - There exists an absolute constant 172 &#x3E; 0, and a pos-
itive continuous function 03BB defined on R+* such that, if for x E RN, t &#x3E; 0

and r &#x3E; 0 we have

then for every

b) if d = 2, then 03BCs* absolutely continuous with respect to the Lebesgue
measure on the ball B(x, 1 4r). More precisely,

where 03A6* is smooth and satisfies the heat equation in
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4. Densities and concentration sets

In order to analyse geometric properties of the measures J-t* and 03BCt*, an
important concept is that of densities. For a given Radon measure v on RN,
we have the classical definition

DEFINITION 4.1. - For m ~ N, the m-dimensional lower density of v
at the point x is defined by

where 03C9m denotes the volume of the unit ball B’. Similarly, the m-dimen-
sional upper density 0398*m (vt, x) is given by

When both quantities coincide, v admits a m-dimensional density 0398m (03BD, x)
at the point x, defined as the common value.

Since the energy measure is expected to concentrate on (N-d)-dimensional
objects, our main efforts will be devoted to the study of the density
0398*,N-d(03BCt*, -). As already mentioned, the monotonicity formula provides
upper-bounds for 0398*,N-d(03BCt*, .).

In order to prove that the dimension of the concentration set is exactly
N - d, lower bounds are needed as well. However, there are some conceptual
difficulties to attack 0398*,N-d(03BCt*, ’) directly (since the equation depends on
time). Instead, we will first work on the measure 03BC*, and recall the notion

of parabolic density, which is natural in view of monotonicity.

DEFINITION 4.2. - Let v be a Radon measure on RN x [0,+~) such
that v = vt dt. For t &#x3E; 0 and m ~ N, the parabolic m-dimensional lower
density of v at the point (x, t) is defined by

The parabolic upper density and parabolic density are defined accordingly,
and denoted respectively by 0398P,*m and 0398Pm.

Remark 4.3. - Notice that Op is not the classical density, in the spirit
of Definition 4.1, for the parabolic metric defined by dP((x, t), (x’, t’)) =

max(|x - x’|, |t - t’|1 2).
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It clearly follows from monotonicity that the limit in Definition 4.2 is
decreasing, so that 0398PN-2(03BC*, (x, t)) exists everywhere in RN x (0, +~). We
set

and for t &#x3E; 0, Et = 03A303BC n (RN x {t}). The parabolic density is related to
the 8*,N -d by 

so that in particular

4.1. First properties of 03A303BC.

As in Brakke’s works ([13]), the main tool in the study of geometric
properties of 03A303BC is the following Clearing-Out Lemma.

THEOREM 4.4. - There exists a positive continuous function 93 defined
on R+*, such that for any (x, t) E RN X (0, +~) and any 0  r  t if

then

Theorem 4.4 is a direct consequence of Theorem 3.13. An immediate

corollary is

COROLLARY 4.5. - For any (x, t) E 03A303BC, we have

At this stage, we are in position to derive the following, without invoking
any further property of the equation (PGL)g.
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iii) For any t &#x3E; 0, the measure 03BCt* can be decomposed as

where g is some smooth function defined on RN x (0, +~) B 03A303BC and
8* verifies the bound 0398* (x, t)  K M0t2-N 2.

Comment. - a) The function 8* in decomposition iii) is the Radon-

Nikodym derivative of 03BCt* ~03A3t03BC with respect to HN-d.

b) Concerning g, it can be locally defined as |~03A6*|2 for some smooth 03A6*
verifying the heat equation. It is possible to show that the function 03A6* is

actually defined globally, and verifies the heat equation on R N x (0, +~).
This requires some further properties of (PGL)g which we are not going to
discuss here (see Theorem 3 in [9]).

In order to show that the Hausdorff dimension of 03A3t03BC is exactly N - d
it was sufficient to bound the parabolic density away from zero. To deduce
further regularity properties of 03A3t03BC it is crucial to derive lower bounds for

the density 0398*,N-d itself. We have

PROPOSITION 4.7. - For almost every t &#x3E; 0,

for HN-2 almost every x E 03A3t03BC. Consequently, for almost every t &#x3E; 0 the

set 03A3t03BC is (N-2)-rectifiable.

The proof of Proposition 4.7 is not immediate and involves several in-
gredients. In particular, one has to consider concentration sets for the limit
of the measures k-103B5|~t03BC03B5|2dxdt, which are uniformly bounded. It can be
shown that these sets have small Hausdorff dimension.

Once the existence of the density is established, it follows from the cel-
ebrated regularity theorem of Preiss [42] that Et is (N - d)-rectifiable for
a.e. t &#x3E; 0.

The next discussion will be devoted to the evolution law of the con-

centrated part 1/; of the measure 03BCt*. We recall first some classical facts
concerning mean curvature flows.
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5. Mean curvature flows

5.1. The classical notion

Let E be a smooth compact manifold of dimension k, and 03B30 : 03A3 ~ RN
(N  k) a smooth embedding, so that 03A30 = 03B30 (03A3) is a smooth k-dimensional
submanifold of RN. The mean curvature vector at the point x of Eo is the
vector of the orthogonal space (Tx03A30)~ given by

where (03C41,...,03C4k) is an orthonormal moving frame on Tx03A30, (03BD1,...,03BDN-k)
is an orthonormal moving frame on (Tx03A30)~, and divTx03A30 denotes the tan-
gential divergence at the point x. The integral formulation of (5.1) is given
by

for all X E C~c(RN,RN). The vectors H03A30(·) are uniquely determined by
(5.2), and in particular the definition in (5.1) does not depend on the choice
of orthonormal frames.

Next, we introduce a time dependence, and consider a smooth family
{03B3t}t~I of smooth embeddings of E in RN, where I denotes some open in-
terval containing 0. We set Et = 03B3t (03A3). If X is a smooth compactly supported
function on RN, a standard computation shows that

where Y(x) = d ds 03B3s(03B3t-1(x)) is the velocity vector at the point x, and P
denotes the orthogonal projection on (Tx03A3t)~.

The family (03A3t)t~I is moved by mean curvature in the classical sense if
and only if 

In particular, if (03A3t)t~I is moved by mean curvature, (5.3) becomes



-32-

Fabrice Bethuel, Giandomenico Orlandi, Didier Smets

and actually (5.5) is equivalent to (5.4) if X is taken arbitrary. Notice that
the last term in the r.h.s of (5.5) corresponds to a transport term, whereas
the first term represents a shrinking of the area. Actually, if ~ ~ 1 in a

neighborhood of 03A3t, then

In particular, the mean curvature flow is the gradient flow for the area
functional. Finally, existence of a classical solution of (5.4) for small times
can be established, but singularities develop in finite time.

5.2. Brakke flows

In the attempt to extend (5.4) or (5.5) to a larger class of (less regular)
objects, and in particular to extend the flow past singularities, Brakke [13]
relaxed equality in (5.5), and considered instead sub-solutions, i.e. verifying
the inequality

for all non-negative x E C~c(RN). Following Brakke [13], we are thus going
to extend (5.6) to less regular objects.

Recall that a Radon measure v on R N is said to be k-rectifiable if there
exists a k-rectifiable set E, and a density function 6 E L1loc(Hk LE) such
that v = 0398(·) Hk LE. Since 03A3 is rectifiable, for Hk-a.e. x ~ 03A3, there exist
a unique tangent space TxE. The distributional first variation of v is the
vector-valued distribution 8v defined by

In case |03B403BD| is a measure, absolutely continuous with respect to v, we say
that v has a first variation and we may write

where fi is the Radon-Nikodym derivative of 8v with respect to v. In this
case, formula (5.7) becomes 
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Remark 5.1. - Notice that in the smooth case, this notion coincides with
the definition (5.1), in view of (5.2). Notice also that the component of FI
which is orthogonal to Tx03A3 is independent of the density 6. However, if 6
is non constant, then fi may have a tangential part.

We are now in position to give the precise definition of a Brakke flow.
Let (03BDt)t0 be a family of Radon measures on RN. For X E C2c(RN, R+), we
define

If vt L {X &#x3E; 0} is a k-rectifiable measure which has a first variation verifying
XlHI2 ~ L1(03BDt), then we set

[here P denotes Hk-a.e. the orthogonal projection onto the tangent space
to 03BDt].

Otherwise, we set

DEFINITION 5.2 (Brakke flow). - Let (03BDt)t0 be a family of Radon mea-
sures on RN. We say that (03BDt)t0 is a k-dimensional Brakke flow if and only
if

for every X ~ C2c(RN, R+) and f or all t  0.

The motion by mean curvature in the sense of Brakke has many inter-
esting properties, in particular the fact that the area functional decreases
along the flow, as expected from the classical motion. Moreover, it allows
to handle a large class of objects. However, an important and essential flaw
of Brakke’s definition is that there is never uniqueness (unless Po = 0). In-
deed, if (03BCt)t0 is a Brakke flow, so is also (g(t)03BCt)t0) where g is an arbitrary
non increasing function on R+. In particular, the trivial solution given by
03BD0 = 03BC0 and vt - 0 for t &#x3E; 0 is not excluded a priori. We will call this last
solution the instantaneously vanishing solution.

Although non uniqueness is presumably an intrinsic property of mean
curvature flows when singularities appear, a major part of non uniqueness
in Brakke’s formulation is therefore non intrinsic, and allows as shown for
weird solutions. A stronger notion of solution will be discussed in Section 7.
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6. Relating PGLg to mean curvature flow

We are now able to describe the evolution law for the concentrated part
03BDt* of the measure 03BCt*.

THEOREM 6.1. - The family (03BDt*)t&#x3E;0 is a mean curvature flow in the
sense of Brakke.

Remark 6.2. - Theorem 6.1 asserts that the linear and the topological
mode of the energy do not interact.

For d = 1, Theorem 6.1 has been proved by Ilmanen in [26]. In case
d = 2 the proof given in [9] follows a similar strategy, and relies both on the
measure theoretic analysis of Ambrosio and Soner [3] and on the analysis
of the structure of 03BC* given in Theorem 1.1.

The starting point of the analysis is the formal analogy of equality (5.5),
namely

with the classical relation describing the evolution of localized energies

The comparison of the two formulas suggests, at least formally, that in the
limit 

and

Actually, this is a little over optimistic for two reasons. First we have to
deal also with the diffuse part of the energy. Seconde since (6.2) involves
the quadratic term |H|2, only.lower semi-continuity can be expected at first
sight.

Consider first the measure 03C303B5 = 03C3t03B5 dt defined on RN X [0, +00). It is

easy to show that 03C303B5 is uniformly bounded, so that passing possibly to a
subsequence 03B5n ~ 0, we may assume 03C303B5  03C3*. Moreover, 03C3* is absolutely
continuous with respect to 03BC*. Therefore, we may write
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where 6 E L2(]RN x [0,T],03BCt*dt). By Theorem 1.1 and the semi-decreasing
property, the measure 03C3* decomposes as 03C3* = 03C3t*dt, where for a.e. t  0,

The next step will be to identify the restriction of ~ on 03A3t03BC with the mean
curvature defined by (5.8). For that purpose, we recall a classical formula
involving the stress-energy tensor. Let X E C~c(RN, RN). We have, for every
t  0,

Formula (6.4) is already very close to (5.8), in particular the right hand side.
In order to handle the diffuse energy, as well as to interpret the l.h.s as a
tangential divergence, we need to analyse the weak limit of the stress-energy
tensor

Clearly, |03B1t03B5|  KN 03BCt03B5, and we may assume that 03B1t03B5  03B1t* ~ A·03BCt*, where A is
an N x N symmetric matrix. Since the symmetric matrix ~u03B5 0 ~u03B5 is non-
negative, we have A  Id. On the other hand, Tr(e03B5(u03B5) I d - ~u03B5 ~~u03B5) =
(N - 2)e03B5(u03B5) + 203B5-2V (u03B5). Therefore, since the trace is a linear operation,
passing to the limit we obtain

where the measure V* is the limit (up possibly to a further subsequence) of
V(u03B5)/(03B52k03B5). Going to the limit in (6.4), and using the decomposition in
Theorem 1.1, we obtain for a.e. t  0, 

On the other hand, 03A6* verifies the heat equation, so that

Combining (6.6) and (6.7) we have therefore proved
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LEMMA 6.3. - For a. e. t  0, and for every X E C~c (R , RN),

Comparing (6.8) with (5.8), in order to identify ~ with the mean cur-
vature of vt, we merely have to prove that the matrix A corresponds to
the orthogonal pro jection P onto the tangent space Tx03A3t03BC. By a blow-up
argument (see [3]), we deduce

LEMMA

and for all X E C~c(RN, R). In particular, (Tx03A3t03BC)~ ~ Ker A(x).

To conclude, one argues differently in case d = 1 and d = 2. The simplest
case is actually d = 2 (see [3]). Indeed, a little elementary linear algebra,
combining the fact that A  Id and Tr(A)  N - 2 by (6.5), implies
immediately that A is the orthogonal projection onto the tangent space
Tx03A3t03BC, for a.e. t &#x3E; 0.

For d = 1 the above argument has to be adapted as follows. Since the
discrepancy term 4t in (3.8) is negative (by [26]), we have in the limit 6’ ~ 0

Therefore, Tr(A)  N - 1 by (6.5), and one argues similarly.

In both cases, this proves that for a.e. t  0, vt* has a first variation and
03B403BDt* = 6 v;, i.e. 6 is the mean curvature of v;.

Remark 6.5. - i) For d = 1, using (6.5), we deduce that dV* d03BC* = 1 2 , i.e.

the energy balance in the limit. For d = 2, we deduce similarly d = 0, i.e.
in the limit there is only kinetic energy. 

ii) Let (03C41, ... , 03C4N) be an orthonormal frame such that Tx03A3t03BC is spanned
by (03C4d+1,...03C4N). In view of the expression of the stress-energy tensor in
these coordinates, we infer that the energy concentrates in the 71 direction
for d = 1, and in the (03C41,03C42) plane for d = 2, (i.e. (Tx03A3t03BC)~) and uniformly
with respect to the direction.
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We next turn to the quadratic term 03C9t03B5, and try to convince the reader
that for a.e. t  0,

It is tempting to write on 03A3t03BC

These formal (but essentially correct) inequalities do not allow to conclude,
in view of the factor 1 2. Fortunately, the last inequality is far from being op-
timal. Indeed, weak convergence does not imply convergence of the squared
quantities!

In the scalar case, the balance between the kinetic and potential terms
|~u03B5|2 ~ e03B5(u03B5) ([26], Section 8.1) restores the "missing" factor 1 2.

In the complex case, the missing factor 2 is restored in [3] for a différent
reason, essentially related to Remark 6.5.

7. Enhanced motion

The analysis of (PGL)03B5, running from Section 3 to 6, was based only
on energy estimates, and topolôgy never entered directly in the discussion.
In particular, we have been able to deduce the motion law for the energy
concentration set in Brakke’s weak formulation. This obviously tells us also
something about the evolution of J* since suppJ; C 03A3t03BC. In general it is

difficult however to tell something more about J* without any additional
assumption.

In this section we will show that if the energy of initial data is essentially
due to the topological part and concentrates on J2 in the sense of (2.17),
(2.28), then a stronger notion of evolution can be obtained: in particular
instantaneous vanishing will be excluded. Although the improvement con-
cerns again the energy M* , one may expect to deduce also better informations
for Jt*.

7.1. Instantaneous vanishing for (PGL)03B5

For flows arising from limits of (PGL)03B5 instantaneous vanishing may
occur in at leat three distinct cases:
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Low density. We present examples for d = 1 and d = 2.

i) d = 1. First consider a non-negative smooth real function defined
on RJ’ with compact support and consider, on R 2 the function u003B5(r, 03B8) =
1 - ~f(03B5-1(r - 1)). The energy concentrates on the circle Si with density
03BC003B5 proportional to ~2.

ii) d = 2. Here we work in dimension 3. In the plane (x1,x3), consider
a standard dipole of two vortices on the xl-axis, away from the origin and
separated by a length S17 (where 0  ~  1 is fixed), so that the energy in
the plane is of order 03C0~|log 03B5|. More precisely, let

where z = (xi, x3), b; = 1 ±03B5~. Rotate the dipole along the X3 axis so that
e03B5(03BC003B5) concentrates on a circle with a 1-density proportional to ~.

In both cases, if 1] is chosen sufficiently small, then = 0 for t &#x3E; 0 by
the Clearing-Out Lemma.

Hidden mean curvature. Consider in the (Xl, X2) plane the standard
circle S1. Approximate it, weakly in the sense of measures, by a collection Bi
of small circles centered on 51 and of radii - 1. By Theorem 7.4 below, for
each i E N* there exist initial data (u’,’) such that the limiting measures 03BCt,i*
evolves according to the classical motion of the small circles, whose lifetime
is of the order of i-2. By a diagonal argument, it is therefore possible to
construct a sequence u003B5 such that 03BC0* = 51 but 03BCt* ~ 0 for t &#x3E; 0.

Concentrated gradients of phase or modulus. We discuss only the
concentration of phase gradients for the case d = 2. Consider an initial
data of the form u003B5 = exp(i~003B5|log 03B5|), where |~~003B5|2 is bounded in L1
and concentrates on a (N-2)-dimensional set Eo. Also in this case we have
03BCt* ~ 0 for t &#x3E; 0.

Remark 7.1. - The first and the last case are related to the properties
of (PGL)g described in previous sections, whereas the second is intrinsically
related to motion by mean curvature.

The three cases have a common feature: the defect set of the initial data

u0* converges to zero as s tends to 0, at least in the sense of distributions.
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7.2. Ilmanen enhanced motion

In order to avoid instantaneous vanishing and weird solutions, Ilmanen
[27] introduced the notion of enhanced (mean curvature) motion, which we
recall now.

Let Mo be a (N - d)-rectifiable current in RN, without boundary. As-
sume for simplicity that Mo has bounded support and is of finite mass. Let
M be a (N - d+ l)-rectifiable current in RN x [0, +oo), and {03BCt}t0 a family
of non-negative Radon measures on RN.

DEFNITION 7.2 (Enhanced motion). - The pair {M, {03BCt}t0} is called
an enhanced motion with initial condition Mo if and only if

i) am = mo.

ii) 03BC0 = 03B1d|M0|.

iii) The measure defined on R+ by T(B) = |M| (RN x B), for any Borel
set B, is absolutely continuous with respect to the Lebesgue measure.

iv) For all t  0,

where Mt denotes the slice of M at time t.

v) {03BCt}t0 is a Brakke flow.

Here al = 22/3 and a2 = 7r.

Remark 7.3. - Notice in particular that conditions i) and iii) are closer
to what one actually would normally expect from a Cauchy problem. In
Ilmanen’s terminology, M is called the under-current, and provides, in view
of iv), a lower bound, which rules out sudden shrinking.

In [27], Ilmanen established the existence of an enhanced motion, for
any initial data as above (actually in any codimension). Moreover, in the
smooth case, there is uniqueness for an enhanced motion (before singulari-
ties appear) and it coincides with the classical notion.

The next result provides an alternative construction in codimension 1
and 2 using the asymptotics for (PGL)03B5. ’vVe first introduce some additional
notation.
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For a map w : RN x R+ ~ Rd, set t - xo and define

Next consider the solution Ug of (PGL)g with an initial datum u003B5 verifying
(Ho).

In view of the energy identity, the space-time Ginzburg-Landau energy
is bounded in RI"’ x [0, T], for every T &#x3E; 0 by

From Proposition 2.9 and Proposition 2.16, it follows that

Moreover, 03B1-1d J* is a (N - d + l)-rectifiable current, Jt* = Jt*, for any t  0
and ~J = J0*.

THEOREM 7.4. - Let Mo be any given (N - d) -rectifiable current with.
out boundary, having bounded support and finite mass. Let (u003B5)03B5&#x3E;0 be 

sequence such that ~u03B5  03B11M0 in case d = 1, or such that Ju03B5  a2MC
in case d = 2, and such that (in both cases)

Let u03B5 be the solution to (PGL)03B5 with initial data u003B5 and set M = 03B1-1dJ*.
Then M verifies

and the pair (M, 03BCt*) is an enhanced motion in the sense of Ilmanen.

Theorem 7.4 has been proved in [26] for the case d = 1, and in [9] for
the case d = 2.

At this stage, the only point in the above result which requires some
clarification is the absolute continuity property of M, as stated in Definition
7.2. In fact, in the context of Theorem 7.4, one is able to show a CI, 1/2
continuity with respect to the time interval.

Let us briefly sketch the proof in the case d = 1. In view of the energy
bounds 
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we deduce

which yields the desired result. In the case d = 2 one argues along the same
lines optimizing the Jacobian estimate (2.27) with respect to space and time
variables.
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