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Galois representations(*)

RICHARD TAYLOR(1)

Annales de la Faculté des Sciences de Toulouse Vol. XIII, n° 1, 2004

ABSTRACT. - In the first part of this paper we try to explain to a
general mathematical audience some of the remarkable web of conjectures
linking representations of Galois groups with algebraic geometry, complex
analysis and discrete subgroups of Lie groups. In the second part we briefly
review some limited recent progress on these conjectures.

RÉSUMÉ. - Dans la première partie nous essayons d’expliquer à un public
mathématique général le remarquable faisceau de conjectures reliant les
représentations Galoisiennes avec la géométrie algébrique, l’analyse com-
plexe et les sous-groupes discrets des groupes de Lie. Dans la deuxième
partie nous mentionnons des progrès récents mais limités sur ces conjec-
tures.

0. Introduction 

This is a longer version of my talk at the Beijing ICM. The version to be
published in the proceedings of the ICM was edited in an attempt to make
it meet restrictions on length suggested by the publishers. In this version
those cuts have been restored and I have added technical justifications for a
couple of results stated in the published version in. a form slightly different
from that which can be found in the literature.

The first four sections of this paper contain a simple presentation of
a web of deep conjectures connecting Galois representations to algebraic
geometry, complex analysis and discrete subgroups of Lie groups. This will
be of no interest to the specialist. My hope is that the result is not too banal
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and that it will give the non-specialist some idea of what motivates work in
this area. I should stress that nothing I write here is original. In the final
section 1 briefly review some of what is known about these conjectures and
very briefly mention some of the available techniques.

I would like to thank Peter Mueller and the referee for their helpful
comments.

1. Galois representations

We will let Q denote the field of rational numbers and Q denote the field
of algebraic numbers, the algebraic closure of Q. We will also let GQ denote
the group of automorphisms of Q, that is Gal (Q/Q), the absolute Galois
group of Q. Although it is not the simplest it is arguably the most natural
Galois group to study. An important technical point is that GQ is naturally
a topological group, a basis of open neighbourhoods of the identity being
given by the subgroups Gal (Q/K) as K runs over subextensions of Q/Q
which are finite over Q. In fact GQ is a profinite group, being identified
with the inverse limit of discrete groups lim Gal (K/Q), where K runs
over finite normal subextensions of Q/Q.

The Galois theory of Q is most interesting when one looks not only at GQ
as an abstract (topological) group, but as a group with certain additional
structures associated to the prime numbers. I will now briefly describe these
structures.

For each prime number p we may define an absolute value 1 Ip on Q by
setting

if 03B1 = pra/b with a and b integers coprime to p. If we complete Q with
respect to this absolute value we obtain the field Qp of p-adic numbers, a
totally disconnected, locally compact topological field. We will write GQp
for its absolute Galois group Gal (Qp/Qp). The absolute value 1 ip has a
unique extension to an absolute value on Qp and GQp is identified with

the group of automorphisms of Qp which preserve | Ip, or equivalently the
group of continuous automorphisms of Qp. For each embedding Q ~ Qp
we obtain a closed embedding GQp ~ GQ and as the embedding Q Qp
varies we obtain a conjugacy class of closed embeddings GQp ~ GQ. Slightly
abusively we shall consider GQp a closed subgroup of GQ, suppressing the
fact that the embedding is only determined up to conjugacy.

This can be compared with the situation ’at infinity’. Let | |~ denote
the usual Archimedean absolute value on Q. The completion of Q with
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respect to | |~ is the field of real numbers M and its algebraic closure is C
the field of complex numbers. Each embedding Q ~ C gives rise to a closed
embedding 

As the embedding Q ~ C varies one obtains a conjugacy class of éléments
c E GQ of order 2, which we refer to as complex conjugations.

There are however many important differences between the case of finite
places (i. e. primes) and the infinite place | |~. For instance Qp/Qp is an
infinite extension and Qp is not complete. We will denote its completion by
Cp. The Galois group GQp acts on Cp and is in fact the group of continuous
automorphisms of Cp.

The elements of Qp (resp. Qp, resp. Cp) with absolute value less than
or equal to 1 form a closed subring Zp (resp. OQp, resp. OCp). These rings
are local with maximal ideals pZp (resp. mQp, resp. mCp) consisting of the
elements with absolute value strictly less than 1. The field OQp/mQp =
OCp/mCp is an algebraic closure of the finite field with p elements Fp =
Zp/pZp, and we will denote it by Fp. Thus we obtain a continuous map

which is surjective. Its kernel is called the inertia subgroup of GQp and
is denoted IQ . The group GIF is procyclic and has a canonical generator
called the (geometric) Frobenius element and defined by

In many circumstances it is technically convenient to replace GQp by a dense
subgroup WQ , which is referred to as the Weil group of Qp and which is
defined as the subgroup of 03C3 E GQp such that 03C3 maps to

We endow W Qp with a topology by decreeing that IQp with its usual topol-
ogy should be an open subgroup of WQP -

We will take a moment to describe some of the finer structure of IQp
which we will need for technical purposes later. First of all there is a (not
quite canonical) continuous surjection
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such that

for all 03C3 E IQp. The kernel of t is a pro-p-group called the wild inertia group.
The fixed field ker t Qp is obtained by adjoining n p to Qp for all n coprime
to p. Moreover

for some primitive nth-root of unity (n (independent of a, but dependent
on t). Also there is a natural decreasing filtration IuQp of IQp indexed by
u E [0, oo) and satisfying

is the wild inertia group,

This is called the upper numbering filtration. We refer the reader to [Sel]
for the precise definition.

In my opinion the most interesting question about GQ is to describe
it together with the distinguished subgroups GR, GQp, IQp and the distin-
guished elements Frobp E GQp/IQp.

I want to focus here on attempts to describe GQ via its representations.
Perhaps the most obvious representations to consider are those representa-
tions

with open kernel, and these so called Artin representations are already very
interesting. However one obtains a richer theory if one considers represen-
tations

which are continuous with respect to the l-adic topology on GLn(Ql). We
refer to these as l-adic representations.

One justification for considering l-adic representations is that they arise
naturally from geometry. Here are some examples of l-adic representations.
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1. A choice of embeddings Q ---+ C and Q ~ Qi establishes a bijection
between isomorphism classes of Artin representations and isomor-
phism classes of l-adic representations with open kernel. Thus Artin
representations are a special case of l-adic representations.

2. There is a a unique character

such that

for all l-power roots of unity (. This is called the l-adic cyclotomic
character.

3. If X/Q is a smooth projective variety (and we choose an embedding
Q C C) then the natural action of GQ on the cohomology

is an l-adic representation. For instance if E/Q is an elliptic curve
then we have the concrete description

where E[lr] denotes the l’’-torsion points on E. We will write Hi(X(C),
Ql(j)) for thé twist

Before discussing l-adic representations of GQ further, let us take a mo-
ment to look at l-adic representations of GQp. The cases l =1= p and l = p
are very different. Consider first the much easier case l =1= p. Here l-adic
representations of GQp are not much different from representations of WQp
with open kernel. More precisely define a Weil-Deligne (or simply, WD-)
representation of WQ over a field E of characteristic zero to be a pair

and

where V is a finite dimensional E-vector space, r is a representation with
open kernel and N is a nilpotent endomorphism which satisfies
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for every lift E WQp of Frobp. The key point here is that there is nc
référence to a topology on E, indeed no assumption that E is a topological
field. Given r there are up to isomorphism only finitely many choices foi
the pair (r, N) and these can be explicitly listed without difficulty. A WD-
representation (r, N) is called unramified if N = 0 and r(IQp) = {1}. It
is called Frobenius semi-simple if r is semi-simple. Any WD-representation
(r, N) has a canonical Frobenius semi-simplification (r, N)ss, which may be
defined as follows. Pick a lift 0 of Frobp to WQ and decompose r(~) =
03A6s03A6u = 03A6s03A6s where 03A6s is semi-simple and 03A6u is unipotent. The semi-
simplification (r, N) SS is obtained by keeping N and rlip unchanged and
replacing r(~) by 03A6s. In the case that E = Qi we call (r, N) l-integral il
all the eigenvalues of r(~) have absolute value 1. This is independent of the
choice of Frobenius lift 0.

If l =1= p, then there is an equivalence of categories between 1-integral
WD-representations of WQp over QI and l-adic representations of GQp. To
describe it choose a Frobenius lift ~ E W Qp and a surjection tl : 7Qp --* Zl.
Up to natural isomorphism the equivalence does not depend on these choices.
We associate to an 1-integral WD-representation (r, N) the unique l-adic
representation sending

for all n ~ Z and a E IQp. The key point is Grothendieck’s observation that
for l i= p any l-adic representation of GQp must be trivial on some open
subgroup of the wild inertia group. We will write WDp(R) for the WD-
representation associated to an l-adic representation R. Note that WDp(R)
is unramified if and only if R(IQp) = {1}. In this case we call R unramified.

The case l = p is much more complicated because there are many
more p-adic representations of GQp. These have been extensively studied by
Fontaine and his coworkers. They single out certain p-adic representations
which they call de Rham representations. 1 will not recall the somewhat
involved definition here (see however [Fo2] and [Fo3]), but note that ’most’
p-adic representations of G’Q are not de Rham. To any de Rham represen-
tation R of GQp on a Qp-vector space V they associate the following.

1. A WD-representation WDp (R) of WQp over Qp (see [Berg] and [Fo4]).
(We recall some of the definition of WDp(R). By the main result of
[Berg] one can find a finite Galois extension L/Qp such that, in the no-
tation of [Fo3], Dst,L (R) is a free Qp 0Qp Lo-module of rank dimQp R,
where Lo/Qp is the maximal unramified subextension of L/Qp. Then
Dst,L(R) comes equipped with a semilinear action of Gal (L/Qp) (03C3
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acts 10 s-linearly), a 10 Frobp- 1 -linear automorphism ~ and a nilpo-
tent linear endomorphism N. The Gal (L/Qp)-action commutes with
~ and N and ~N~-1 = pN. Define a linear action r of WQp on
Dst,L(R) with open kernel by setting r(03C3) = ~a03C3 if cr maps to Frobap
in GFp. If T : L0 ~ Qp set WDp (R)T - (r, N) ~Qp~L0,1~03C4 Qp. The
map ~ provides an isomorphism from WDp (R),r to WDp(R)03C4Frobp,
and so up to equivalence WDp(R)? is independent of T. Finally set
WDp(R) = WDp(R)T for any T.)

2. A multiset HT(R) of dim V integers, called the Hodge-Tate numbers
of R. The multiplicity of i in HT(R) is

where GQp acts on Cp(i) via ~p(03C3)i times its usual (Galois) action
on Cp.

A famous theorem of Cebotarev asserts that if K/Q is a Galois extension
(possibly infinite) unramified outside a finite set of primes S (i.e. if p ~ S
the IQp has trivial image in Gal(K/Q)) then

is dense in Gal (K/Q). (Here [Frobp] denotes the conjugacy class of Frobp in
Gal (K/Q).) It follows that a semi-simple l-adic representation R which is
unramified outside a finite set S of primes is determined by {WDp(R)ss}p~S.

We now return to the global situation (i.e. to the study of GQ). The
l-adic representations of GQ that arise from geometry, have a number of
very special properties which I will now list. Let R : GQ ~ GL(V) be
a subquotient of Hi(X(C),Ql(j)) for some smooth projective variety X/Q
and some integers i  0 and j.

1. (Grothendieck, [SGA4], [SGA5]) The representation R is unramified
outside a finite set of primes.

2. (Fontaine, Messing, Faltings, Kato, Tsuji, de Jong, see e.g. [Il], [Bert])
The representation R is de Rham in the sense that its restriction to

GQl is de Rham.

3. (Deligne, [De3]) The representation R is pure of weight w = i - 2j
in the following sense. There is a finite set of primes S, such that
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for p ~ S, the representation R is unramified at p and for even
eigenvalue a of R(Frobp) and every embedding i : (Ql ~ C

In particular a is algebraic (i.e. a E Q).

A striking conjecture of Fontaine and Mazur (see [Fol] and [FM]) asserts
that any irreducible l-adic representation of GQ satisfying the first two of
these properties arises from geometry in the above sense and so in particular
also satisfies the third property.

CONJECTURE 1.1 (FONTAINE-MAZUR) . - Suppose that

is an irreducible l -adic representation which is unramified at all but finitely
many primes and with R|GQl de Rham. Then there is a smooth projective
variety X/Q and integers i  0 and j such that V is a subquotient of
Hi(X(C),Ql(j)). In particular R is pure of some weight w E Z.

We will discuss the evidence for this conjecture later. We will call an
l-adic representation satisfying the conclusion of this conjecture geometric.

Algebraic geometers have formulated some very precise conjectures about
the action of GQ on the cohomology of varieties. We don’t have the space
here to discuss these in general, but we will formulate some of them as
algebraically as possible.

CONJECTURE 1.2 (TATE). - Suppose that X/Q is a smooth projective
variety. Then there is a decomposition

with the following properties.

1. For each prime l and for each embedding c, : Q ~ Ql, Mj ~Q,i Ql is
an irreducible subrepresentation of Hi(X((C),Ql).

2. For all indices j and for all primes p there is a WD-representation
WDp(Mj) of WQp over Q such that

for all primes l and all embedding
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3. There is a multiset of integers HT(Mj) such that

(a) for all primes l and all embeddings i : Q ~ (Ql

(b) and for a

is the multiplicity of a in HT(Mj).

If one considers the whole of Hi(X(C),Q) rather than its pieces Mj,
then part 2. is known to hold up to Frobenius semisimplification for all but
finitely many p and part 3. is known to hold (see [Il]). The whole conjecture
is known to be true for i = 0 (easy) and i = 1 (where it follows from
a theorem of Faltings [Fa] and the theory of the Albanese variety). The
putative constituents Alj are one incarnation of what people call ’pure’
motives.

If one believes conjectures 1.1 and 1.2 then ’geometric’ l-adic represen-
tations should come in compatible families as varies. There are many ways
to make precise the notion of such a compatible family. Here is one.

By a weakly compatible system of l-adic representations R = {Rl,i} we
shall mean a collection of semi-simple l-adic representations

one for each pair (l, i) where l is a prime and i : Q ~ Ql, which satisfy the
following conditions.

2022 There is a multiset of integers HT(R) such that for each prime l and
each embedding c : Q ~ Qz the restriction Rl,i|GQl is de Rham and

HT(Rl,k|GQl) = HT(R). 
2022 There is a finite set of primes S such that if p ~ S then WDp(Rl,i) is

unramified for all and t.

2022 For all but finitely many primes p there is a Frobenius semi-simple
WD-representation WDp(R) over Q such that for all primes l =1= p
and for all i we have
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We make the following subsidiary definitions.

e We call IZ strongly compatible if the last condition (the existence of
WDp(R)) holds for all primes p.

e We call 7Z irreducible if each Ri,,- is irreducible.

e We call R pure of weight w E Z, if for all but finitely many p and for
all eigenvalues ce of rp (Frobp) , where WDp(R) = (rp, Np), we have
03B1 E Q and

for all embeddings i, : Q ---+ C.

e We call 7Z geometric if there is a smooth projective variety X/Q and
integers i  0 and j and a subspace

such that for all l and i, W ~Q,i Ql is GQ invariant and realises Rl,i.

Conjectures 1.1 and 1.2 lead one to make the following conjecture.

CONJECTURE 1.3. -

1. If R : GQ GLn(Ql) is a continuous semi-simple de Rham repre-
sentation unramified at all but finitely many primes then R is part of
a weakly compatible system.

2. Any weakly compatible system is strongly compatible.

3. Any irreducible weakly compatible system IZ is geometric and pure of
weight (2/ dim R) 03A3h~HT(R) h.

Conjectures 1.1 and 1.3 are known for one dimensional representations,
in which case they have purely algebraic proofs based on class field the-
ory (see [Se2]). Otherwise only fragmentary cases have been proved, where
amazingly the arguments are extremely indirect involving sophisticated
analysis and geometry. We will come back to this later.
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2. L-functions

L-functions are certain Dirichlet series

which play an important role in number theory. A full discussion of the
role of L-functions in number theory is beyond the scope of this talk. How-
ever let us start with two examples in the hope of conveying some of their
importance.

The Riemann zeta function

is the most celebrated example of a Dirichlet series. It converges to a non-
zero holomorphic function in the half plane Re s &#x3E; 1. In its region of con-
vergence it can also be expressed as a convergent infinite product over the
prime numbers

This is called an Euler product and the individual factors are called Euler
factors. (This product expansion may easily be verified by the reader, the
key point being the unique factorisation of integers as products of primes.)
Lying deeper is the fact that 03B6(s) has meromorphic continuation to the
whole complex plane, with only one pole: a simple pole at s = 1. Moreover
if we set 

then Z satisfies the functional equation

Encoded in the Riemann zeta function is lots of deep arithmetic infor-
mation. For instance the location of the zeros of (( s) is intimately connected
with the distribution of prime numbers. Let me give another more algebraic
example.

A big topic in algebraic number theory has been the study of factori-
sation into irreducibles in rings of integers in number fields, and to what
extent it is unique. Particular attention has been paid to rings of cyclotomic
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integers Z[e203C0i/p] for p a prime, not least because of a relationship to Fer-
mat’s last theorem. In such a number ring there is a finite abelian group, the
class group CI (Z[e203C0i/p]), which ’measures’ the failure of unique factorisa-
tion. It can be defined as the multiplicative semi-group of non-zero ideals in
Z[e203C0i/p] modulo an equivalence relation which considers two ideals I and J
equivalent if I = aJ for some ce e Q(e203C0i/p) . The class group Cl (Z[e203C0i/p])
is trivial if and only if every ideal of Z[e21ri/p] is principal, which in turn
is true if and only if the ring Z[e21ri/p] has unique factorisation. Kummer
showed (by factorising xp+yp over Z[e203C0i/p]) that if p#Cl (Z[e203C0i/p]) then
Fermat’s last theorem is true for exponent p.

But what handle does one have on the mysterious numbers #Cl (Z[e203C0i/p])?
The Galois group Gal (Q(e203C0i/p)/Q) acts on CI (Z[e203C0i/p]) and on its Sylow
p-subgroup CI (Z[e203C0i/p])p and so we can form a decomposition

into Gal (Q(e203C0i/p)/Q)-eigenspaces. It turns out that if CI (Z[e203C0i/p])p =
(0) for all even i then CI (Z[e203C0i/p])p = (0). Herbrand [Her] and Ribet [R1]
proved a striking theorem to the effect that for any even positive integer
n the special value ((1 - n) is a rational number and that p divides the

numerator of 03B6(1 - n) if and only if CI (Z[e203C0i/p])p ~ (0). Note that 03B6(s)
is only defined at non-positive integers by analytic continuation.

Another celebrated example is the L-function of an elliptic curve E:

(where a, b E Q are constants with 4a3 + 27b2 * 0). In this case the L-
function is defined as an Euler product (çonverging in Re s &#x3E; 3/2)

where Lp(E, X) is a rational function, and for all but finitely many 1

with p - ap(E) being the number of solutions to the congruence

in F2p. It has recently been proved [BCDT] (see also section 5.4 below) that
L(E, s) can be continued to an entire function, which satisfies a functional
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equation

for some explicit positive integer N(E). A remarkable conjecture of Birch
and Swinnerton-Dyer [BSD] predicts that y2 = x3 + ax + b has infinitely
many rational solutions if and only if L(E, 1) = 0. Again we point out that
it is the behaviour of the L-function at a point where it is only defined by
analytic continuation, which is governing the arithmetic of E. This conjec-
ture has been proved when L(E, s) has at most a simple zero at s = 1.

(This combines work of Gross and Zagier [GZ] and of Kolyvagin [Koll] with
[BFH], [MM] and [BCDT]. See [Kol2] for a survey.)

There are now some very general conjectures along these lines about
the special values of L-functions (see [BK]), but we do not have the space
to discuss them here. We hope these two special cases give the reader an
impression of what can be expected. We would like however to discuss the
definition of L-functions in greater generality.

One general setting in which one can define L-functions is l-adic represen-
tations. Let us look first at the local setting. If (r, N) is a WD-representation
of WQp on an E-vector space V, where E is an algebraically closed field of
characteristic zero, we define a local L-factor

(VIQp, N=0 is the subspace of V where 7Q acts trivially and N = 0.) One
can also associate to (r, N) a conductor 

which measures how deeply into IQp the WD-representation (r, N) is non-
trivial. It is known that f (r, N) e Z0 (see [Sel]). Finally one has a local
epsilon factor ~((r,N), 03A8p) E E, which also depends on the choice of a
non-trivial character 03A8p : Qp ~ EX with open kernel (see [Tat]).

If R : GQ ~ GL(V) is an l-adic representation of GQ which is de Rham
at and pure of some weight w E Z, and if c : Qz ~ C we will define an
L-function

which will converge to a holomorphic function in Re s &#x3E; 1 + w/2. For ex-
ample
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(where 1 denotes the trivial representation), and if E/Q is an elliptic curve
then

l). Note the useful formulae

Also note that L(iR, s) determines L(WDp(R), X) for all p and hence

WDp(R) for all but finitely many p. Hence by the Cebotarev density theo-
rem L(iR,s) determines R (up to semisimplification).

Write mRi for the multiplicity of an integer i in HT(R) and, if w/2 E Z,
define mRw/2,± E (1/2)Z by:

Also assume that mRw/2,+, mRw/2,- ~ Z, i.e. that mRw/2 ~ dim V mod 2. Then
we can define a r-factor 

and an E-factor

where 0393R(s) = Jr-s/2r(s/2) and where in each case we drop the factors
involving mRw/2,± if w/2 ~ Z. Set

and

(which makes sense as f(WDp(R)) = 0 whenever WDp(R) is unramified)
and 

where
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It is again worth noting that

The following conjecture is a combination of conjecture 1.1 and conjec-
tures which have become standard.

CONJECTURE 2.1. - Suppose that R is an irreducible l-adic representa-
tion of GQ which is de Rham and pure of weight w E Z. Then mRp = rraw-p
for all p, so that mw/2 ~ dim V mod 2. Moreover the following should hold.

1. L(iR, s) extends to an entire function, except for a single simple pole

2. 039B(iR, s) is bounded in vertical strips 03C30  Re s  03C31.

It is tempting to believe that something like properties 1., 2. and 3.
should characterise those Euler products which arise from l-adic represen-
tations. We will discuss a more precise conjecture along these lines in the
next section. Why Galois representations should be the source of Euler
products with good functional equations is a complete mystery.

Finally in this section let us discuss another Dirichlet series which pre-
dated and in some sense motivated L-functions for l-adic representations.
Suppose that X/Q is a smooth projective variety. For some sufficiently large
integer N we can choose a smooth projective model /Z[1/N] for X and
hence one can discuss the reduction X x Fp for any prime PAN and its alge-
braic points (Fp). We will call two points in 3E(Fp) équivalent if they are
G]p -conjugate. By the degree deg x of a point x E X(Fp), we shall mean
the degree of the smallest extension of Fp over which x is defined. Then one
defines the (partial) zeta function of X to be

This will converge in some right half complex plane. 

03B6N(X,s) is clearly missing a finite number of Euler factors - those at
the primes dividing N. There is no known geometric description of these
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missing Euler factors. However Grothendieck [G] showed that, for any i,

where LN indicates that the Euler factors at primes pIN have been dropped.
Thus it is reasonable to define

and

For example the zeta function of a point is

and the zeta function of an elliptic curve E/Q is

Conjecture 2.1 and Poincaré duality (and the expected semisimplicity
of the action of Galois on Hi(X((C), Ql), see conjecture 1.2) give rise to thE
following conjecture.

CONJECTURE 2.2. - Suppose that X/Q is a smooth projective variety,
Then 03B6(X, s) has meromorphic continuation to the whole complex plane anc
satisfies a functional equation of the form

for sor,

3. Automorphic forms

Automorphic forms may be thought of as certain smooth functions on
the quotient GLn(Z)BGLn(R). We need several preliminaries before we can
make a precise definition.

Let Z denote the profinite completion of Z, i.e.
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a topological ring. Also let A 00 denote the topological ring of finite adeles

where Z is an open subring with its usual topology. As an abstract ring A~
is the subring of I1p Qp consisting of éléments (xp) with xp E Zp for al
but finitely many p, however the topology is not the subspace topology. W(
define the topological ring of adeles to be the product

Note that Q embeds diagonally as a discrete subring of A with compact
quotient 

We will be interested in GLn(A), the locally compact topological group
of n x n invertible matrices with coefficients in A. We remark that the

topology on GLn(A) is the subspace topology resulting from the closed
embedding

This is different from the topology induced from the inclusior

GLn(A) ~ Mn (A). (For instance GLn(Z) x GLn(R) is open in GLn(A)
but not in Mn (A).) The group GLn(Q) is a discrete subgroup of GLn(A:
and the quotient GLn(Q)BGLn(A) has finite volume (for the quotient of é
(two sided) Haar measure on GLn(A) by the discrete measure on GLn(Q))
If U C GLn() is an open subgroup with det U - , then the strong
approximation theorem for SLn tells us that

Note that GLn(Q) nUis a subgroup of GLn(71) of finite index. (For any
open compact subgroup U C GLn(A~) we have

for some integer·r  1 and some elements gi E GLn(A~).) Most of the
statements we make concerning GLn(A) can be rephrased to involve only
GLn(R), but at the expense of making them much more cumbersome. To
achieve brevity (and because it seems more natural) we have opted to use the
language of adeles. We hope this extra abstraction will not be too confusing
for the novice.
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Before continuing our introduction of automorphic forms let us digresf
to mention class field theory, which provides a concrete example of th(
presentational advantages of the adelic language. It also implies essentially
all the conjectures we are considering in the case of one dimensional Galoi
representations. Indeed this article is about the search for a non-abeliar

analogue of class field theory. Class field theory gives a concrete descriptior
of the abelianisation (maximal continuous abelian quotient) GabQ of GQ anc
WabQp of WQp for all p. Firstly the local theory asserts that there is ar

isomorphism

with various natural properties, including the following.

2022 The image of the inertia grou

2022 The induced map

takes p to the geometric Frobenius element Frobp.

2022 For u &#x3E; 0, the image of the higher inertia group IuQp in WabQp is

Art (1 + pvZp), where v is the least integer greater than or equal to
u.

. Secondly the global theory asserts that there is an isomorphism

such that the restriction of Art to Q; coincides with the composition of
Art p with the natural map WabQp ~ GabQ. Thus Art is defined completely
from a knowledge of the Art p (and the fact that Art takes -1 ~ R  to

complex conjugation) and global class field theory can be thought of as a
determination of the kernel of I1p Art p’ (In the case of Q these assertions
can be derived without difficulty from the Kronecker-Weber theorem that

GabQp = Gal (Qcyclp/Qp) and Gab = Gal (Qcycl/Q), where Kcycl denotes the
extension of K obtained by adjoining all roots of unity.) A similar direct
description of the whole of WQp or GQ would be wonderful, but such a
description seems to be too much to hope for.

We now return to our (extended) definition of automorphic forms. We
will let 0(n) c GLn(R) denote the orthogonal group consisting of matrices
h for which t hh = In. We will let g[n denote the complexified Lie algebra
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of GLn(R), i.e. gln is Mn(C) with Lie bracket [X, Y] = XY - YX. We will
let 3n denote the centre of the universal enveloping algebra of Oïn- (The
universal enveloping algebra of gln is an associative C-algebra with a C-
linear map from gln which takes the Lie bracket to commutators, and which
is universal for such maps.) By an action of gln on a complex vector space
V we shall mean a C-linear map gln ~ End (V) which takes the Lie bracket
to commutators. Thus a gln action on V gives rise to a homomorphism
3n -t End (V), whose image commutes with the image of gln.

There is an isomorphism (the Harish-Chandra isomorphism, see for ex-
ample [Dix]) 

where Sn is the symmetric group on n-letters acting on C[X1, ..., Xn] by
permuting Xl, ..., Xn. Note that homomorphisms

are parametrised by multisets of cardinality n of complex numbers. Given
such a multiset H = {x1, ...xn}, we define

The Harish-Chandra isomorphism )’HC may be characterised as follows. Sup-
pose that p is the irreducible (finite dimensional) representation of gln with
highest weight 

where a1  a2... an are integers. Let

Then if z e 3n we have

Automorphic forms will be certain smooth functions of GLn(A). (By
smooth we mean locally constant as a function on GLn(A~) and smooth as
a function on GLn(R).) If f is a smooth function on GLn(A), g E GLn(A)
and X E gln then we define

and
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Note thaï

We are now in a position to define cusp forms on GLn(A). For each
partition n = nl + n2 let Nn1,n2 denote the subgroup of GLn consisting of
matrices of the form

If H is a multiset of complex numbers of cardinality n, then the space of cusp
forms with infinitesimal character H, AoH(GLn(Q)/GLn(A)) is the space of
smooth functions

satisfying the following conditions.

1. (K-finiteness) The translates of f under GLn(Z) x 0(n) (a choice
of maximal compact subgroup of GLn(A)) span a finite dimensional
vector space;

2. (Infinitesimal character H) If z E 3n then z f = ~H(03B3HC(z))f;

3. (Cuspidality) For each partition n = ni + n2,

4. (Growth condition) f is bounded on GLn(A).

One would like to study AoH(GLn(Q)BGLn(A)) as a representation of
GLn (A), unfortunately it is not preserved by the action of GLn (R) (because
the K-finiteness condition depends on the choice of a maximal compact sub-
group O (n) C GLn(R)). It does however have an action of GLn(A~) x O(n)
and of gln, which is essentially as good. More precisely it is a GLn(A~) x
(Oln, O(n))-module in the sense that it is a complex vector space with both
an action of GLn(A~) x 0(n) and gln such that

1. the stabiliser in GLn(A~) of any f E AoH(GLn(Q)BGLn(A)) is open;

2. the actions of GLn(A~) and 0 tn commute;

3. k(Xf) = (kXk-1)(kf) for all k E O(n) and all X E gln;

4. the vector space spanned by the O(n)-translates of any f is finite
dimensional;
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Moreover AoH(GLn(Q)BGLn(A)) is admissible as a GLn(A~) x (gln, O(n))-
module, in the sense that for any irreducible (finite dimensional) smooth
representation W of GLn(Z) x 0(n) the space

is finite dimensional.

In fact the space AoH(GLn(Q)BGLn(A)) is a direct sum of irreducible
admissible GLn(A~) x (gln, O(n))-modules each occurring with multiplicity
one. These irreducible constituents are referred to as cuspidal automorphic
representations of GLn(A) with infinitesimal character H, although they
are not strictly speaking representations of GLn(A) at all.

For example consider the (unusually simple) case n = 1. Define

Then

and Ao{0} (Q  BA ) is just the space of locally constant functions on the
compact space 

Thus

as 03C8 runs over all continuous characters

Any such character factors through (/N)  = (Z/NZ)  for some integer
N. Thus in some sense cuspidal automorphic representations are general-
isations of Dirichlet characters. However this does not really convey the
analytic flavour of more general cuspidal automorphic representations.

The case n = 2 is somewhat more representative. In this case we have

Ao{s,t}(GL2(Q)BGL2(A)) = (0) unless s - t E iR, s - t E Z or s - t ~ (-1,1).It is conjectured that the third possibility can not arise unless s = t. Let
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us consider the case s - t E Z&#x3E;o a little further. If s - t E Z&#x3E;o then it
turns out that the irreducible constituents of Ao{s,t}(GL2(Q)BGL2(A)) are
in bijection with the weight 1 + s - t holomorphic cusp forms on the upper
half plane which are normalised newforms (see for example [Mi]). To be
more precise let Ul (N) C GL2() denote the subgroup of elements with
last row congruent to (0,1) modulo N. Also define j : SO(2) ~ ex by

Then it turns out that if 7r is an irreducible constituent of Ao{s,t}(GL2(Q)
GZ2(A)) with s - t E Z&#x3E;0 then there is a unique positive integer N sucl
that the set of ~ E 03C0U1(N) with

for all g E GL2(A) and k E SO(2), is one dimensional. If we choose a

nonzero 4J in this one dimensional space, then the function

is a holomorphic newform of weight 1 + s - t and level N. If we choose 4J so
that fo is normalised and if we denote this f~ by f 7r, then 7r H f03C0 gives the
desired bijection. Thus in some sense cuspidal automorphic representations
are are also generalisations of classical holomorphic normalised newforms.

Note that if 03C8 is a character of A /Q R &#x3E;0 and if 7r is an irreducible
constituent of AoH(GLn(Q)BGLn(A)) then 03C0~(03C8o det) is also an irreducible
constituent of AoH(GLn(Q)BGLn(A)). Concretely we may realise it as the
space of functions f(g)03C8(det g) where f E 03C0. Also note that if 03C0 is an

irreducible constituent of AoH(GLn(Q)BGLn(A)) then its contragredient 7r*
is an irreducible constituent of Ao-H(GLn(Q)BGLn(A)), where -H is the
multiset of -s for s E H. Concretely we may realise 03C0* as the set of f(tg-1)
for f E 7r.

One of the main questions in the theory of automorphic forms is to de-
scribe the irreducible constituents of AoH(GLn(Q)BGLn(A)). If we are to do
this we first need some description of all irreducible admissible GLn(A~) x
( O(n))-modules, and then we can try to say which occur in AoH(GLn(Q) B
GLn(A)). 

To describe this we must quickly recall the local situation. By a smooth
representation of GLn (Qp) we mean a representation of GLn (Qp) on a com-
plex vector space V such that the stabiliser of every vector in V is open in
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GLn(Qp). We call V admissible if Vu is finite dimensional for every open
subgroup U C GLn(Qp), or equivalently if for every irreducible (smooth)
representation W of GLn(Zp)

Every irreducible smooth representation of GLn(Qp) is admissible. We call
an irreducible smooth representation V of GLn(Qp) unramified if V GLn(Zp) ~ 
(0). In this case dim VGLn(Zp) = 1. By a (gln, O(n))-module we mean a com-
plex vector space V with an action of g(n and an action of 0(n) such that

2. the vector space spanned by the O(n)-translates of any v is finit4

dimensional ;

We call V admissible if for each irreducible 0(n)-module W we have

dim Hor

If n &#x3E; 1 then most irreducible smooth GLn(Qp)-modules and most irre-
ducible admissible (gln, O(n))-modules are infinite dimensional. In fact the
only finite dimensional irreducible smooth GLn(Qp)-modules are one di-
mensional and of the form 03C8 o det for a homomorphism 03C8 : Q p ~ C  with

open kernel.

Just as a character 03C8 : A  ~ C  can be factored as

where 03C8p : Q p ~ C  (resp. 03C8~ : R  ~ C ) and 03C8p(Z p) 11 foi
all but finitely many p, so irreducible admissible GLn(A~) x (gln, O(n)).
modules can be factorised. More .precisely suppose that 03C0~ is an irr educiblf
admissible (gln, 0(n»-module and that for each prime p, 03C0p is an irreduciblE

smooth representation of GLn(Qp) with 7rp unramified for all but finitely
many p. For all but finitely many p choose 0 ~ wp E 7rp and define
the restricted tensor product



-96-

Richard Taylor

to be the subspace of @x 1Tx spanned by vectors of the form 0xvx with
vp = wp for all but finitely many p. Then @x’7rx is an irreducible admissible
GLn(A~) x (gln, O(n))-module, which up to isomorphism does not depend
on the choice of vectors wp. Moreover any irreducible admissible GLn(A~) x
(gln, O(n))-module 7r arrises in this way for unique 7rp and 1T00. Thus a

description of all irreducible admissible GLn(A~) x (gln,O(n))-modules
is a purely local question: describe all irreducible admissible (gln,O(n))-
modules, describe all irreducible smooth GLn(Qp)-modules and describe
which have a GLn(Zp)-fixed vector.

There is a rather explicit description of all irreducible admissible

(gln, O(n))-modules which we will not describe in detail (see [Lan1]). Briefly
the irreducible admissible (gln,O(n))-modules with infinitesimal character
H are parametrised by partitions H = il Hj into sub-multisets of cardi-
nality 1 or 2 such that if Hj = {a,b} then a - b E Z~0, and by a choice
of 8j E {0,1} for each Hj of cardinality 1. If H is a multiset of n complex
numbers, set w(H) - 2/n 03A3a~H Re a. It is known that if 7r is a cuspi-
dal automorphic representation with infinitesimal character H and if 7r00 is
parametrised by H = Il Hj and {03B4j} then the following hold.

e The indices J for which Hj = {a} with Re a ~ w(H)/2 can be paire
up so that for any pair ( j, j’ ) we have 6j = 6jl, Hj = {a} and Hj’ =

e The indices j for which Hj = fa, b} with Re (a + b) ~ w(H) ca
be paired up so that for any pair (j, j’) we have Hj = {a,b} an
Hj, = {w(H) + a - Re (a + b), w(H) + b - Re (a + b)}.

A celebrated conjecture of Selberg predicts that if Hj = {a} is a singleton
then Re a = w(H)/2, while if Hj = {a, b} is a pair then Re (a + b) = w(H).
This is equivalent to the assertion that for all a, b E H we have a - b ~ 1 2Z.

Note that an irreducible (gln,O(n))-module 03C0 bas a central character
03C803C0 : R  ~ C  defined by 03C803C0(-1) = 03C0(-In) (where -In E O(n)) and
03C803C0(t) = e03C0((log t)In) = tnw(H)/2 for t E R &#x3E;0 (where (log t)In E gln and
where H parametrises the infinitesimal character of 7r). To any irreducible
irreducible admissible (gln,O(n))-module 03C0 corresponding to H = Hj
and {03B4j} one can attach an r-factor
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and an 6 constant

Any irreducible smooth representation 7r of GLn(Qp) has a central char-
acter 1/J7r : Q p ~ C . If 03C0 is unramified then 03C803C0(Z p) = {1}. One may (see
[J]) also associate to 7r an L-factor

a conductor f (7r) E Z and an E-factor

(where 03A8p : Qp ~ (Cx is a non-trivial character with open kernel). If 7r is
unramified and ker 03A8p = Zp then f(03C0) = 0 and E(7r, wp) = 1. Let U1(pm)
denote the subgroup of matrices in GLn(Zp) with last row congruent to
(0, ..., 0,1) mod p"2. Then for instance, the conductor f (7r) is the minimal

non-negative integer f such that 03C0U1(pf) ~ (0).
Thus to an irreducible admissible GLn(A~) x (gln,O(n))-module 7r =
1 7rx one may associate

e a central charact4

e an L-functio]

verge;

2022 an extended L-functio]

2022 a conductc

2022 and an epsilon constai

The following theorem and conjecture describe the (expected) relation-
ship between automorphic forms and L-functions with Euler product and
functional equation. We suppose n &#x3E; 1. A similar theorem to theorem 3.1
is true for n = 1, except that L(7r, s) may have one simple pole. In this case
it was due to Dirichlet. Conjecture 3.2 becomes vacuous if n = 1.
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THEOREM 3.1 (GODEMENT-JACQUET, [GoJ]). - Suppose that 03C0 is an
irreducible constituent of AoH(GLn(Q)/GLn(A)) with n &#x3E; 1. Then L(7r,5)
converges to a holomorphic function in some right half complex plane Re s &#x3E;

cr and can be continued to a holomorphic function on the whole complex
plane so that A(7r, s) is bounded in all vertical strips 03C31  Re s  03C32. More-
over L(7r, s) satisfies the functional equation

CONJECTURE 3.2 (COGDELL-PIATETSKI-SHAPIRO, [CPS1]). - Suppo
se that 03C0 is an irreducible admissible GLn(A~) x (gln,O(n))-module such
that the central character of 03C0 is trivial on Q  and such that L(03C0, s) con-
verges in some half plane. Suppose also that for all characters 03C8 : A  /Q R &#x3E;0
~ C  the L-function 039B(03C0 ~ (03C8 o det), s) (which will then converge in some
right half plane) can be continued to a holomorphic function on the entire
complex plane, which is bounded in vertical strips and satisfies the functional
equation

(A(7r* ~(03C8-1 odet), s) also automatically converges in some right half plane.,
Then there is a partition n = n1 + ... + n. and cuspidal automorphic repre
sentations 7ri of GLni (A) such that

Theorem 3.1 for n = 2 was proved in many cases by Hecke [Hec] and in
full generality by Jacquet and Langlands [JL]. Conjecture 3.2 is known to
be true for n = 2 ([We], [JL]) and n = 3 ([JPSS1]). For n &#x3E; 3 a weaker form
of this conjecture involving twisting by higher dimensional automorphic
representations is known to hold (see [CPS1], [CPS2]).

This is a good place to mention the following results ([JS]) which will
be useful later.

THEOREM 3.3. -

1. Suppose that 03C0 and 7r’ are two cuspidal automorphic representations
of GLn(A) with 03C0p ~ 03C0’p for all but finitely many p. Then 03C0 = 7r.

2. Suppose that 7rl, ..., 7rr and 03C0’1, 7r1are cuspidal automorphic repre-
sentations with |03C803C0i,~| = |03C803C0’j,~| independent of i and j. Suppose S
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is a finite set of primes containing all those at which some 03C0i or 03C0

is ramified. Suppose that we can write

wher
The7

converges in some right half plane and has meromorphic continuation
to the entire complex plane. Suppose further that Ls (ad , s) has a
simple pole at s = 1. Then there is an index i such that

for all but finitely many p. 

The reason for us introducing automorphic forms is because of a puta-
tive connection to Galois representations, which we will now discuss. But
first let us briefly describe the local situation. It has recently been estab-
lished ([HT], [Hen2]) that there is a natural bijection, recp, from irreducible
smooth representations of GLn(Qp) to n-dimensional Frobenius semi-simple
WD-representations of WQp over C. The key point here is that the bijec-
tion should be natural. We will not describe here exactly what this means,
instead we refer the reader to the introduction of [HT]. It does satisfy the
following.

Thus 7r is unramified if and only if recp(7r) is unramified, and if n = 1 then
recp 1r = 7r o Art-1p. Thus existence of recp can be seen as a non-abelian
generalisation of local class field theory. 

Now suppose that i : Ql ~ C and that R is a de Rham semi-simple l-adic
representation of GQ which is unramified at all but finitely many primes. Let
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w(R) = (2/ dim R) 03A3a~HT(R) a and suppose that w(R) E Z and that mR =
mRw(R)-i for all i. Let 7roo(R) be the irreducible, admissible (gln,(O(n))-
module with infinitesimal character HT(R) parametrised as follows. We
decompose HT(R) into {i,w(R) - i} with multiplicity rrif if 2i =1= w(R)
and {w(R)/2} with multiplicity mRw(R)/2 if w(R)/2 E Z. To mRw(R)/2,+ of
the {w(R)/2} we associate 8 = 0 and to m R of them we associate
8 = 1. (Of course even without the assumptions that w(R) ~ Z and that
mRi = mRw(R)-i for all i, one can fabricate some definition of 03C0~(R), which
equals this one whenever these assumptions are met. This however is rather
pointless.) Then we can associate to R an irreducible, admissible GLn(A~) x
(g Cn, O(n))-module

By the Cebotarev density theorem R is completely determined by 7r(tR).

CONJECTURE 3.4. - Suppose that H is a multiset of n integers and
that 7r is an irreducible constituent of AoH(GLn(Q)BGLn(A)). Identify Q C
C. Then each recp(7rp) can be defined over Q and there is an irreducible

geometric strongly compatible system of l-adic representations R such that
HT(R) = H and WDp(R) = recp(7rp) for all primes p.

CONJECTURE 3.5. - Suppose that

is an irreducible l-adic representation which is unramified at all but finitely
many primes and for which R|GQl is de Rham. Let c : Ql ~ C. The

w(R) E Z and for all i we have mRi = mRw(R)-i. Moreover 03C0(iR) is c

cuspidal automorphic representation of GLn(A).

These conjectures are essentially due to Langlands [Lan2], except w
have used a precise formulation which follows Clozel [Cl1] and we have
incorporated conjecture 1.1 into conjecture 3.5.

Conjecture 3.5 is probably the more mysterious of the two, as only thE
case n = 1 and fragmentary cases where n = 2 are known. This will bf
discussed further in the next section. Note the similarity to the main the-
orem of global class field theory that 03A0pArtp : A  ~ GabQ has kernel Q"
(Namely that 03C0(iR) occurs in a space of functions on GLn(A) which are lef
invariant by GLn(Q).)

The following theorem provides significant evidence for conjecture 3.4.
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THEOREM 3.6 ([KOT], [CL2], [HT]). - Suppose that H is multiset of
n distinct integers and that 7r is an irreducible constituent of AoH(GLn(Q)B
GLn(A)). Let L : Ql ~ C. Suppose moreover that 03C0* ~ 03C0~(03C8o det ) for some
character 03C8 : A /Q  ~ C’, and that either n  2 or for some prime p
the representation 7rp is square integrable (i.e. recp(7Tp) is indecomposable).
Then there is a continuous representation

with the following properties.

1. Rl,i is geometric and pure of weight 2/n 03A3h~H h.
2. Rl,i|GQl is de Rham and HT(Rl,i|GQl) = H.

3. For any prime p ~ l there is a representation rp : WQp ~ GLn(Q
such that WDp(Rl,i)ss = (rp, Np) and reep(03C0p) = (lrp, N’p).

This was established by finding the desired l-adic representations in the
cohomology of certain unitary group Shimura varieties. It seems not unrea-
sonable to hope that similar techniques might allow one to improve many of
the technical defects in the theorem. However Clozel has stressed that in the
cases where H does not have distinct elements or where 7r* ~ 7r 0 (03C8 o det),
there seems in general to be no prospect of finding the desired l-adic repre-
sentations in the cohomology of Shimura varieties. It seems we need a new
technique.

(As theorem 3.6 is not explicitly in the literature we indicate how it
can be deduced from theorem VII.1.9 of [HT]. Note that for x E R &#x3E;0 we
have 03C8(x) = xN for some NEZ. By a standard descent argument (see
for example the proof of theorem VII.1.9 of [HT]) it suffices to construct

Rl,i|GL for all imaginary quadratic fields L in which p splits. For this we
apply theorem VII.1.9 of [HT] to 7rL (g) 4;, where 7rL denotes the base change
of 7r to GLn(AL) and where A L/L  ~ ex is a continuous character

which satisfies

To construct such a character 0, choose any character ~0 satisfying the
second condition and look for ~ = ~0~1 where ~1 : A L/L C  ~ ex is a

continuous character satisfying
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x, i.e. 01 should satisfywii

Choose an open compact subgroup U c (A~L)  satisfying

It follows from the first two conditions that A ~(UL C ) = (U~ )Q R ,
so that (NL/QA L) n (UL C ) C (U ~ )Q R &#x3E;0. Thus 03C81|NL/QA L ex-

tends to a character of (NL/QA L)L UC  which is trivial on L UC . As

(NL/QA L)L UC  is open of finite index in A L, this character in turn ex-
tends to a character of A L which is trivial on L x UC x. This will suffice for
~1.)

4. Summary

Let us first summarise the various conjectures we have made. This sum-
mary will be less precise than the conjectures stated in the previous sections,
but should convey the main thrust of those conjectures. Fix an embedding
Q ~ C. Let H be a multiset of integers of cardinality n &#x3E; 1. Then the

following sets should be in natural bijection. One way to make precise the
meaning of natural in this context is that to each object M in any of the
sets below we can associate local L-factors (rational functions of a variable
X) Lp(M, X) for all but finitely many primes p. In each case these factors
completely détermine M. Two objects should correspond if and only if for
all but finitely many p they give rise to the same local L-factors.

(AF) Irreducible constituents 7r of AoH(GLn(Q)BGLn(A)). In this case

(LF) Near equivalence classes of irreducible admissible GLn(A~) x
(gln, O(n))-modules 1r with the following properties. (We call two
GLn (A~) x (gln, O(n))-modules,03C0 and 03C0’ nearly equivalent if 03C0p -- 03C0’p
for all but finitely many primes p.)

(a) 1r 00 has infinitesimal character H.

(b) The central character ’lfJ1r of 7r is trivial on Qx C Ax.
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(c) For all characters 03C8 : A /Q R &#x3E;0 the L-function 039B(03C0 0 (03C8 o
det), s) converges in some right half plane, has holomorphic con-
tinuation to the entire complex plane so that it is bounded in
vertical strips and satisfies the functional equation

(d) There is a finite set of primes S containing all primes p for which
rec(7rp) is ramified, such that writing

f

is bounded as s ~ 1 from the right.

In this cas

.) Irreducible l-adic representations

which are unramified at all but finitely many primes and for which

R|GQl is de Rham with HT(R|GQl) = H. In this case Lp(R,X) =
iL(WDp(R), X).

(WCS) Irreducible weakly compatible systems of l-adic representations IZ for
which HT(R) = H. In this case Lp(R, X) = Lp(WDp(R), X).

(GCS) Irreducible geometric strongly compatible systems of l-adic represen-
tations IZ with HT(R) = H. In this case Lp(R, X) = LP(WDp(R), X).

For n = 1 we drop the item (LF), because it would need to be modified
to allow L(7r0 (03C8 o det), s) to have a simple pole, while in any case condition
(LF) (b) would make the inclusion (LF) C (AF) trivial. This being said in
the case n = 1 all the other four sets are known to be in natural bijection
(see [Se2]). This basically follows because global class field theory provides
an isomorphism 
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I would again like to stress how different are these various sorts of objects
and how surprising it is to me that there is any relation between them. Items
(AF) and (LF) both concern representations of adele groups, but arising
in rather different settings: either from the theory of discrete subgroups
of Lie groups or from the theory of L-functions with functional equation.
Items (IR) and (WCS) arise from Galois theory and item (GCS) arises from
geometry.

So what do we know about the various relationships for n &#x3E; 1?

Not much. Trivially one has (GCS) C (WCS) C (lR). The inclusion
(AF) C (LF) is OK by theorem 3.1. As discussed in section 3 we have sig-
nificant partial results in the directions (LF) C (AF) and (AF) C (GCS),
but both seem to need new ideas. (Though 1 should stress that I am not
really competent to discuss converse theorems.)

One way to establish the equivalence of all five items would be to com-
plete the passages (LF) C (AF) and (AF) c (GCS) and to establish the
passage (LR) C (AF). It is these inclusions which have received most study,
though it should be pointed out that in the function field case the equiva-
lence of the analogous objects was established by looking at the inclusions

(The proof of the inclusion (lR) C (LF) was proved by Grothendieck [G] and
Laumon [Lau]. It is rooted in the study of Z-adic cohomology, and it is this
which is most spécial to the function field case. The inclusion (LF) C (AF)
uses a converse theorem due to Piatetski-Shapiro [PS], and the inclusion
(AF) C (GCS) is due to Drinfeld [Dr] and Lafforgue [Laf]. Please note that
this thumb-nail sketch is not precise in a number of respects. For instance
(LF) has to be modified to allow for twists by more automorphic forms
and the definition of geometric in (GCS) needs modifying.) However, it is
striking, that in the case of number fields, all known inclusions of items
(1R), (WCS) or (GCS) in (LF) go via (AF).

For the rest of this article we will concentrate on what still seems to
be the least understood problem: the passage from (1R) or (WCS) to (AF)
or (LF). Although the results we have are rather limited one should not
underestimate their power. Perhaps the most striking illustration of this
is that the lifting theorems discussed in section 5.4 (combined with earlier
work using base change and converse theorems) allowed Wiles [Wi] to finally
prove Fermat’s last theorem.
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5. Automorphy of Galois representations

In this section we will discuss some results which shed some light on
the passage from (1R), (WCS) or (GCS) to (AF) or (LF). The discussion
will of necessity be somewhat more technical. In particular we will need to
discuss automorphic forms, l-adic representations and so on over general
number fields (i.e. finite extensions of Q) other than Q. We will leave it to
the reader’s imagination exactly how such a generalisation is made. In this
connection we should remark that if LIK is a finite extension of number
fields and if R is a semi-simple de Rham l-adic representation of GL which
is unramified at all but finitely many primes, then (see [A])

(formally if the L-functions don’t converge). In fact this is true Euler factor
by Euler factor and similar results hold for conductors and E-factors (see
[Tat]). This observation can be extremely useful..

5.1. Brauer’s theorem 

The result I want to discuss is a result of Brauer [Br] about finite groups.

THEOREM 5.1 (BRAUER). - Suppose that r is a representation of a fi-
nite group G. Then there are nilpotent subgroups Hi  G, one dimensional
representations 03C8i of Hi and integers n2 such that as virtual representations
of G we have

As Artin [A] had realised this theorem has the following immediate con-
sequence. (Indeed Brauer proved his theorem in response to Artin’s work.)

COROLLARY 5.2. - Let i : Ql ~ C. Suppose that

is an l-adic representation with finite image. Then the L-function L(iR, s)
has meromorphic continuation to the entire complex plane and satisfies the
expected functional equation.

Artin’s argument runs as follows. Let G denote the image of R and write
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as in Brauer’s theorem. Let L/Q be the Galois extension with group G cut
out by R and let Ki = LH2. Then one has almost formal equalities

By class field theory for the fields Ki, the character 03C8i is automorphic
on GL1 (AKi) and so L(i03C8i, s) has holomorphic continuation to the entire
complex plane (except possibly for one simple pole if 1Pi = 1) and satisfies a
functional equation. It follows that L(iR, s) has meromorphic continuation
to the entire complex plane and satisfies a functional equation. The problem
with this method as it stands, is that some of the integers ni will usually
be negative so that one can only conclude the meromorphy of L(tR, s), not
its holomorphy.

5.2. Base change

Suppose that LIK is a finite extension and that R is an irreducible de
Rham l-adic representation of GK ramified at only finitely many primes.
Then R119L is a semi-simple de Rham l-adic representation of GL ramified
at only finitely many primes. Suppose moreover that LIK is Galois and
cyclic and that 03C3 is a generator of Gal (L/K). Then an irreducible de Rham
l-adic representation r of GL which is ramified at only finitely many primes
arises in this way if and only if r ~ ar.

If one believes conjectures 3.4 and 3.5, one might expect that if LIK is
an extension of number fields and if 7r is a cuspidal automorphic represen-
tation of GLn(AK) then there are cuspidal automorphic representations ni
of GLni (AL) such that for all places v of L one has

Moreover if L / K is Galois and cyclic with Gal (L/K) generated by u and
if II is a cuspidal automorphic representation of GLn(AL) with 11 = II o cr
then one might expect that there is a cuspidal automorphic representation
7r of GLn(AK) such that for all places v of L we have

If n = 1 then this is true. For the first assertion one can take II =

03C0oNL/K. The second assertion follows from class field theory, the key point
being that NL/KLx = KX ~ NL/KA L. For n &#x3E; 1 the second part is known
and the first part is known if L/K is Galois and soluble. The argument (due
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to Langlands [Lan3] if n = 2 and to Arthur and Clozel [AC] if n &#x3E; 2) is
much less direct. They only need treat the case that L/K is cyclic and here
they use the trace formula. It seems to be essential for the method that
there is a simple characterisation of the image of the base change map.

One draw back of the second part of this result is that (even in the
case n = 1), given II there is no complete recipe for 7r: at the primes v
of K which are inert in L, we don’t know which extension of rec03BD(03A003BD) to
take. This can be surprisingly serious. If however we know how to associate
irreducible l-adic representations R( 1[) to 7r and R(II) to II and if R is any
l-adic representation of GK with RIGL rv R(03A0), then R N R(n 0 (03C8 o det))
for some character 03C8 of A K/K NL/KA L.

5.3. Converse theorems

Converse theorems are theorems along the lines of conjecture 3.2, which tell
one that L-functions with good arithmetic properties come from automor-
phic forms.

As Cogdell and Piatetski-Shapiro point out, conjecture 3.2 has very im-
portant consequences for Galois representations, some of which we will now
discuss. We stress that in the examples below we are assuming conjecture
3.2. In a very few cases the known cases of this conjecture give unconditional
results which we will mention at the end.

5.3.1. Automorphic induction

Suppose that LIK is an extension of number fields and that R is an irre-
ducible, de Rham l-adic representation of GL ramified at only finitely many
primes, then Ind R is a semi-simple, de Rham l-adic representation of GK
ramified at only finitely many primes. Thus if one believes conjectures 3.4
and 3.5 one might expect that if II is a cuspidal automorphic representation
of GLn(AL) then there is a partition n[L : K] = n1 + ... + nr and cuspidal
automorphic representations 7ri of GLni (AK) with

In many cases this would follow from conjecture 3.2. For simplicity we will
just consider the case K = Q. One can form an irreducible GLn(A~) x

(gln, O(n))-module Ind QL03A0 such that for every finite order character 03C8 of
A /Q R &#x3E;0 we have L((Ind QLII)~03C8,s) = L(03A0~(03C8oNL/Q),s), with similar
formulae for E constants, conductors etc. (This is a purely local question and
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one can for instance just make use of the local reciprocity maps recp - see
section 3.) If n &#x3E; 1 or if n = 1 and II does not factor through NL/Q, one
then simply applies conjecture 3.2 to Ind QL03A0 and deduces the existence of
03C01, ..., 03C0r. Conjecture 3.2 would also allow one to treat some other cases
when n = 1 and Il does factor through NL/Q, for instance if the normal
closure of L/Q is soluble or perfect. In this case we may assume that Il is
the trivial representation and hence may apply the Artin conjecture (see
below) to Ind  1.

The existence of 1Tl, ...,03C0r is known if n = 1 and [L : K]  3 by the
converse theorems of [JL] and [JPSS1]. It follows from the theory of Arthur-
Clozel [AC] discussed below (see section 5.2) if LIK is Galois and soluble.
This was extended by Harris [Har] to some cases where LIK is only as-
sumed to have soluble normal closure. Harris’ result is however restricted to
cases in which one can attach l-adic representations to all the automorphic
representations occurring in his argument.

5.3.2. Artin’s conjecture

The "strong form" of this conjecture asserts that if K is a number field,
if R : GK ~ GLn(Ql) is an irreducible l-adic representation with finite
image and if c : Ql ~ C then there is a cuspidal automorphic representation
7r of GLn(AK) with L(03C0, s) = L (tR, s). In particular it implies that L(iR, s)
is entire, except possibly for one simple pole if n = 1. Many cases (including
those where the image of R is either perfect or soluble) of this conjecture
would follow from conjecture 3.2. More precisely suppose one can write

where n2 ~ Z and where Xi is a one dimensional representation of GLi which
does not extend to GK. The cases of automorphic induction implied by con-
jecture 3.2 would show that there are integers mi and cuspidal automorphic
representations 7ri of GLri (AK) with

As R is irreducible, R~R* contains the trivial representation exactly once.
By Brauer’s theorem 5.1, we can write 

where ai E Z and ’lfJi is a one dimensional representation of GKi. The mul-
tiplicity of the trivial representation in R 0 R* is just the sum of the ai for
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which = 1. Thus

and it follows from theorem 3.3 that there is a cuspidal automorphic repre-
sentation 7r of GLn(AK) with L(03C0v, s) = L(iWDv(R), s) for all but finitely
many places v of K. Because both L(7r, s) and L(R, s) satisfy functional
equations of the same form one may deduce that L(7r, s) = L(R, s) (see for
instance corollary 4.5 of [Henl]).

One is left with the following (rather artificial) question in finite group
theory, to which I do not know the answer. Suppose that R is an irreducible
representation of a finite group G with dim R &#x3E; 1. When can one find

subgroups Hi  G, integers ni, one dimensional representations Xi of Hi
which do not extend to G such that

The answer is ’always’ if G is perfect.
(In fact for any finite group G, if R ~ 1 then one can find an expression

in which ~i ~ 1 for all i. Write

as in Brauer’s theorem with each Hi nilpotent. As R does not contain the trivial repre-
sentation, 

Thus we can replace each 1/Ji = 1 by 1 - Ind Hi {1} 1, which is minus a sum of non-trivial
irreducible representations of Hi. As Hi is nilpotent, each of these is in turn induced from
a non-trivial character of a subgroup of Hi. Substituting this into our expression for R,
our claim follows. This result seems to be due to van der Waall [vW].)
The answer is also ’always’ if G is soluble.
(One can argue by induction on #G. Let r be an irreducible representation of a soluble
group G with dim r &#x3E; 1. If r is induced from a proper subgroup we are done by the
inductive hypothesis. In particular we may suppose that G is not nilpotent and or even
the semidirect product of an abelian group by a nilpotent group. Moreover we may
suppose that the restriction of r to any normal subgroup is isotypical. Suppose that G
has a non-trivial normal subgroup N such that G/N is not nilpotent. By Brauer’s theorem
we may write the trivial representation of G/N as
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where ni E Z, Hi/N is a proper subgroup of G/N and where Xi is a character of Hi/N.
Thus

and by the inductive hypothesis we are done as long as for all i the representation r 1 Hi X
does not contain a character of G. If it did then there would be a character 03C8 of G suc]
that (r 0 03C8)|N is trivial and again we are done by applying the inductive hypothesi
to GIN. Thus we may suppose that every proper quotient of G is nilpotent. As we ar
supposing that G is not nilpotent, it follows that G has a unique minimal normal subgrou]
M and that GIM is nilpotent. As G is soluble, M must be an elementary abelian p-grou]
for some prime p. Then G has a unique Sylow-p-subgroup, which we will denote by 5
Let H denote a Sylow-p-complement in G, so that G is the semi-direct product of S b;
H and H is nilpotent. By the minimality of M, M must be an irreducible G/M-modulE
In particular S acts trivially on M, i.e. M is contained in the centre of S, and M is a]
irreducible H-module. If h E H we see that there is mh E Hom (S, M) such that

for all s E S. If we let H act on Hom (S, M) via h(~)(s) = h~(s)h-1 then we see th
h ~ rrah gives a 1-cocycle on H valued in Hom (S, M). As Hl (H, Hom (S, M)) = (0) 
see that there is an element ~ E Hom (S, M) such that

for all h E H and s E S. Thus ker ~ is a normal in S and centralises H. If M were a
trivial H-module then we would have G = S x H and G would be nilpotent. Thus we may
assume that M n ker ~ = {1} so that S = M x ker ~. Thus G is the semidirect product
of M by the nilpotent group H x ker ~, and we are done.)

Without assuming conjecture 3.2 only a few cases of Artin’s conjecture
are known. For instance combining the base change results discussed section
5.2 with results deriving from the converse theorem for GL3 (see [JPSSl],
[GeJ], [JPSS2]) Langlands [Lan3] and Tunnell [Tu] deduced the strong Artin
conjecture for two dimensional representations of GK with soluble image.

5.3.3. Galois descent

Let c : Qz ~ C. Let K/Q be a finite, totally real Galois extension.
Suppose that II is a cuspidal automorphic representation of GLn(AK) such
that for each place vl oc the infinitesimal character of IIv is parametrised by
a multiset of n distinct integers and such that for some finite place w of K
the representation 03A0w. is square integrable. Suppose also that

is an l-adic representation such that R ~ R* ~ 03C8 for some character 03C8 (

GQ, and such that R|GK is irreducible. Suppose finally that R|GK and ]
are associated, in the sense that for all but finitely places v of K we have
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Then it would follow from conjecture 3.2 that there is a regular algebraic
cuspidal automorphic representation 7r of GLn(A) associated to R in the
same sense. Roughly speaking this tells us that to check the automorphy
of an l-adic representation of GQ it would suffice to do so after a finite,
totally real Galois base change. (If n = 2 one can drop the assumption that
II is square integrable at some finite place. We remind the reader that an
irreducible representation 1fv of GLn(Kv) is called square integrable if for
for all x E 1Tv and all f E 03C0*v

converges. It turns out that r, is square integrable if and only if recv(7rv) is
indécomposable. )

We will sketch the argument. We may suppose that n &#x3E; 1. One can
first use the Langlands-Arthur-Clozel theory (see section 5.2) to check that
if L is any subfield of K with Gal (K/L)-soluble then there is a cuspidal
automorphic representation IIL of GLn(AL) associated to R|GL (see section
5.2). By Brauer’s theorem we can find subfields Li C K with Gal(K/Li)-
soluble, characters "pi of Gal (K/Li) and integers mi such that the trivial
representation of Gal (K/Q) equals

Moreover for each pair of indices i, j we can find intermediate fields Lij1
between Lj and K and characters 1/Jijk of GLij, such that

Thu

and

In particular, if tijk = 1 or 0 depending whether

or not, then
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As

one can find cuspidal automorphic representations 03C01,...,03C0r and 03C0’1,...,03C0’t
such that

r t.

By theorem 3.3 it suffices to show that L(R* 0 R, s) has a simple pole at
s = 1. But, because (R|GLijk ~03C8i|GLijk) and (R|GLijk ~03C8ijk) are irreducible
and are associated to cuspidal automorphic representations of GLn(ALijk),
we have

5.4. Lifting theorems

To describe this sort of theorem we first remark that if R : GQ ~ GLn(Ql
is continuous then after conjugating R by some element of GLn(Ql) we ma
assume that the image of R is contained in GLn(OQt) and so reducing w
obtain a continuous representation

The lifting theorems I have in mind are results of the general form if R
and R’ are l-adic representations of GQ with R’ automorphic and if R = R’
then R is also automorphic. Very roughly speaking the technique (pioneered
by Wiles [Wi] and completed by the author and Wiles [TW]) is to show

that R mod l’ arises from automorphic forms for all r by induction on r.
As ker(GLn(Z/lrZ) ~ GLn(Z/lr-1Z)) is an abelian group one is again led
to questions of class field theory and Galois cohomology.

I should stress that such theorems are presently available only in very
limited situations. I do not have the space to describe the exact limitations,
but the sort of restrictions that are common are as follows.

1. If R : GQ ~ GL(V) then there should be a character !-t : GQ ~
GLn(Ql) and a non-degenerate bilinear form ( , ) on V such that
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)2) ai

(This seems to be essential for the method of [TW]. It combines an
"essentially self-dual" hypothesis and an "oddness" hypothesis.)

2. R should be de Rham with distinct Hodge-Tate numbers. (This again
seems essential to the method of [TW], but see [BT].)

3. Either R and R’ should be ordinary (i.e. their restrictions to Gal
should be contained in a Borel subgroup); or R and R’ should be
crytsalline (not just de Rham) at with the same Hodge-Tate num-
bers and should be large compared with the différences of elements
of HT(R). (The problems here are connected with the need for an
integral Fontaine theory, but they are not simply technical problems.
There are some complicated results pushing back this restriction in
isolated cases, see [CDT], [BCDT], [Sa], but so far our understanding
is very limited. The results of [BCDT] did suffice to show that every
rational elliptic curve is modular.)

4. The image of R should not be too small (e.g. should be irreducible
when restricted to Q(e203C0i/l)), though in the case n = 2 there is beau-
tiful work of Skinner and Wiles ([SW1] and [SW3]) dispensing with
this criterion, which this author has unfortunately not fully under-
stood.

In addition, all the published work is for the case n = 2. However there
is ongoing work of a number of people attempting to dispense with this
assumption. Using a very important insight of Diamond [Dia], the author,
together with L.Clozel and M.Harris, has generalised to all n the so called

minimal case (originally treated in [TW]) where R is no more ramified than
R. One would hope to be able to deduce the non-minimal case from this,
as Wiles did in [Wi] for n = 2. In this regard one should note the work
of Skinner and Wiles [SW2] and the work of Mann [Ma]. However there
seems to be one missing ingredient, the analogue of the ubiquitous Ihara
lemma, see lemma 3.2 of [Ih] (and also theorem 4.1 of [R2]). As this seems
to be an important question, but one which lies in the theory of discrete
subgroups of Lie groups, lét us take the trouble to formulate it, in the hope
that an expert may be able to prove it. It should be remarked that there
are a number of possible formulations, which are not completely equivalent
and any of which would seem to suffice. We choose to present one which has
the virtue of being relatively simple to state.
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CONJECTURE 5.3. - Suppose that G/Q is a unitary group which b(
comes an inner form of GLn over an imaginary quadratic field E. Suppos
that G(R) is compact. Let l be a prime which one may assume is large com
pared to n. Let p1 and P2 be distinct primes different from l with G(Qp1)
GLn(Qp1) and G(Qp2) ~ GLn(Qp2). Let U be an open compact subgroup (

G(Qp1,p2) and consider the representation of GLn(Qp1) x GLn(Qp2) on th
space C~(G(Q)BG(A)/U,Fl) of locally constant IFl -valued functions on

(Note that G(Q) n U is a discrete cocompact subgroup of
GLn (QP1) x GLn (Qp2).) Suppose that 03C01 ~03C02 is an irreducible sub-represen-
tation of C~(G(Q)BG(A)/U,Fl) with 03C01 generic. Then 03C02 is also generic.

The most serious problem with applying such lifting theorems to prove
an l-adic représentation R is automorphic is the need to find some way
to show that R is automorphic. The main success of lifting theorems to
date, has been to show that if E is an elliptic curve over the rationals then
H1 (E(C), Ql) is automorphic, so that E is a factor of the Jacobian of a
modular curve and the L-function L(E, s) is an entire function satisfying
the expected functional equation ([Wi], [TW],[BCDT]). This was possible
because GL2(Z3) happens to be a pro-soluble group and there is a homo-
morphism GL2(F3) ~ GL2(Z3) splitting the reduction map. The Artin
representation

is automorphic by the Langlands-Tunnell theorem alluded to in section 5.2.

5.5. Other techniques?

I would like to discuss one other technique which has been some help if n = 2
and may be helpful more generally. We will restrict our attention here to the
case n = 2 and det R(c) = -1. We have said that the principal problem with
lifting theorems for proving an l-adic representation R : GQ ~ GL2(Ql) is
automorphic is that one one needs to know that R is automorphic. This
seems to be a very hard problem. Nonetheless one can often show that R
becomes automorphic over some Galois totally real field K/Q. (Because K
is totally real, if R(GQ) D SL2(Fl) and l &#x3E; 3 then R(GK) ~ SL2(Fl). So
this ’potential automorphy’ is far from vacuous). The way one does this is
to look for an abelian variety AIK with multiplication by a number field
F with [F : Q] = dim A, and such that R is realised on H1(A(C),Fl)[03BB]
for some prime A 11, while for some prime 03BB’|l’ ~ l the image of GK on
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H1(A(C),Fl’)[03BB’] is soluble. One then argues that H1(A((C), Fl’)[03BB’] is auto-
morphic, hence by a lifting theorem H1(A(C), Ql’) ~Fl, F03BB, is automorphic,
so that (tautologically) H1(A(C),Fl)[03BB] is also automorphic, and hence, by
another lifting theorem, R|GK is automorphic. One needs K to be totally
real, as over general number fields there seems to be no hope of proving
lifting theorems, or even of attaching l-adic representations to automorphic
forms. In practice, because of various limitations in the lifting theorems
one uses, one needs to impose some conditions on the behaviour of a few
primes, like l, in K and some other conditions on A. The problem of finding
a suitable A over a totally real field K, comes down to finding a K-point
on a twisted Hilbert modular variety. This is possible because we are free to
choose K, the only restriction being that K is totally real and certain small
primes (almost) split completely in K. To do this, one has the following
relatively easy result.

PROPOSITION 5.4 ([MB],[P]). - Suppose that X/Q is a smooth geo-
metrically irreducible variety. Let S be a finite set of places of Q and suppose
that X has a point over the completion of Q at each place in S. Let Qs be
the maximal extension of Q in which all places in S split completely (e.g.
Q{~} is the maximal totally real field). Then X has a Qs-point.

In this regard it would have extremely important consequences if the
following question had an affirmative answer. I do not know if it is reasonable
to expect one.

QUESTION 5.5. - Suppose that X/Q is a smooth geometrically irreducible
variety. Let S be a finite set of places of Q and suppose that X has a point
over the completion of Q at each place in S. Let Qsol be the maximal soluble
extension of Q in which all places in S split completely. Does X necessarily
have a QsolS-point?

Because of limitations in the lifting theorems available we can not at present
successfully employ this strategy to all odd two dimensional l-adic represen-
tations. However we can apply it to all but finitely many elements in any
compatible family. Thus for instance one can prove the following result.

THEOREM 5.6 ([TAY]). - Suppose that R is an irreducible weakly com-
patible system of two dimensional l-adic representations with HT(R) =
{n1,n2} where nI =1= n2. Suppose also that det Rl,i(c) = -1 for one (and
hence for all) pairs (l,i). Then there is a Galois totally real field K/Q and
a cuspidal automorphic representation 7r of GL2(AK) such that

2022 for all v|~, Trv has infinitesimal character H, and
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i) and for all finite places v l of K we have

rec(03C0v) = WE

In particular R is pure of weight (n1 + n2)/2. If nl - n2| &#x3E; 1 then for
each l and i the l-adic representation Rl,i is geometric. This conclusion also
holds if In, - n2| = 1 but for distinct primes l’ ~ p and for an embedding
i : Q ~ Ql the WD-representation WDp(Rl,i) has a nontrivial N.

Applying Brauer’s theorem as in example 5.3.3 of section 5.3 we obtain
the following corollary.

COROLLARY 5.7 ([TAY]). - Keep the assumptions of the theorem. Then
R is strongly compatible and

where ni E Z and where 7ri is a cuspidal automorphic representation of
GL2(AKi) for some totally real field Ki. The L-function L(iR, s) has mero-
morphic continuation to the entire complex plane and satisfies the expected
functional equation.

We remark that conjecture 3.2 would imply that the compatible systems
considered in theorem 5.6 are automorphic over Q (see example 5.3.3 of
section 5.3). 
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