
ANNALES DE LA FACULTÉ DES SCIENCES DE TOULOUSE

RÉGIS MONNEAU
On the regularity of a free boundary for a nonlinear
obstacle problem arising in superconductor modelling
Annales de la faculté des sciences de Toulouse 6e série, tome 13,
no 2 (2004), p. 289-311
<http://www.numdam.org/item?id=AFST_2004_6_13_2_289_0>

© Université Paul Sabatier, 2004, tous droits réservés.

L’accès aux archives de la revue « Annales de la faculté des sciences de
Toulouse » (http://picard.ups-tlse.fr/~annales/) implique l’accord avec les
conditions générales d’utilisation (http://www.numdam.org/conditions).
Toute utilisation commerciale ou impression systématique est constitu-
tive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AFST_2004_6_13_2_289_0
http://picard.ups-tlse.fr/~annales/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


- 289 -

On the regularity of a free boundary for a nonlinear
obstacle problem arising in superconductor

modelling (*)

RÉGIS MONNEAU (1)

ABSTR,ACT. - We study the free boundary of solutions to a class of
nonlinear obstacle problems. This class of problems contains a particular
model derived from the Ginzburg-Landau equation of superconductivity.
We consider solutions in a Lipschitz bounded open set and prove the
regularity of the free boundary when it is close enough to the fixed bound-
ary ~03A9. We also give a result of stability of the free boundary and give a
bound on the Hausdorff measure of the free boundary.

RÉSUMÉ. - Nous étudions les frontières libres asociées à des solutions
d’une classe de problèmes de l’obstacle non linéaires. Cette classe de
problèmes contient un modèle particulier dérivé des équations de Ginzburg-
Landau de la supraconductivité. Nous considérons des solutions dans un
ouvert borné Q à bord Lipschitz, et nous prouvons que la frontière libre est
régulière lorsque celle-ci est suffisamment proche du bord fixe 8Q. Nous
prouvons aussi un résultat de stabilité de la frontière libre et donnons une

borne a priori sur la mesure de Hausdorff de cette frontière libre.

1. Introduction

In this article we are interested in solutions to a nonlinear obstacle prob-
lem. This problem is motivated by a work of Chapman, Rubinstein, Schatz-
man [13] where a model is formally derived from the Ginzburg-Landau the-
ory for a superconductor with a density of vortices in an interior region
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2, France.
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whose boundary is a free boundary. A rigorous derivation of this model
has been done by Sandier, Serfaty [23]. Se also [4, 12, 25, 24] for some re-
lated works on the mathematical analysis of superconductivity. Here we will
prove rigorous results on the regularity of the free boundary contained in a
Lipschitz domain.

The core of the technical part of this article is an adaptation in the
framework of the nonlinear obstacle problem on non-smooth domains of
Caffarelli-type techniques [8, 9] originally developed for linear obstacle prob-
lems on smooth domains.

The model that we consider in this paper is a nonlinear obstacle prob-
lem in a Lipschitz bounded open set n C Rn. We are interested in the
minimization of the energy

E(u) = ~F|(~u|2) + u2
on the convex set

K03BB = {u ~ H1(03A9), u  03BB on Ç2, 03BC = 03BB0 on ~03A9}
where 0  03BB  Ào are two constants. We make the following assumption
(which implies that the energy E is strictly convex)

(AO) F is a C°° convex function satisfying F’(0) = 1 and lim F’(q)  +~.
q +oo

It is classical that for each À there exists a unique minimizer u03BB of the

energy E on KA. For such a minimizer the coincidence set is

{u = 03BB}
and the free boundary is

8(u = 03BB}
When the free boundary ~ {u = 03BB} is smooth, the solution u satisfies the
following Euler-Lagrange equation

div (F’(|~u|2)~u) = u on 03A9B {u = 03BB}

u = Ào on 8Q

u = 03BB

on ~{u = 03BB}
au = O
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Although there are two boundary conditions on the free boundary, the prob-
lem is not overdeterminated. These two boundary conditions allow to char-
acterize the free boundary 0 tu = 03BB} which is an unknown in this problem.
We refer the reader to the monographs [17, 14, 22] for a presentation of the
classical results on the free boundary of the obstacle problem.

1.1. Main results

Our main result (for a smooth open set and in the linear case) is the

following :

THEOREM 1.1 (Regularity transfer from the fixed boundary to the free
boundary). - Let us assume that the open set 03A9 is smooth, and that F(q) =
q, then the energy E has a unique minimizer ux on Kx for all À E [0, Ào].
Moreover there exists 8 &#x3E; 0 such that for all 03BB E (03BB0 - 8, AO), the free
boundary ~{u03BB = 03BB} is a C°° (n - 1) -dimensional manifold homeomorphic
to ao.

Although this result seems very natural, it was an open problem (even
in this linear case), that we solve here applying the approach of blow-ups
developed by Caffarelli [8] for the regularity of the free boundary of the
obstacle problem. Under the assumption that 8Q E COO, a nonlinear vari-
ant of theorem 1.1 was proved in [5] by A. Bonnet and the author, using
the Nash-Moser inverse function theorem in dimension 2. This Nash-Moser

approach could work in fact in any dimensions, but it can not be applied to
a fixed boundary 8Q less regular than C°° . On the contrary the approach
of Caffarelli [8] allows to deal with non-smooth fixed boundaries 9fL

We extend theorem 1.1 to Lipschitz open set 0 and for general convex
functions F satisfying assumption (AO). More precisely we make the follow-
ing two assumptions on the regularity of fh

(Al) Exterior sphere condition:

There exists ro &#x3E; 0 such that for every point Xo of the boundary aS2,
there exists a point X1 ~ Rn, such that the ball Br0 (X1) is included in

RnB03A9 and is tangent to 8Q at Xo.

(A2) Interior cone condition:

There exist ro &#x3E; 0 and an angle 0:0 E (0, 03C0 2) such that for every point
Xo of the boundary aS2, there exists a unit vector v E sn-l, such that 0
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contains the cone

{X ~ Bro(X0),  X- X0 |X - X0|, v &#x3E;  cos 03B10}
where  ·,· &#x3E; is the usual scalar product. Theorem 1.1 is a corollary of the
following more general result:

THEOREM 1.2 (Regularity transfer from a Lipschitz fixed boun-

dary). - Under assumptions (A0)-(A1)-(A2), the energy E has a unique
minimizer u03BB on K03BB, for all À E [0, Ào]. Moreover there exists 8 &#x3E; 0 such
that for all 03BB E (03BB0 - 8, Ào), the free boundary a {u03BB = AI is a C°° (n - 1 ) -
dimensional manif old homeomorphic to 8n.

In the application that we have in mind, namely a nonlinear free bound-
ary problem arising in the description of superconductors in dimension two
(see Bonnet, Monneau [5], Berestycki, Bonnet, Chapman [2]), the function
Fo is analytic convex but only defined on [0, 4 27) by F’0(0) = 1 and

h = (1 - v2)v ~ v = Fo’(h2)h

Using a L°° control on the gradient of the solution we deduce the following
result in this particular case:

COROLLARY 1.3 (Application to a superconducting model). - Under
assumption (A l)- (A 2), with F = Fo, there exists 8 &#x3E; 0 such that ~03BB E (03BB0 -
8, AO), there exists a unique solution ux minimizer of E on KA satisfying
sup03A9 lB7u)..12  4 27; moreover the free boundary 8 fux 1 is a C°° (n -1)-
dimensional manifold homeomorphic to 8n.

Let us mention that part of the methods of [20] could be adapted to this
model of superconductivity to get informations on the singularities of the
free boundary when A  03BB0 - 8.

We also prove a result on the perturbation (locally in space) of the free
boundary.

THEOREM 1.4 (Local stability of the free boundary). - We assume
(A O)-(A1)-(A2). Let À* E (0, 03BB0) be such that there exists a minimizer U)..*
of the energy E on K03BB* with a free boundary ~ {u03BB* = 03BB*} which is C°° in
a compact set K* of Ç2. Then for every smaller compact set K CC K* there
exists is &#x3E; 0 such that for every À satisfying |03BB - 03BB*|  é, the unique solution
u03BB has a free boundary 8 {u03BB = 03BB} which is C°° in K.



- 293 -

The proof of this result is based on a geometric criterion for the regu-
larity of the free boundary given by Caffarelli in [8] and on the continuity
of the map À 1--+ UÀ. We also refer to the book of Rodrigues [22] for classical
results on the global stability of the free boundary.
Finally we give a bound on the Hausdorff measure of the free boundary,
generalizing to non-smooth fixed boundaries ~03A9, a result of Brezis, Kinder-
lehrer [6] based on fine estimates for variational inequalities. Here the proof
is an adaptation of the work of Caffarelli [9], developed for linear equations.

THEOREM 1. 5 (Bound on the Hausdorff measure of the free boundary).
Under assumptions (A0)-(A1)-(A2), there exists a constant C &#x3E; 0 only
depending on 0, Ào, F such that for any minimizer ux of E on Kx with
À E [0, 03BB0], we have

Hn-1(~{u03BB = 03BB})  C

2. Some known results on blow-up limits

2.1. The simple bloyv-up limit

To prove regularity results on the free boundary, the main tool (first
introduced for the obstacle problem by Caffarelli in [10]) is the notion of

blow-up.
Let us consider a solution u to

0394u = f  1 on {u &#x3E; 0} ~ 03A9

{ 
0394u = f  1 on {u &#x3E; 0} ~ 03A9 

(03A9)  M 
(2.1)

u  0 on 03A9 and |D2u|L~(03A9)  M

with f E C0,03B1(03A9) and f(0) = 1. We assume that Xo is a point of the
free boundary ~{u = 01. Let us consider the following blow-up sequence of
functions 

u03B5(X) = 
u(X0 + eX)

S2

By assumptions, u03B5(0) = ~u03B5(0) = 0 and the second derivatives ID2uEI are
bounded by a constant independent on s &#x3E; 0. By Ascoli-Arzela theorem,
up to extraction of a convergent subsequence (03B5’), we get

uls, ~ u° uniformly on compact sets of Rn

This function u° is called a blow-up limit of the function u at the point Xo.
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In any dimensions, the main result for blow-up limits is the following

THEOREM 2.1 (Caffarelli [10, 8, 11], Weiss [26]; Characterization of a
Simple Blow-up Limit). - The blow-up limit uO is unique and only depends
on the point Xo on the free boundary.

Moreover either Xo is a singular point and then uO is a quadratic form,
i. e.

UII(X) = 1 2 tX·QX0·X  0

where QX0 is a symmetric matrix n x n such that tr QX0 = 1.
Or Xo is a regular point and then there exists a unit vector vXo E Sn-1
such that

U (X) = 1 2 ( max ( X, vX0 &#x3E;,0))2
and the free boundary is a Cl (n - 1)-dimensional manifold in a neighbour-
hood of Xo.

The regularity Cl can then be improved by Kinderlehrer, Nirenberg
results [16], and gives C°° regularity for an obstacle problem where the
elliptic operator has C°° coefficients. It is also possible to get similar results
with analyticity of the solutions when the coefficients are analytic.

2.2. More general blow-up limits

We now recall a result which characterizes the limits of some more gen-
eral blow-up sequences where the origin moves with the scaling.

LEMMA 2.2 (General Blow-up Limits, [8]). - Let

u03B5(X) = 
ue(Xe + 03B5X) 03B52

where Ué is a sequence of solutions to

{ 
0394u03B5 = f03B5  1 on {u03B5 &#x3E; 0} ~ 03A903B5

u03B5  0 on né and |D2u03B5|L~(03A903B5)  M

with |f03B5|C0,03B1(03A903B5)  M. We assume that u, (X,) = 0 and that 1 03B5d(X03B5, ~03A903B5) 
r &#x3E; 0 as s - 0. Then up to extraction of a convergent subsequence (E’), we
get

u03B5’ ~ u0 uniformly on compact sets of Ç2o
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for some open set 03A90 and where u° is convex and satisfies

{ 
0394u0 = f0(0)  1 on f uo &#x3E; ol n ç2o

u0  0 on Ç20 and |D2u0|L~(03A90)  AI

Moreover either

i) the interior of the coincidence set of the blow-up limit is empty:

{u0 = 0}0 = Ø
Or

ii) the interior of the coincidence set of the blow-up limit satisfies

t u 0 = 0}0 ~ Ø
and 0 is a regular point f or uO and also for all uE/ with E’ small enough.

Another useful result is the following nondegeneracy property of the
solution:

LEMMA 2.3 (Nondegeneracy, [8]). - Let u be a solution to problem (2. 1)
and 0 E lu &#x3E; 01. If Br (o) C Q, then

r2
sup 
Br (0) 

(u(X) - u(0))  r2 2n

Proof of lemma 2.3. - Apply the maximum principle to w(X) = u(X) -
U(o) _ 1 2n|X|2 in Br(0) rl lu &#x3E; 01.

3. A bound on the second derivatives

In this section we will prove the following result

PROPOSITION 3.1 (Control near the fixed boundary 8n). - Under the

assumptions of theorem 1.2, let us define 03B5 = F2 Then there exists
constants C, c &#x3E; 0 such that for all À ~ [0, 03BB0] we have

u03BB(X) - 03BB  CE2 on fX E Ç2, dist (X, ~03A9)  cel (3.1)

|~u03BB(Z)|  Ce on Q (3.2)
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and for all à G (0, 1]

|D2u03BB(X)|  C162 on {X ~ 03A9, dist(X, ~03A9)  c03B503B4} (3.3)

Moreover we have

div(F’(|~u03BB|2)~u03BB) = ua 1{u03BB&#x3E;03BB} on 03A9

where for the function uA we define

1 if u03BB(X) &#x3E; 03BB
1{u03BB&#x3E;03BB}(X)={ Q i u03BB(X) = 03BB

Remark 3.2. - For a smooth Ç2, some L°° bounds on the second deriva-
tives are given in [6] for fixed À. Here we need to precise the dependence of
the constants as À goes to Ào. The exterior sphere condition gives a control
(3.1) from below on u03BB, and with the help of Harnack inequality we get the
L°° bounds (3.3) on the second derivatives up to the case À = Ào. Because
the fixed boundary 8Q is not smooth here, the bound (3.3) on the second
derivatives goes to infinity when the point reaches the fixed boundary 8n
(case ô = 0).

We consider the minimizer u x of the convex energy

E(u) = ~03A9F(|~u|2) + u2
on the convex set

K03BB = {u ~ H1(03A9), u  03BB on Q, u = 03BB0 on ~03A9}
We first prove that the minimizer ua satisfies the following Euler-Lagrange
equation

LEMMA 3.3 (Euler-Lagrange équation). -

div(F’(|~u03BB|2)~u03BB) = u03BB 1{u03BB&#x3E;03BB} on 03A9

Although this result seems natural, we do not know any references where
it is proved (except in the linear case). We give a complete proof below.

Proof of lemma 3.3. - Let

(s)+ = { s if s &#x3E; 0

0 if s  0
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Then the minimization of E on K03BB is equivalent to the minimization of the
convex energy

E03BB(u) = ~03A9F(|~u|2) + (u - À)+ + 03BB)2
on the convex set

K={u ~ H1(03A9), u = 03BB0 on ~03A9}
Because u x is the minimizer of E03BB on K, we have for every cp E C~0 (03A9) and
t ~ [0,1]:

E03BB(u03BB + t’1’)  E03BB(u03BB)
Then Lebesgue’s dominated convergence theorem gives

0  lim E03BB(u03BB + t~) -E03BB(u03BB) tt-o t 

= ~03A92F’(|~u03BB|2) ~u03BB~~

+ 2 ua (p sgn+ (u03BB - À) + ’1’+ (1 - sgn+ (u03BB - À)))
where

1 if s&#x3E;0

sgn+ (s) = Î 0 if s  0

Considering ~ and -’1’ we get that div(F’(|~u03BB|2)~u03BB) ~ L~(03A9). Us-
ing the regularity theory for elliptic equations (see [21]) we deduce that
u C C1,03B1loc(03A9). Consequently {u03BB &#x3E; AI is an open set and the Euler-Lagrange
equation is satisfied on this open set. Furthermore a classical argument using
the nondegeneracy lemma 2.3 proves that the Lebesgue measure of the free
boundary 8 {u03BB = 03BB} is zero. This implies the full Euler-Lagrange equation.
This ends the proof of lemma 3.3.

Let us recall that when Q is smooth, there exists a constant Co &#x3E; 0

such that for each 03BB E [0, Àol we have the following properties (see Brézis,
Kinderlehrer [6]):

(Hl)
|~u03BB(X)|  C0 on Ç2

(H2) 
u E C1,1loc(03A9)
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In a first case we will prove proposition 3.1 assuming (Hl)-(H2), and in
a second case we will justify these assumptions.

Case A: we assume (H1 )-(H2) and that 8Q is smooth

Step 1: proof of (3.1)

We will build a subsolution uo such that (for some point Xe: which will
be made precise below)

u03BB(X) - 03BB 03BB  03B52u0(|X - X03B5| 03B5) for IX - Xe: 1 [r0, r0 + 03C40] (3.4)

with 03B5 = 2(03BB0 - 03BB 03BB).
Xi

X0

Figure 1. - Construction of a subsolution outside the ball B|X0-X03B5|(X03B5)

For some To &#x3E; 0, we consider a solution uo of

0394u0 = 03BC &#x3E; 1 on Br0,+03C40(0)BBr0(0)

u0 = 2 on 8Bro (0)

uo = 0 on ~Br0+03C40(0)

By symmetry we have uo((X) = u0(|X|). Let us recall that for each point
Xo E aÇ2, there exists Xi E Rn, such that Br0(X1) is included in RnB03A9 and
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is tangent to ~03A9 at Xo. Now considering the function u03BB at a scale close to
the fixed boundary ~03A9 we introduce the point Xs = X0 + 03B5 (Xl - Xo) and
the following function (see figure 1)

w03B5(X) = u03BB(X03B5 + 03B5X)-03BB 03BB03B52
which satisfies on ü-xE: 

{A03B5(w03B5)  1

0  w03B5  1 2
where the quasilinear elliptic partial differential operator A03B5 is defined in

(4.1).

Moreover for a good choice of 03BC &#x3E; 1, 03C40 &#x3E; 0, we have on Br0+03C40 (0)BBr0 (0):

{ A03B5(u0)  1

0  u0  1 2

Then by the Maximum Principle (see Berestycki, Nirenberg [3]), we can
slide uo below WS and we get

w03B5  u0 on Br0+03C40 (0)BBr0(0)

This is equivalent to (3.4) whose we deduce (3.1). This ends the proof of
step 1.

Step 2: proof of (3.2): estimate on the gradient : |~u03BB]  03BB03B5|u’0(r0)|

We first remark that a straightforward consequence of step 1 is that

lim sup X~~03A9 (03BB0 - u03BB dist (X,~03A9))  03BB03B5|u’0(r0)|

From the fact that u = constant = Ào on an, we deduce that |~u| 
03BB03B5|u’0(r0)| on an. Now the estimate on the gradient cornes from the fact
that the gradient is maximal on the boundary an. For the convenience of
the reader we recall this classical argument.

For u = u03BB, we have

aij (~u)uij = u on 03A9B {u = 03BB}
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where aij(p) = F’(|p|2)03B4ij + 2F"(|p|2)pipj. Let us take v = ~03BEu where
ç E sn-le Then

aijvij + bkvk = v on 03A9B{u = 03BB)

where bk = (aij)’pk· uij. The Maximum Principle implies that v = 8gu is
maximal on 8Q ~~ {u =03BB}. Taking all directions 03BE e Sn-1 we deduce that
|~u| is maximal on an, because i7u = 0 on ~{u = 03BB).
This ends the proof of step 2.

Step 3: proof of (3.3)

Let

w(X) = u03BB(03B5X) - 03BB 03BB03B52
Then

{A03B5(w) = 1 on fw &#x3E; 01

0  w  1 2
where the operator Aé is defined in (4.1). Let Y0 ~ 03A9 03B5 such that

dist (Yo, ~03A9 03B5)  c. We will prove a bound on ID2W(Yo)l. To this end we
will apply the method of Alt and Phillips [1], using the following Harnack
inequality of Krylov, Safonov for non-divergence operator (a similar Harnack
inequality for divergence operator is also applicable, see Gilbarg, Trudinger
[15]) :

THEOREM 3.4 (Harnack inequality for non-divergence operators;
[7]). - If

{ aijvij = f on Bi C Rn

v  0 on on 

B1 ~ Rn

and for the matrix a = (aij)

0  c0  a  C0
.

then there exists a constant C = C(n, Co, co) &#x3E; 0 such that

sup v  C (inf v + |f|Ln(B1))
B, Bî 

We will also use the following interior estimate:
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THEOREM 3.5 (Interior estimate,[15]). - Let us assume that

aijvij + cv = f on Br C R n

and for the matrix a = (aij)

0  c0  a

If for some 03B1 E (0, 1) there exists a constant Co &#x3E; 0 such that

laijILoo(Br) + r03B1[aij]03B1;Br + r2 |c|L~(Br) +r2+03B1[c]03B1;Br  C0
where [·]03B1;Br is defined by

[g]03B1;Br = sup (|g(x) - g(y)| |x - y|03B1)x,y~Br,x~y
Then

r2|D2v|L~(Br 2)  C (|v|L~(Br) + r2IfILoo(Br) + r2+03B1[f]03B1;Br)
for some constant C = C(n, a, Co, co) &#x3E; 0.

Let wr(X) = w (Yo + rX). Applying Harnack inequality theorem 3.4 to
Wr we get

sup w  C ( inf w + r2 (3.5)
B i (Y0) Br 2 (Y0)

Let 

(Y0)
03C1 = w (Yo)2C

i) Case p  cô.

Then Yo is close to lw = 01 and p can be arbitrarily small. We apply
Harnack inequality (3.5) with r = p and we get

0  w(Y0)  sup w  2C inf w

B03C1 2 (Yo ) B03C1 2 (YO)

Let us remark that we have (see theorem 6.1, p. 281 of Ladyshenskaya,
Ural’tseva [18])

[wl03B1;B1  C

where the constant C has the following dependence

C = C(n, a, |w|L~(B2), F, Ão, ro) &#x3E; 0.
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Then applying theorem 3.5, we deduce that

r2|D2w|L~(Br 2(Y0))  C (|w|L~(Br(Y0)) + r2)
With the choice r = p, this implies

|D2w(Y0)|  C

ii) case 03C1  c03B4.

We apply the previous interior estimate with r = c03B4. Using the fact that
|w|  1 2, we find

|D2w(Y0)|  C/Ó2

iii) Conclusion :

|D2u03BB|  C/03B42 on {X En, dist (X, ~03A9)  c03B503B4)}

i.e. (3.3) is proved.

Case B: justification of (H1)-(H2)

Here we consider a general Lipschitz bounded open set 0 satisfying as-
sumptions (Al), (A2) of theorem 1.2. We can mollify this open set n such
that it gives a bigger and smooth open set n7J where ~ is the mollification
parameter such that n7J = 0 for ~ = 0. This smooth open set n7J still
satisfies assumptions (Al), (A2) uniformly in ~ small enough. We can in
particular consider the minimizer u~03BB of the energy

E1J(u) = ~03A9~ F(|~u|2 + u2)
on the convex set

K~03BB = {u ~ H1(03A9~), u  03BB on n7J, u = 03BB0 on ~03A9~}
This minimizer u~03BB satisfies (H1)-(H2), and then (3.1),(3.2),(3.3).

Taking the limit ~ ~ 0, we can extract (by Ascoli-Arzela theorem) a
convergent subsequence u~03BB~ u such that u still satisfies (3.1),(3.2),(3.3).
We have the

LEMMA 3.6. - The limit u is the minimizer UA of the energy E on KA.

This ends the proof of proposition 3.1.
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Proof of lemma 3.6. - Let us recall that by (3.2), u~03BB is bounded in W1,~
uniformly in 17 small enough. Let

AO on 03A9~B03A9
03BB= { 

UÀ on

By construction, we have

E~(03BB)  E~(u~03BB)
At the limit 77 = 0, we get

E(u03BB)  E(u)

The uniqueness of the minimizer ua proves that u uA. This ends the proof
of the lemma 3.6.

4. Regularity of the free boundary near 9fh proof of theorem 1.2

We will prove theorem 1.2, thanks to Caffarelli result (lemma 2.2)
applied to a particular blow-up sequence.

Case F(q) = q

If theorem 1.2 is false, then there exist a sequence of reals sn = 2(03BB0 - 03BBn 03BBn)
~ 0 and a sequence of singular points Xan E 8 (uAm = N’ Because of
proposition 3.1, we have dist(X03BBn, ~03A9) &#x3E; c03B5n. Then we define

w03B5n(X) = 
u03BBn (X03BBn + ênX) - Àn
n

We have

{ 
~w03B5n = 1 + 03B52nw03B5n on fw’- &#x3E; 01

0  w03B5n  1 2
Now from proposition 3.1 we have the following L°° bound on the second
derivatives:

|D2w03B5n(X)|  C for dist(XÀn + énX, 8Q) à Csn

Consequently from lemma 2.2, there exists a subsequence which converges
to a convex function w° defined on S2°, where no is the limit of the sets
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1 03B5n(03A9 - XÀn) (for an extracted subsequence). Moreover w° satisfies

{ 
~w0 = 1 on {w0 &#x3E; 0}

0  w0  1 2 and |D2w0(X)|  C for dist(X, ~03A90)  c

Because n satisfies an interior cone condition (A2), no inherits the same
property. Moreover because we have made a blow-up close to the fixed
boundary an, we deduce that no contains an infinite cone Co with a non-
empty interior. Now we have two cases (see lemma 2.2):

i) the interior of the coincidence set of the blow-up limit is empty, and
then the closure {w0 &#x3E; 0} contains the cone Co. It is then sufficient to take
a ball Br C Co with r large enough such that (by the nondegeneracy lemma
2.3)

sup w0  r2
Br 2n

which is in contradiction with 0  w0  1 2.
ii) the interior of the coincidence set of the blow-up limit is not empty,

and then 0 is a regular point for w°, and also a regular point for w03B5’n for 03B5’n
small enough. This means that Xan are regular points for UÀn. Contradic-
tion.

Case F general

In this case we introduce the operator (for 03B5 = 2 (03BB0-03BB 03BB))

A03B5(w) = a ((03BB0 1 + 03B52 2) 03B5~w) D2w - 03B52w (4.1)

where a(p) = F’(p2)Id + 2F"(p2)p ~ p. Then we have

{ 
A03B5n (w03B5n) = 1 on {03C903B5n &#x3E;0}

0  w03B5n  1 2
A generalization of previous Caffarelli results to more general linear elliptic
operators

L = 03B1ij~ij + 03B2i~i + 03B3
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is available in [8]. This allows us to get similar results in the same way for
our general case.

This ends the proof of theorem 1.2.

5. Stability: proof of theorem 1.4

In this section we will prove theorem 1.4 on stability. A similar result is
already known in the linear case (see for instance the book of Rodrigues [22]
for general results of stability). In our case we use the approach of Caffarelli
[8].

Proof of theorem 1.4. - Let us assume that the theorem is false. Then for
a compact set K CC K* we can find a sequence (.À n)n such that 03BBn ~ À* and
a sequence of singular points (X03BBn)n of the free boundaries a {u03BBn = 03BBn}~K.
Up to extract a subsequence we can assume

XAqz’ ~ XÀ* E {u03BB* = 03BB*} n K

where we have used the continuity of the map

À - u A

The continuity of this map is a consequence of the L°° bound on the gradient
of u03BB uniformly in À (see (3.2)). This continuity easily follows by a classical
argument from Ascoli-Arzela theorem, and the uniqueness of the solutions
UÀ for each 03BB.

Let us recall that for e = 2(03BB0 - 03BB 03BB) we have (the operator A03B5 is defined in
(4.1))

A03B5(w03BB) = 1 on {w03BB &#x3E; 0}
where for some point X03BB e S2:

w03BB(X).= u03BB(X03BB + 03B5X) -03BB 03BB03B52
Using the adaptation of the nondegeneracy lemma 2.3 (see Caffarelli [8]) for
general linear elliptic operators, we get the existence of a constant co &#x3E; 0

such that

sup (u03BBn (X) - 03BBn)  Cor2
Br(X03BBn)

Then at the limit we get

sup (u03BB* (X) - 03BB*)  cor2
Br(Xx* )
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which proves that Xx. E ~{u03BB* = 03BB*}. In particular because XÀ* is a reg-
ular point for UÀ*, i.e. 0 is a regular point for W)..*, we get that the blow-up
sequence

8 (X)- w03BB*(03B4X) 03B42

converges (up to extraction of a subsequence) to a blow-up limit of regular
type (see theorem 2.1; for an extension to general linear elliptic operators,
see Caffarelli [8]):

w003BB*(X) = 1 2 (max( X,vX03BB* &#x3E;, 0))2

We realize that the origin 0 is obviously a regular point of w003BB*. Finally we
can consider the other blow-up sequence:

w03B4n03BBn (X) = wan (6n X)

Because for 6n = ô fixed and 03BBn ~ 03BB*, this sequence of functions converges
to w03B403BB*, we see that we can choose a sequence (6n)n slowly decreasing to
zero such that

W£Î ~ w003BB*
Then applying an adaptation of lemma 2.2 (see Caffarelli [8]) still true for
general linear elliptic operators, we deduce from the fact that 0 is a regular
point for the blow-up limit of w5’, that 0 is also a regular point for w03B4n03BBn for n
large enough. This means that XÀn is a regular point for U)..n. Contradiction.
This ends the proof of theorem 1.4.

6. Hausdorff measure of the free boundary:
proof of theorem 1.5

In this section we give the proof of theorem 1.5, which is an adaptation
of a method of Caffarelli presented in the linear case in [9, 19]. We perform
the proof in two steps.

Step 1

For the function u = u03BB, let

017 = fX ~ 03A9, |~u(X)|  ~ and u(X) &#x3E; 03BB}

For a function u  À, we note

1{u&#x3E;03BB} (X) = { 1 if u(X) &#x3E; 03BB
0 if u(X) = 03BB
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LEMMA 6.1 (Estimate in a neighbourhood of the free boundary). - If

B7 . (F’(|~u|2)~u) = u 1{u&#x3E;03BB} on Ç2

u  03BB &#x3E; 0 on ~03A9

|D2u(X)|  M on fX e Ç2, dist(X, ~03A9)  csl

then for all compact 1C C fX En, dist(X, ~03A9)  c03B5} such that 8K is cI,
there is a constant C = C(M), such that

|O~ n ICI  ~C03BB-2(|K| + Hn-I(8IC))
where |K| is the volume of IC and Hn-1(~K) is the (n - 1) dimensional
Hausdorff measure of its perimeter.

Remark 6.2 (The Hausdorff measure). - Let us recall the definition of
the Hausdorff measure. If U is a set, let

diam (U) = sup 1 X’ - X|
X,X’EU

Then for s  0 and a set A let

Hs03B4(A) = cs. inf Ui)S{{Ui}i, A~UiUi,diam Ui03B4} i

which is a nondecreasing function of 6. Then the s-dimensional Hausdorff
measure is

Hs(A) = lim H8(A)6-0

The constant cs must be chosen such that the Hausdorff measure coincides
with the Lebesgue measure of R s if s ~ N.

Proof of lemma 6.1. - Because F’ ~ C1,1, we have hi E CO,1 where

-~ if F’~iu  -~

hi = F’. ~iu if |F’~iu|  17 (6.1)

17 if F’~iu  ~

We note Xi the vector field defined by Xi = ’7i(F’Vu) E L°°. Then the
Stokes formula gives :

~K~hi· Xi = ~~Khi(Xi · n) - ~Khi(~ · Xi) (6.2)
K aK K
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But B7 . Xi = i7j (i? . (F’i~u)) = ~iu on lu &#x3E; 03BB}, and hi = 0 on lu = 03BB}.
Then

~O~~K~(F’~iu) · ~i(F’~u)  ~C(M)(|K| + Hn-1(~K)) (6.3)

But

~(F’~iu) · ~i(F’~u) = [~i(F’~iu)]2+ 03A3[F’D2iku]2 + o(loul2)
k~i

and

y O(|~u|2|  ~C(M)|K|

Making the sum ¿i’ we get

y E (~i(F’~iu)))2  ~C(M)(|K| + Hn-1(~K)) (6.4)

But 

03A3(~i(F’~iu)))2  (~·(F’~u) 2)2
2 

 u2 4  03BB2 42 4 4

and then we get the expected result.

Step 2

The Hausdorff measure is bounded from above by:

Hn-1(0393)  lim inf 1 ~ 03A3|B~(Yi)| (6.5)
~~0 {B~(Yi)} 77 i

where r = 8 (u = 03BB} is the free boundary, and where {B~(Yi)}i is a recov-
ering of r by balls of center Yi on r and of radius q.

From proposition 3.1, we know that

u(X) - 03BB , ce 2 while dist(X, ân)  ce where e = 2 (03BB0 - 03BB 03BB)
which in particular implies

dist ({u = 03BB}, ~03A9)  CE 
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Now starting from a point Yi on ~ {u = 03BB} we have from (3.3)

u(X) - 03BB  1 2C |X - il2 while dist (X, ~03A9)  cs
2

Therefore we get

dist(B~(Yi),~03A9)  c03B5 while 1 2C~2  c03B522

i.e. for q small enough. Then for such q we have

B~(Yi)~{u &#x3E; 03BB} c B~(Yi)~{u &#x3E; À, |~u|  Col C B1J(Yi)nOC17
From the nondegeneracy lemma 2.3, we deduce the existence of a real -Y E
(0, 1) such that

|B~(Yi) ~ {u &#x3E; 03BB}|  03B3|B~(Yi)|
As a consequence we get

|B~(Yi)|  03B3-1|B~(Yi) ~ OC~
Thus

~-103A3i|B~(Yi)|  ~-103B3-103A3i|~(Yi)~OC~|

 ~-103B3-1~03A9 Li 1B~(Yi)1OC~

 ~-103B3-1 sUP(Li 1B~(Yi)) fa 1OC~

 77- y- SUP(EI 1B~(Yi)) |OC~|

 03B3-1CnC’03BB-2 (j Ke | + Hn-1(~K03B5))
where we have used the fact that we can always use locally finite recovering
{B~(Yi)}i such that Ei 1B~(Yi)  en where the constant only depends on
the dimension n. On the other hand we have applied lemma 6.1 introducing
a smooth compact set Ke such that

.

Kg C {X ~ 03A9, 2c03B5  dist(X,~03A9)  cel

In fact Ke can be seen as a smooth approximation of 8Q. Consequently we
get

Hn-1(0393)  C
where the constant C only depends on 0, Ào and F, and is uniform with
respect to À E [0, Ào]. This proves theorem 1.5.
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