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An example of nonlinear q-difference equation(*)

FRÉDÉRIC MENOUS (1)

ABSTRACT. - We study the formal solutions of the non linear q-difference
equation

x03C3qf - f = b(f,x)
where 03C3qf(x) = f(qx), with a real number q &#x3E; 1 and b(f, x) belongs
to C{f, x} with the conditions b(0, 0) = 0 and (~fb)(0, 0) = 0. We prove
that a solution of this equation can be conjugated to the solution ueq (x) =
uq- logq x(logq x-1)/2 (aqu = u) of the associated homogeneous equation,
with the help of a formal substitution automorphism 0 E C[[x, eq, u, au]].

Following the methods developed by Jean Ecalle, we first express this
conjugating operator 0 as a mould-comould expansion. The mould W.
can be computed and each of its components is a formal series in x.

When b(0, x) = 0, these components happen to be convergent and we
prove that the conjugating operator is also convergent in a well-adapted
topology.

In the generic case, the components of the mould are no more conver-
gent. Nevertheless, these components are q-multisummable. This is not
sufficient to define a good resummation process for the conjugating oper-
ator. Some unsolved problems call for new results in the q-resummation
theory. Besides this, it also seem that the arborification of moulds yields
some simplifications of the encountered problems.

RÉSUMÉ. - On étudie les solutions formelles de l’équation aux q-différen-
ces non-linéaire

x03C3qf - f = b(f,x)
où aqf(x) = f (qx), avec un nombre réel q &#x3E; 1 et b(f, x) est dans C{f, x}
avec les conditions b(0, 0) = 0 et (~fb)(0, 0) = 0. On prouve que les so-
lutions de cette équation peuvent être conjuguées aux solutions ueq(x) =
uq- logq x(logq x-1)/2 (aqu == u) de l’équation homogène associée, grâce à
un automorphisme de substitution formel 0 E C[[x, eq, u, ~u]].

. 

En suivant les méthodes développées par Jean Ecalle, on exprime tout
d’abord cet opérateur conjuguant 0 comme une série moule-comoule. Le
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moule W* peut être calculé et chacune de ses composantes est une série
formelle en x.

Lorsque b(0, x) = 0, ces composantes sont convergentes et on prouve
que l’opérateur conjuguant est aussi convergent pour une topologie adaptée.

Dans le cas générique, les composantes du moule ne sont plus conver-
gentes. Néanmoins, ces composantes sont q-multisommables. Cette pro-
priété n’est pas suffisante pour définir un procédé de resommation adapté
à l’opérateur conjuguant. Ces problèmes semblent nécessiter de nouveau
développements en théorie de la q-resommation. Parallèlement, il sem-

ble que le procédé d’arborification des moules permet de simplifier les
problèmes rencontrés.
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1. Introduction

Let q &#x3E; 1. There has been many recent developments in the theory of lin-
ear q-difference equations. In [2] C. Zhang introduces the notion of q-Gevrey
asymptotic expansions of order 1 and of q-summable formal series. In [3],
C. Zhang and F. Marotte define the notion of q-multisummable formal series:
they develop a q-analog of the usual accelerosummation or multisummabil-
ity. With the help of this new resummation theory, they prove that the for-
mal solutions of a linear q-difference equation are q-multisummable. There
also has been very recent results on the analytic classification of linear q-
difference equations.

Our aim is to try to develop analogous results for non linear q-difference
equations, with the help of the methods developed by J. Ecalle in [1]. We
focus here on the most simple case.

In section 2, we introduce the non linear q-difference equation

where 03C3qf(x) = f (qx), with q &#x3E; 1 and b( f , x) E Cf f, x} with the condition
b(0, 0) = 0 and (~fb)(0, 0) = 0. We try to express a solution of this equatio
as a conjugate to the solution ueq(x) = uq- logq x(logq x-1)/2 (03C3qu = u) 0
the associated homogeneous equation, with the help of a formal substitutio]
automorphism e E C[[x, eq, u, ~u]]. Following the methods developed by
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Jean Ecalle, we first express this conjugating operator 8 as a mould-comould
expansion, with the help of a mould W2022.

In section 3, we give a recursive definition of the mould W* and prove
that it is symmetrel. It implies that the operator e is a formal substitution
automorphism.

In section 4, we solve a family of elementary linear q-difference equations.
These solutions allow us, in section 5, to give a formula for the mould W*.

We study in section 6 the convergent case: when b(O, x) = 0, the com-
ponents of the mould W. happen to be convergent and we prove that the
conjugating operator is also convergent in a well-adapted topology.

In the generic case, the components of W* are no more convergent.
We recall in section 7 the definitions related to q-summability and prove
in section 8 that the components of W* are q-multisummable. This is not
sufficient to associate a sum to the divergent operator e and we give in
subsection 8.2 a list of problem that remain unsolved.

As this seem to bring some simplifications for the previous unsolved
problems, we introduce in section 9 the notion of arborification of a symme-
trel mould. We give an expression for the arborescent mould W2022 associated
to W. and translate our unsolved problems in terms of W2022.

Our unsolved problem are expressed in the conclusion (section 10) in
terms of questions about the algebraic structure of q-multisummable formal
series which are solution of a linear q-difference equation.

2. An example of nonlinear q-difference equation

The aim of this paper is to study the formal solutions of the following
equation:

where 03C3qf(x) = f (qx), with q &#x3E; 1 and b( f , x) E C{f, x} with the followir
conditions:

The solution of such an equation is well-known in the case where b = 0

2.1. The homogeneous equation

Let
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The solutions of this equation are the "q-exponential" functions, by analogy
with the usual exponential function, which is a solution of the differential
Euler equation.

One can check that the function defined by eq(x) = q-2 logq x(logq x-1)
(on the Riemann surface C2022) is a solution of equation (E0). Any solution of
(Eo) can then be written eq(x)u(x) where u(qx) = u(x). Such a function u
is called a q-constant.

Starting with a solution ueq of the homogeneous equation, we try to
find a formal solution of equation 2.1 which is formally conjugate to ueq.
Following the ideas developed in [1], we try to find a conjugating operator

where G is a formal substitution automorphism such that E) . (ueq) is a forma
solution of equation 2.1. 

2.2. Necessary conditions on e

2.2.1. Notations

Let us consider once again b(f,x) ~ C{f, x} with b(0, 0) = 0 an

(~fb) (0, 0) = 0. This function can be written:

If we consider the set

wher

then, for a given variable u (which should be considered as a q-constant), 
one can define the following operators.

where bn,03C3 = b77, These operators are useful in the study of nonlinear differ
ential equations but we will need here some slightly different operators.
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DEFINITION 2.1. - Let

For 1] ~ H, the operator D~ is defined by:

It is important to notice that, for any ~ = (n 03C3) E H, the operator
D~ is a finite sum which degree in ~u is at most n + 203C3. In section 6, these
operators will be studied in details. It is easy to see that:

and,

D is a "convergent" substitution automorphism:

and the notion of convergence will be developed in section (

In fact, B is actually defined by,

and this is indeed the Taylor expansion of ~(u+b(u, x), x) at the point (u, x)
that allows us to define the components D~. This definition of D ensures that
it is a "convergent" substitution automorphism.

In order to define the conjugating operator 8, we introduce some nota-
tions :

DEFINITION 2.2. - Let H - Us1Hs be the set of sequences of elements
of H. If 1] = ~1,..., e H, then
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Moreover’~ = ~2,..., ns, ~in = ~1 and, finally,

If we refer to [1], the set {D~}~~H defines a cosymmetrel comould. Let
us go back now to the definition of Q.

2.2.2. The automorphism 8

As the function ueq is a solution of

we must define a substitution automorphism 6 on C[[eq, x, U, ~u]] such that
the function

is a solution of

To do so, we will look for an operator 6:

where W~ ~ C[[eq, x]]. This set of monomials defines a mould W* and, as
Q must be a substitution automorphism, this mould has to be symmetrel
(see [1]). Let us investigate what should be the definition of the mould W.

3. First steps on the mould W

3.1. Recursive functional équation for W*

Suppose that

is a solution of

where 0 is a substitution automorphism. Then,
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First,

and

Plugging these expressions in the equation, we get:

THEOREM 3.1. - The monomials (W~)~~H must satisfy the following
recursive functional equation:

with WØ = 1.

Assuming that the mould W* is completely determined by these equa-
tions, we can already check that Q is a substitution automorphism, that is
to say that the mould W* is symmetrel.

3.2. Symmetrelity of W*

We prove here that, if well-defined, the mould W is symmetrel.
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) two sequences of H~{Ø}. The symmetrelity rela-
tions will be proven by induction on l = l(~) + 1(p).

For l = 0, it is obvious that

For l = 1,

Suppose that the symmetrelity relations are satisfied for a given l  1. If

ri E H with l(~) = l + 1, then

If (~, 03BC) e H2, with l(~) + 1 (ti) = l + 1, then

thus

If we can define the inverse of (03C3q - 1), then we get the symmetrelity relation
at order l + 1. This ends the proof of the following theorem.
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THEOREM 3.2. - If the mould W2022 is completely defined by the recur-
sive equations 3.5, then this mould is symmetrel and O is a substitution
automorphism.

It remains to prove that the mould W* is uniquely defined by the equa-
tions 3.5. This is the goal of sections 4 and 5. But we can notice first that
we can factorize some q-exponentials in the monomials of W.

3.3. The mould W.

Let us define a new mould W*.

DEFINITION 3.3. - For 7y = (~1,...,~s) E H. The monomial Wl1 is
defined by

It is clear that W0 = 1 and

thus

We can then conclude that

THEOREM 3.4. - If the mould W* Z*s uniquely defined by WØ = 1 and:

then this mould is also symmetrel and the mould W2022 is uniquely definea
Moreover

is a substitution automorphism that conjugate the function ueq to a formal
solution of
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In the two following sections we prove that the mould W. is uniquel3
determined by the equations 3.8 and that:

To do so we first study, for ~ E H, the solutions c

4. Resolution of (E~) : Sn() = xa

formal solutions of the equation (E~)

which defines the monomial W7.

4.1. Case ~ ~ H/H0

In this case ~ = (n 03C3) is such that n  0 and 03C3  -n. If m = -n, the

equation (E~) becomes:

Thus

If V is the valuation of f, then V() = cr, f03C3 = -1 and, for k &#x3E; cr, if

k - 03C3 ~ 0 [m], then fk = 0. Otherwise, if k = cxm + cr (03B1 &#x3E; 0) :

thus
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It means that

where [k]q = q-k(k-1)/2.

4.2. Case n = 0

We have S0() = (03C3q - 1)1 and if 0 E H, then 03C3  1. It implies

that:

thus

4.3. Case n  1

We have S, (f) == (x-naq - 1) f and

thus
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and finally

4.4. Conclusion

In every case:

THEOREM 4.1. - Let ~ = 
n 

E H. The equation (E~):

has a unique formal solution:

with 03B5n = 1 (resp. 03B5n = -1) if n  0 (resp. n  0), Zn = Z+* (resp. Z-) if
n  0 (resp. n  0) and [k + l]g = q-k(k+1)/2.

Using this theorem, one can uniquely define the mould W2022 and we even
have a closed formula.

5. A formula for the mould W2022

We recall that our goal is to define and study the monomials W~ where

then the monomial W~ is a formal series with the following expressior

with the notations
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This result is proven by induction on s. For s = 1, the result is simply the
1 B.

thus

but

and

where k = (k1, ... , ks) and ki - k1 + ... + ki. But
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and it ends the proof.

This theorem calls for some remarks:

2022 From the formal point of view, we have completely defined a formal
substitution automorphism 8 such that 0398(ueq) is a formal solution
of

e Generically some monomials in the mould W* will be divergent. This
call for the definition of a resummation process, in order to get some

convergent solutions of the above equation.

2022 If ~ = (~1,..., ~s) ~ H is such that, for 1  i  s, ni = ni + ... + ns
is non-negative, then the monomial W’rI is a convergent power series.

2022 This happens automatically if b(O, x) = 0. In this "convergent" case,
there is no need for resummation and we shall prove in the following
section that Q itself is a convergent operator.

6. The convergent case b(O, x) - 0

We consider once again the equation

but now b(O, f ) = 0 and ~b ~f (0, 0) = 0. In our previous results, we can restric
ourselves to

and then

Once again H = Us1Hs. We first prove that the monomials W. and W*
are convergent and we give some estimates in the neighborhood of (0,0).
We give then some bounds for the semi-norms associated to differential
operators {D~ yy e H}, so that we can prove the convergence of 6 in the
"convergent case". Let us first begin by giving some definitions, as well as
some combinatorial results on the structure of H.
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6.1. Seminorms

In order to study the convergence of such operators as 6, we need to de-
fine some seminorms on differential operators in au, acting on Clx, ul. Let
cp E C{x, u}, and P an operator of C{x, u} into itself. We have the semi-
norms

Where U and V are two (x, u)-neighborhood of (0, 0). A series 03A3 Pn i;

normally convergent if 03A3 ~Pn~U,V converge for at least a pair U, V. W(
should now only consider the following neighborhoods:

As we are going to deal with sums on H, we first need some enumerative
properties on this set.

6.2. Combinatorial properties

For ~ E H, we define its weight N(~) = n + cr. It is clear that

This weight can be extended to H:

DEFINITION 6.1. - Let
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One can see immediately that

LEMMA 6.2. - We have the following bounds:

and it is clear that, for ~ E H, if s &#x3E; N(~) then P(~, s) = 0.

Let us go back to the study of the moulds W* and W*.

6.3. Estimates for the moulds W. and W

In the convergent case, every monomial of W* is convergent. We give here
some estimates for W. and W*. These bounds are valid for |x|  a  1 but

we must keep in mind that, if for W., we can restrict ourselves to complex
numbers x, for W*, because of the q-exponential factor, we will consider x
as an element of C, the Riemann surface of the logarithm.

and

In the convergent case, if yy = (~1,..., ~s) = (n1,...,ns 03C31,...,03C3s ) = (
n 

E H,
then the monomial W~ is a convergent power series with the following
expression:
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where [k + l]q = q-k(k+1)/2. if k  1 then [k + 1]q  q -k thus,

If |x|  03B1  1 (x E C) then

Note also that

So, if x E Va,c = {x E C; |x|  03B1 and |argqx|  C} with ex  1 then

and this ends the proof of the lemma.

To prove the convergence of Q, it remains to find some bounds on the
operators D~ (~ ~ H).
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6.4. Bounds for differential operators

There exist B &#x3E; 0 such that

We remind that U03B5 = f (x, u) E CC2; |x|  03B5 and |u|  03B5}.

LEMMA 6.4. - Let 0  a  03B2 and cp a holomorphic function in the

neighborhood of U03B2, then, for any ~ = 
n 

E H,

thus,

We have

and, using the Cauchy estimates,
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thus

This ends the proof of the lemma and we can deduce from this that

LEMMA 6.5. - For 0  a  03B2 and cp a holomorphic function in the

neighborhood of U03B2, then, for any ~ = (~1,..., ~s) (n1,...,ns03C31,...,03C3s) =

First, consider 03B1 = as  Qs-1  ...  ai  ao = (3, then

where Ni - N(~i). We have to estimate

If
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the]

and

thus Q2  Cel = f(03B10, a2, Nl, N2)  ao and

and

thus, for this choice of 03B11,

Using recursivly this formula, for s  2, we can find (03B10 = 0 and 03B1s = 03B1)

such that 03B1  03B1s-1  ...  QI  {3 and

and finally

where Ni - N(~i) and N = N(~). Using now that

we get the attempted result.
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6.5. Conclusion

Putting together these different results, we get

THEOREM 6.6. - Let us consider the equation

with b(0, x) = 0 and ~b ~f(0,0) = 0. For any C &#x3E; 0, there exists 0  ce  1

such that the formal solution:

is indeed a normally convergent series in

It is clear that

and

thus, : 

We can choose (3 = 1 so, if a is such that a  1 and eq(03B1)qC2/2  1,
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For é &#x3E; 0, there exists a is sufficiently small such that

and as

then, i:

we ge

It is clear now that we have the right result by considering E sufficiently
small.

We have established the convergence of the formal solution in the con-

vergent case. There is no hope for such a simple result in the general case,
as some of the monomials of W’ are divergent series. The only hope for
such monomial is to find a resummation process, which, as in the classical
framework of differential equations, yields some sectorial sums having these
divergent series as their asymptotic expansion. The usual Borel-Laplace
transforms cannot work here as because the classical Borel transform does
not yield a convergent function. Nevertheless, there has been some recent
results by C. Zhang (see [2],[3]) on a q-analog to the Borel-Laplace trans-
form.



-444-

7. Notions of q-summability

We just give some definitions and properties here. For more details, see
[3].

7.1. Definitions

Here, k and s are positive real numbers such that ks - 1. Let

f(x) = 03A3 anxn E C[[x]]. Let

be the formal q-Borel transform of order s (or of level k) of f. The invers(
of s is the formal q-Laplace transform of order sÊ, and the set of q-Gevrey
series of order s is 

Once again C is the Riemann surface of the logarithm. If log is the principal
determination of the logarithm then, of course,

For 03B8 ~ R,

is the direction of argument 03B8. A sectorial neighborhood of d03B8 is a subset d
:

An analytic germ is an analytic function defined in a disc:

and 0) is the set of such germs.

An analytic function ~ defined on a radially unbounded open set V has
a q-exponential growth of order k and of finite type if there exists 03BC ~ R
such that

We note 03B8s the set of functions cp E  that can be analytically continued
in a sectorial neighborhood of de such that

1. cp has an asymptotic development in the sense of Poincaré at "0 e CC"
in V;
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2. cp has a q-exponential growth of order k and of finite type in V.

Then

DEFINITION 7.1. - Let f E C[[x]]s and 03B8 E R.

(i) f is q-summable of order s in the direction de if sf E H03B8s; we note
-10

(ii) de is a singular direction of order s for f if sf ~ H03B8s : 03B8 E DS(f).

(iii) f is q-summable of order s (f E C{x}s) if DS(f) n [0, 203C0] is finite.

For example

is q-summable of order 1 and DS( f ) == {2k7r ; k e Z} as:

If f E C{x]s, we can define the analytic q-Laplace transform of je = SOBsf
in the direction de (0 e DS(f)) where Se is the the operator of analytic
continuation along do:

and fo E 0 is the q-sum of order s of f in the direction do.

There exists also a convolution product on C[[x]]s: Let f(x) == 03A3 anxn
and g(x) = 03A3bnxn two elements of C[[x]]s and f and 9 be their respective
formal q-Borel transform, then

There is a first difference with the classical Borel-Laplace transform: If f
and g are two element of C{x}03B8s then f g E C{x}03B8s/2 thus f g is not q-

summable of order s (see [3]). To circumvent this difficulty, we need to
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define q-multisummability (see [3]). Let Q+ be the set of strictly increasing
sequences of elements of R+*.

DEFINITION 7.2. - If s = (s1,..., sr) E 03A9+, 03B8 E R and f E C[[x]],

1. f is q-multisummable of order s in the direction de (f E C{x}03B8) if:

2. If f E C{x}03B8 the q-sum of f in the direction de is:

3. The direction do is singular for f (0 E DS(f)) if f ~ C{x}03B8.
4. f is q-multisummable of order s if DS(f) n [0, 203C0] is finite. We note then
f E Clxle.

For details, see [3].

7.2. Applications

We just give two results that are enclosed in [3].

PROPOSITION 7.3. - Let 0 E R and s &#x3E; 0.

Let A be a q-difference operator

where m  1, 03B10(x)am(x) ~ 0 and aj(x) E C{x}. Let val(aj) be the
valuation of ai. We note PN(A) the Newton polygon of A: it the con-
vex hull of the ascending half-axis starting from the points (j, val(aj))
(0  j  m). One can suppose that the slopes of PN(A) are integers.
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THEOREM 7.4 (Zhang and Marotte). - If f ~ C[[x]] is such that 0394f E
C{x}, then f ~ C{x} where the elements of s E 03A9+ are the inverses of
the positive slopes of PN(0394). In particular, if PN(0394) has no positive slope,
then f E C{x} = C{x}Ø.

This last result should be useful to study the q-multisummability of the
monomials of W2022.

8. q-multisummability for W2022

8.1. First result

THEOREM 8.1. - For ri E H, there exists ~ such that

This result becomes obvious by noticing that there exists A ri E C{x}[03C3q]
and g~ E C{x} such that

For ~ E H, we note DS(~) = DS (W17). Unfortunately, this result is not

sufficient to define a global q-sum for the operator 6. We give now a list of
problems that remain unsolved.

8.2. Open problems

8.2.1. Problem 1: Orders of q-multisummability

For vy E H, we would like to have a complete description of ~. If

~ = (n1 ,..., ns03C31 ,..., 03C3s) , the first computations for s - 1, 2, 3 indicate that

the elements of 8’1 are the numbers

and it should not be so difficult to prove this.
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8.2.2. Problem 2: Singular directions

For ri E H, it does not seem easy to find the set of singular directions

DS("1). One can note that if n &#x3E; 0 and (7  n then q = 
n 

) E H and

A?7 - xn03C3q - 1, g~(x) == xO" thus

and DS(~) = {2i03C0k n, k ~ Z} (see [3]). So, for il E H, DS(1J) is discrete but
we would like to define a global q-sum 039803B8 for 6 by

It means that we must have

but this set is no longer discrete. This problem seems unavoidable and is
one of the motivation for introducing arborification (see section below).

8.2.3. Problem 3: Symmetry relations for W.

Let us just forget the previous problem and suppose that we can define
a global q-sum 039803B8 for 0 by

The operator e was a substitution automorphism because the mould W.
is symmetrel:

If (~, m) E H2, then,

But 80 must also be a substitution automorphism: For

we must check that:
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and this problem is non-trivial. To prove such identities, we would need to
prove that there exists (~,03BC) ~ 0+ such that

Note that such a sequence (~,03BC) exists as one can prove that W~W03BC is also
a solution of a q-difference equation (see [3]).

8.2.4. Problem 4: Estimâtes and convergence of 80

Let us now forget the two previous problems. It means that we could
define a symmetrel mould W202203B8 for some 0 E R by:

It remains to prove that the substitution automorphism

is a convergent operator. On one hand, there should not be any difficulty to
get similar results to those obtained in Lemmas 6.4 and 6.5. On the other

hand, our guess is that we do not have such good estimates for W202203B8 as in
Lemma 6.3. This would mean that 8e is no longer normally convergent and
this motivates once again the introduction of Arborification.

Let us now define the arborification and show what these problems be-
come.

9. Arborification for the mould W.

9.1. Reminder on the contracting arborification

We follow the definitions of J. Ecalle [1]. Let us consider an additive
semigroup H. The set H is the set of sequences on H, where a sequence is
a totally ordered sequence of elements of H, with possible repetitions.

An arborescent sequence on H is a sequence ~ = (~1,..., ~s)  E H
of elements of H with an arborescent order on the indices {1,..., s}: each
i E {1,..., s} possess at most one predecessor i_. We note ~ = ~’ ~ ~"
the disjoint union of ~’ and ~", the partial orders of ~’ and ~" being
preserved and the elements y are not comparable with those of ~". 0 is
the empty sequence. A sequence ~ is irreducible if it is not a disjoint union
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of smaller nontrivial sequences; that is to say that it has exactly one least
element.

We remind here that a mould A2022 = {A~} on H with values in a commu-
tative algebra is a family of elements A7 indexed by the sequences 17 E H of
H. For example, W* is a mould on H with values in C[[x]]. Moreover, this
mould is symmetrel: W0 = 1 and, for any pair (~’, rl"), we get

Where ctsh ~’, ~"~) is the number of ways to get Ty by contracting shuf-

fling of ~’ and ~".

We also remind that an arborescent mould A2022 = {A~} on H witt
values in a commutative algebra is a family of elements A~ indexed by thE
arborescent sequences ~ E H of H. Such an arborescent A2022 is separativE
if: 

We get such arborescent separative moulds by contracting arborification
of symmetrel moulds. This operation is defined as follows.

Let ~ = (~1, ... , ~s)  be an arborescent sequence and ~’ = (~’1, ..., ~’s’)
a totally ordered sequence. Let cont ( ~~’ ) be the number of monotonic
contractions of ~ on ~’, that is to say the number of surjections a from
{1,..., s} into {1,...,s’} such that:

The relation

defines a homomorphism from the algebra of moulds into the algebra of
arborescent moulds. Moreover, the contracting arborification of a symme-
trel mould is separative. One can also notice that, if ~ is a totally ordered
sequence and ~ is that arborescent sequence with the same order (total),
then A~ = A’7.

Let us now focus on the mould W2022.
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9.2. The arborescent mould W2022

We will first change some notations. Let ~ = (~1,..., ~s) be an a:

borescent sequence of length s and of sum ~~~ = ~1 + ... + ~s. We redefir
the partial sums:

where the orders  and  are now relative to the partial order on {1, ...,s,
We have the following theorem:

H, then the monomial W~ is a f ormal series and.

with the following rules

The proof is similar to the proof of Theorem 5.1.

We must now define a dual operation, the coarborification, on the co-
mould {D~}~~H, which is such that

9.3. Definition of the coarborification

THEOREM 9.2. - There exists a unique arborescent comould D2022 with

the three following properties:



-452-

(i) D2022 is coseparative: DØ = 1 and

with a sum extended to the arborescent sequences ~’, ~" (even the empty
sequences) which disjoint union is ~.

(ii) If deg(~) = d, D~ is a differential operator of degree d in ~u:
if the sequence ~ has exactly d minimal elements and thus:

the operator D~ can be written:

(iii) If ~ = ~1.~* (~ has a least element ~1 followed by an arborescent
sequence ~*) we get:

Moreover, as D2022 is cosymmetrel

These results were proven by Jean Ecalle (see [1]). Note that D0 = 1 and

and if the length of ~ is greater than two:

2022 Either ~ is irreducible: ~ = ~1.~* and of degree d = 1. Thus:

e Either ~ is reducible of degree d  2 and ~ = ~1 ~ ... EB ~d
(with ~i irreducible and i- 0), in this case:

where dl, ..., ds are the numbers of identical arborescent sequences
~j in the decomposition into irreducible sequences, of course

03A3 di = d.
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One can also notice that if a sequence ~ is irreducible of sum

~~~ ~ Ho, then D~ = 0. This property remains valid if ~ has at least
a monotonic partition ~1, ..., ~s with an irreducible part ~i such that
~~i~ ~ Ho. It means that we can restrict ourselves to the arborescent se-
quences (~1,..., ~s) such that, for 1  i  s, i = 03A3ji ~j ~ Ho. We note
H0 this set of sequences. For details, see [1]. We can finally write

We end this section with a discussion on the interest of using the arbori-
fication - coarborification to solve the problems described in section 8.2.

9.4. Open problems

As in section 8.1, we get

THEOREM 9.3. - For ~ E H0, there exists ~ such that

To prove this it is sufficient to notice that, once again, there exists

0394~ E C{x}[03C3q] and g~ E C{x} such that

For ~ e H0, we note DS(~)= DS(W~).

9.4.1. Problem 1: Orders of q-multisummability

For ~ E H0, we would like to describe s~. This doesn’t seem as simple
as in the case of totally ordered sequences. If

The set s~ contains the elements of s1, ... , s~d but, as
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the multiplication of the different factors yields new elements in s~. Nev-
ertheless, we can assume that if ~ e Hô is of length r and for 1  i  r,

i  0 (with respect to the partial order inherited by n), then W~ is a
convergent power series. Otherwise, the greatest element in s~ is always
1. This means that, to compute the q-sum, one always starts by a Borel
transform of order 1.

9.4.2. Problem 2: Singular directions

For ~ E H0, if W~ is not a convergent power series, it seems that, af-
ter a first Borel transform of order 1, we always get a meromorphic function
whose poles are {qn ; n  0},

But it seems that, if 03B8 ~ 0[27r], we can perform the successive accelerations
(to get the q-sum), and the accelerated functions do not have any singular
direction. This would mean that

This result needs to be proven but, if it is true, there is no problem of
singular directions as

This means that, if 03B8 ~ 0[27r], we can define a q-sum for 0:

9.4.3. Problem 3: Symmetry relations for W2022

The operator
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is a substitution automorphism because the arborescent mould W2022 is sepa-
rative: If ~ = ~1~...~~d then W~ = W~1 ... W~d. If we want 039803B8 to
be a substitution automorphism, we must check that, if ~ = ~1 ~...~~d
then, for 03B8 ~ 0[203C0],

but this property is not obvious.

9.4.4. Problem 4: Estimates and convergence

Suppose that we could define a separative arborescent mould W03B82022 foi

03B8 ~ 0[27r] by:

It remains to prove that the substitution automorphism

is a convergent operator. Our guess is that we do not have such good esti-
mates for W03B82022 as in Lemma 6.3. But, due to the coarborification, the norms
associated to the operators D~ must become much more smaller than in
the Lemma 6.5. This phenomenon did already appear in numerous examples
(see [1]) and it should reestablish the convergence of 80. The problem that
remains to solve is to get precise estimates on the behavior of W03B82022 in the

neighborhood of 0.

10. Conclusion

There are still problems to be solved to get a complete understanding of
non-linear q-difference equations. This calls essentially for new theoretical
results on q-multisummability of formal series that are solutions of a linear
q-difference equation.

The different problems can be summarized as follows. The set A E C[[x]]
of formal power series that are solution of a linear q-difference equation
is an algebra. If fi and f 2 are two elements of A, it is not difficult to

see (algorithmic-ally) that fi + f 2 and f1.f2 are solutions of some linear
q-difference equation. Because of the results of Zhang and Marotte (see
[3]), each element of A is q-multisummable. The results we need can be
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formulated as follows: Let 40 = {f 4 ; 03B8 ~ DS(f)}. If f E A03B8, f is q-
multisummable and we note Se f E O its q-sum. This defines an application
from 40 into  and the fundamental questions we need to answer to are:

1. Is Ao an algebra ?

2. Is Se an homomorphism from 40 into  (this would solve many of
our problems) ?

3. Can we get precise estimates on S03B8f E  in a neighborhood of 0,
knowing precisely the linear q-difference equation having f as a solution
(This would help in problem 4) ?

We should be optimistic on these problems.

Besides these questions, there should not be any difficulties to generalize
our methods to systems:

with, for 1  i  n, bi(0, 0,..., 0) = ~ ~fibi(0, 0,..., - 0. The only new
phenomenon should be one similar to the one that appears in the study of
vector fields and diffeomorphisms (see [1]): There should be some problem
of resonance and small divisors related to the multipliers Ài and we will
certainly have to add some Diophantine condition on these multipliers. On
the same way, we should be able to apply our methods to systems with
several levels:

with (k1,..., kn) E Zn. We should study such systems in the future.

We didn’t write anything about the analytic classification of such sys-
tems of q-difference equations. There is a lot of work to be done here. Fol-
lowing the ideas of Jean Ecalle (see [1]), there should be a way to define
q-alien derivations related to the definitions of the q-summability. Only a
few steps have been, done on the way to define such operators but they seem
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to exist and, as in the classical case of differential equations, these operators
should lead us to find a Bridge equation that encodes the analytic invariants
associated to such systems: this would yield a complete description of the
analytic classification and of the Stokes phenomenon.
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