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The arborification-coarborification transform:

analytic, combinatorial, and algebraic aspects(*)

JEAN ECALLE (1), BRUNO VALLET (2)

Annales de la Faculté des Sciences de Toulouse Vol. XIII, n° 4, 2004

ABSTRACT. - This expository paper is devoted to the so-called arbori-
fication-coarborification transform which, by automatically carrying out
suitable regroupings, often manages to restore convergence in multiple
expansions that, in raw form, would seem hopelessly divergent. We first
unravel the underlying combinatorics. Then we review 14 applications to
complex analysis and holomorphic dynamics. Lastly, we present some new
algebraic material : a bevy of some twenty richly structured "u-functions",
which are defined simultaneously on all symmetric groups Sr. Since all
these objects originate in arborification, their ’distinctiveness’ rubs off
on that particular transform, reinforcing its privileged status among all
possible alternatives.

RÉSUMÉ. - Nous tâchons de faire le point sur l’arborification-coarborifica-
tion. Il s’agit là d’une transformation générale qui effectue, au sein de
séries multiples divergentes, des regroupements judicieux susceptibles
d’instaurer la convergence. Nous examinons la méthode tour à tour sous

trois angles : combinatoire, analyse, algèbre. La partie algébrique présente
une multitude de "or-fonctions" (i.e. de fonctions définies simultanément
sur tous les groupes de permutations) apparemment nouvelles et aux pro-
priétés très riches. Tous ces objets, liés qu’ils sont à l’arborification, con-
firment indirectement le statut privilégié de cette dernière parmi toutes
les transformations concurrentes.
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1. Arborification-coarborification as a spécial case
of fusion-fission

1.1. Introduction. Why arborify? 

Analysis often presents us with so-called mould-comould expansions, i.e.
infinite series of the form :

which, despite being divergent, somehow ought to converge, or at least to
be re-arrangeable into convergent shape. But let us be a bit more specific.
These expansions SS typically involve three ingredients :

- a highly multiple indexation, with "2022" running through an infinite
set of sequences 3 of arbitrary lengths r = r(.).

- a mould part A2022, usually consisting of scalars, or scalar functions of
some variables xi or parameters ti.

(3) usually, "2022" runs through a monoid freely generated by a countable index reservo
03A9 such as N or Z or Nv or Zv.
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- a comould part B., usually consisting of operators, which most of
the time are ordinary differential operators in the variables xi, but of
high degree d.4

Unfortunately, as pointed out, these mould-comould expansions SS tend
to be normally divergent 5 even when there are strong reasons to suspect
that the corresponding power series Si := SS.xi do, in fact, have positive
convergence radii. No contradiction hère : since a great many terms A*B.
in SS contribute to any given Taylor coefficient of Si, there is ample scope
for mutual cancellations or compensations within each Taylor coefficient.
The challenge, therefore, is to regroup - preferably, in a conceptually ap-
pealing and universally valid manner - the terms in SS so as to make the
suspected cancellations manifest. Clearly, these regroupings should be car-
ried out adroitly, and be exactly the right size : neither too vast, for then we
would get unmanageably large expressions and the mechanisms responsible
for compensation would remain as opaque as they are "inside" the Taylor
cofficients of the Si, nor too constricted, for in that case there would be no
opportunity for compensation to take place.

One extremely general way of re-ordering our expansions SS to achieve
promising re-groupings is to move from the "2022"-indexation by totally ordered
sequences to some "#"-indexation by partially ordered sequences, for some
specified type of partial order.

The idea translates into the general fusion-fission transform :

with dual rules for the mould and comould parts :

Fusion rule :

Fission constraint :

which automatically ensure that SS remains globally unchanged. Here, the
coefficients Fe are either 1 or 0 and the notation 2022  # says that, while
both sequences 2022 and # consist of exactly the same elements wi with exactly

(4) quite often, the B03C91,...,03C9r are simple products Bwr ... B,,, of first-order differential
operators, in which case length and degree coïncide : r = d.

(5) i.e. L |A2022|.~B2022~ == +- for any reasonable norm or semi-norm Il.11
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the same multiplicities, the second sequence has on it a partial6 order weaker
than, but compatible with the total order of the first.

As a special case, we have the arborification-coarborification transform :

with the dual rules :

Arborification rule :

Coarborification constraint :

which correspond to the choice of arborescent orders. In other words, we
work here with partially ordered sequences , each élément of which
possesses at most one antecedent, which we denote 03C9i_. Minimal elements,
or roots, are not assumed to be unique.7

There are three distinct angles - analytic, combinatorial, algebraic - for
approaching our "regrouping" transforms, and all three point to the same
conclusion : among all fusion-fission transforms, arborification-coarborifi-
cation, for innumerable reasons, towers as the most important and the most
useful. The present paper is devoted to showing why this is so, by succes-
sively adopting the three viewpoints :

2022 Analysis, of course, remains the main raison d’être for these regroup-
ing techniques. In §4, we shall review no less than fourteen genuinely
distinct situations, ranging from holomorphic dynamics to KAM the-
ory to resurgence calculus, where arborification can be harnessed to
great effect - and often must.

2022 Combinatorics, on the other hand, lays bare the mechanisms at
work, and explains why the technique succeeds. Here, the mould-
comould duality is very helpful in sorting out the difficulties. As we
shall see in §3, it is the comould part that leads us, rather naturally,
to single out the coarborification constraints (1.7) among all fusion
constraints (1.4). But it is in the mould part that the really subtle
phenomena, those that hold the key to compensation, do occur, as
will be shown in §2 on some rich mould material

(6) non-strictly, of course : that partial order may on occasion be total! 
(7) so that, technically, our arborescent sequences  must be viewed as "weighted

forests" rather than "weighted trees" .
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2022 Algebra here is something of a side-show, but a fascinating one. As
we shall see, to each fusion-fission transform one may attach a string
of algebraic objects, mainly arithmetical moulds and a-functions (i.e
functions that are defined, simultaneously and uniformly, on all per-
mutation groups Sr) which encapsulate all that is most distinctive
about each given transform. Now, the first surprise is that the particu-
lar moulds and a-functions attached to arborification-coarborification

(they constitute what we call the haukian family) are replete with
structure, symmetries, and all manner of highly improbable proper-
ties, which are listed in §5 and illustrated in the tables of §7. And the
second surprise is that all this structure comes crashing down as soon
as we move on to the moulds or a-functions associated with the other

transforms : unlike the haukian prototypes, they seem to be utterly
unremarkable.

The arborification-coarborification technique has been around for quite
some time; so here we merely present a unified treatment, catalogue some
typical applications, and refer to the literature for details. The algebraic
part, on the other hand, is quite new, 8 or appears to be,9 but here the
material is so abundant that the exposition had to be both sketchy (with
only the barest hints at proofs) and lacunary (with many developments
left out). Thus, damaging as the admission may sound, the present paper
is partly a review, and partly a formulary. But this is all that the limited
format allowed. And there will be, circumstances permitting, a sequel.

We wish to thank M. Kouider, C. Delorme, and D. Forge for helpful
discussions, also for guidance in the literature on group representations.

(8) we cannot vouch for its newness, because the literature on groups and group func-
tions is bottomless. But so far all our checks and inquiries have drawn a blank. Yet if
some reader knows of previous connections, we would appreciate hearing from him.

(9) In the meantime, this paper has gone through the process of refereeing, and the
referee has pointed out certain analogies between the a-functions in our chapter §5 and a
subfield of combinatorics known as "statistics on the symmetric groups", which attaches
various important scalar numbers to the permutations cr (such as their ’length’, number
of ’non-reversions’, etc) and then proceeds to construct suitable generating functions
from these scalars. On the face of it, our 03C3-functions has, hus, hes etc would seem to
fall into this class, but their main feature, namely that of possessing equally simple and
property-rich convolution inverses kas, kus, kes etc - that feature appears, until further
notice at least, to be unparalleled.
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1.2. Straight / contracting arborification-coarborification

A brief reminder about mould calculus has been prefaced to the next
section (§2). Here we simply recall how moulds and comoulds from the basic
symmetry types interact in (1.5) and what sort of objects they produce :

1 (A2022,B2022) = (symmetral, cosymmetral) ~ SS = formal diffeomorphism
2 (A2022,B2022) = (alternal, cosymmetral) SS = f ormal derivation
3 (A2022,B2022) = (symmetrel, cosymmetrel) ~ SS = formal diffeomorphism
4 : (A2022,B2022) = (alternel, cosymmetrel) ~ SS = formal derivation
5 : (A,B) = (separative, coseparative) ~ SS = formal diffeomorphism
6 (A,B) = ( atomic, coseparative) ~ SS = formal derivation

As it happens, depending on the symmetry types involved (whether they
are of the straight sort, with the vowel a, or of the contracting sort, with
the vowel e) one should resort to one or the other of two slightly different
variants of arborification-coarborification :

Straight arborification-coarborification : for case 1 or 2

Arborification rule :

Coarborification constraint

Standard coarbori f ication rule :

Here, the arborification tensor F03C903C9 is equal to 1 if there exists a bijection
of 03C9 into w which :

(i) respects10 the order on 03C9 and w

(ii) leaves the indices Wi unchanged

and F03C903C9 :== 0 in all other cases. Thus (1.8) translates into such relations
as :

(10) non-comparable elements in 03C9 may become comparable in w, but comparable
elements have to remain so.
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Whereas the arborification rule (1.8) completely defines A, the dual re-
lation (1.9) merely constrains B. However, in the important case when
the comoulds are differential operators, there is a naturalll way to define
B which not only agrees with the constraints (1.9), but also meets the
conditions C3, C4 below, which ensure the transparent (term by term) con-
servation of the nature (i.e. being a derivation or an automorphism) of the
expansion SS.12 When the comoulds belong to free associative algebras,
there exists no such compelling choice, but several competing possibilities
(see §1.5-9).

Let us sum up the pattern for case 1 and 2 :

Ci : Straight arborification: A2022 = symmetral ~ A separative
C2 : Straight arborification : A* = alternal ~ A = atomic

C3 Standard coarborification: B. = cosymmetral ~ B = coseparative
C4 : Standard coarborification : B. = coalternal ~ B = coatomic

Contracting arborification-coarborification : for case 3 or 4

Contracting arborification rule :

Contracting coarborification constraint :

Standard coarborification rule :

Here, the arborification tensor CF03C903C9 is equal to 1 if there exists a surjection
of 03C9 onto w which :

(i) respects the order on 03C9 and w

(ii) contracts the indices, in the sense that each wi in w has to be the
sum of all its pre-images wj in 03C9

and CF03C903C9 := 0 in all other cases. Thus (1.11) translates into such relations
as :

(11) even canonical, up to the choice of variables xi .
(12) its global conservation is not an issue: it automatically follows from the dualness

of the rules (1.8) and (1.9).
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Here again, we have to supply some coarborification rule compatible witl
the constraints (1.12) and, if possible, with conditions C3, C4. Remarkably
it turns out that, in the case of differential operators at any rate, one anc
the same standard arborification rule (cf §1.4 and §3) applies equally il
both contexts : straight or contracting.

Summing up, here is the general pattern for case 3 and 4 :

C’1 : Contracting arborification: A2022 = symmetrel ~ A = separative
C’2 : Contracting arborification: A* = alternel ~ A = atomic

C3 Standard coarborification: B2022 = cosymmetrel ~ B = coseparative
C4 : Standard coarborification: B, = coalternel ~ B-« = coatomic

1.3. The reason why arborification-coarborification works

As far as analytic applications are concerned, the whole point of arborifi-
cation-coarborification is to re-arrange expansions of the form 03A3A2022 B.
which are usually hopelessly divergent, because they typically admit nc
better bounds than :

into formally identical expansions 03A3AB, which are often convergent,
because they usually admit bounds of the form :

with fixed constants Cl, C2, but with adjustable constants C3, C4 that depend
on a neighbourhood D of the origin, and go to 0 as this neighbourhood
shrinks.

The key here is not so much the disappearance of the factorial in the
comould estimates as its non-appearance in the mould estimates. The dis-

appearance is not really surprising, because the coarborification constraints
enable us to spread the ’load’ of any given B. more or less evenly among
a great many B. What calls for an explanation is the non-appearance of
r! in A, since under the arborification rule (1.8) or (1.11), and for very
weakly ordered arborescent sequences, A is equal to a sum of almost r!
distinct A*, which have no a priori reason of cancelling or compensating
each other, and in fact don’t cancel nor compensate for moulds A* picked
"at random" . But for moulds of "natural origin" , i.e. for the ones that spon-
taneously occur in the expansions LA. B. that originate, not in our whims,
but in analysis, such cancellations, on the contrary, tend to take place with
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providential regularity. Why so ? Because of case-specific identities, which
ensure that the norms of natural moulds don’t increase significantly under
arborification. A more precise mechanism, which accounts for this small mir-
acle, is the frequent phenomenon of form preservation : after arborification,
many moulds retain their outward analytical expression, except that in this
expression all sums, differences, etc, of indices w2 have to be re-interpreted
in terms of the new arborescent order. But the ultimate reason lies is the
fact that "useful" or "natural" moulds almost invariably conform to some
"template" (usually, one or several relations involving some of the many
operations that are defined on moulds) and that arborification ordinarily
preserves the "template" in question, for the simple reason that nearly all
mould operations "arborify", i.e. extend painlessly to arborescent moulds.

Summing up, we may say that the arborification technique works so well
because arborification usuall y respects "norm", "form", and "template",
with usually almost meaning whenever needed.

The section §2 infra enumerates a long list of natural moulds, which shall
all be required for the applications to analysis of section §4, and which, bar-
ring two (explainable) exceptions, all possess the above properties. But take
any of these moulds, and tinker ever so slightly with its definition, and ev-
erything immediately unravels : arborification no longer preserves norm, nor
form, nor template. To grasp this stark dichotomy between the behaviour
of natural-useful and artificial-random moulds, we may reach for an anal-
ogy : whereas a random Taylor series with convergence radius one will, with
probability one, possess a natural boundary on the unit circle, most se-
ries encountered in real life tend, on the contrary, to possess only isolated
singularities and endless continuability.

1.4. Standard coarborification

Pending the precise desciption of coarborification in §3 (with the exact
bounds), let us give a rough description with the heuristics behind it. Con-
sider what is perhaps the most frequent situation. Take some comould B.
consisting of differential operators, with the following factorisation prop-
erty :

with each factor B03C9i separating into a homogeneous monomial xn2 and a
differential operator B*03C9i of homogeneity 0 :
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In view of the Leibniz rules, a natural way to coarborify our comould is
to define the action of the sought-after operator B03C9 on any test function
~(x) as follows. We write B03C9 ~(x)= (xnrB*03C9r ... Xn2 B*03C92 xnl B*03C91) ~(x) and
decree that : 

(i) if w- is a root of 03C9, then B*03C9i should act on cp(x) alone

(ii) if wi has an immediate antecedent wi- in 03C9, then Bw2 should act on
the homogeneous monomial xn2- that accompanies the corresponding
B*03C9i_.

If we start from a cosymmetral comould B, with factor operators that
are first-order derivations, then the Leibniz rules clearly ensure the desired
decomposition Bw = 03A303C9 w B03C9. But that decomposition also holds, less
obviously so, when we start from a cosymmetrel comould.

1.5. Quadratic coarborification

It applies above all to the case of comoulds with values in free associative
algebras. Its true significance lies in the fact that it clears the way for the
algebraic developments of section §5. But it also has analytic implications,
namely for the notion of free-analyticity in §6.2.

Its quickest definition is by means of the tensor contractions 13

where F2022 F2022, short for 03A3 F2022 F2022, denotes the symmetric tensor obtained
by contracting both - and leaving the two . alone. Viewed as a square
matrix, the tensor H20222022 so produced is invertible, with real-positive spectrum,
and admits an inverse K20222022.

There is a more conceptual characterisation of quadratic coarborifica-
tion : it is the one that minimises the quadratic ’coarborification norm’

for the natural scalar product on the free algebra generated by the Bw2 14

(13) covariant indices contract with contravariant ones in proximate positions.
(14) with  B03C9, B03C9’ &#x3E;:= 03B403C9,03C9’.
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1.6. Instances of over- and undershooting

Overshooting : We may take all possible orders. But the regroupings are
then too large to be helpful or to illuminate the compensation mechanisms.

Undershooting : We may take all laminations, i.e. all partial orders that
allot to each element at most one successor and at most one predecessor. A
lamination clearly splits a set into subsets ( "branches" ) which (i) are mutu-
ally non-comparable (ii) carry each a total order. Here, the regroupings are
too small to permit compensation to come into its own, at least if we insist
that to each d-branched lamination there should correspond an operator
of differential order d. But despite its uselessness as far as restoring con-
vergence is concerned, lamination has interesting combinatorial-algebraic
aspects. We shall briefly review two instances in §1.8 and §1.9. For now, let
us note in passing that laminations lead to a decomposition of the space Br
spanned by all r! products of r distinct, non-commuting operators Bi

(i) first into subspaces dBr consisting of derivations of order d

(ii) then into subspaces Bd1 , d2 ,..., dk r1 , r2 ,..., 03C4k) spanned by associative products
of dl Lie elements of homogeneity ri, d2 Lie elements of homogeneity
r2 , etc...

Since these cells correspond one-to-one to the sets of all order-respecting
laminations r# of r := (1,..., r) which have dl branches of length rl, d2
branches of length r2, etc, the corresponding dimensions clearly are :

dirr. = din

dir = dim dirr

The reason for the last identity is that dJBr also possesses a basis whose
elements correspond one-to-one to the various order-respecting arborescent
orders r on the sequence r := (1,..., r).
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1.7. Lamination-colamination on a free algebra

We consider the associative algebra B freely generated by the symbols
BI, B2, ... viewed as formal, order-one derivations, and we use the custom-
ary notations : B,, - Bn1,...,nr := Bnr ... Bni

Whereas B admits a unique filtration

associative algebra = B = ~B ... 3B ~ 2B ~ 1B = Lie algebra (1.24)

into the subspaces dB consisting of formal derivations of order at most d,
there exist several more or less natural ways of converting this into a gra-
dation ~ dB* with privileged projections JB ---+ dB*:

depending on which set of conditions Ci we impose :

CI: economy:

The projection tensors dHn’ should vanish unless the sequences n and n
have same length r, same elements ni and ni (with the same multiplicities
in case of repetitions), and differ only as to the order of these elements.

C2: isotropy (or universality):

The projection tensors should depend only on the permutation a thai
turns the ordered sequence n into n’ , ie :

C3: symmetry:

The projection tensors should be symmetric : dHn - dHnn’.
In combination with condition C2, this translates into : dh(03C3) ~ dh(03C3-1).

C4: orthogonality:

The gradation subspaces dB* should be pairwise orthogonal, relative to
the natural scalar product :
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C5 : order-compatibility:
The first projection tensor 1Hn’n should depend only on the number of

compatibilities/ incompatibilities in the orders of n and n’. More concretely,
and assuming condition C2, this means that 1h(03C3) should depend only on
the numbers p and q of + and - signs in the sequence or(i + 1) - a(i).

C6: lamination-compatibility:

The higher projection tensors dHn’n should be simply deducible from the
first one. Ideally, we should have :

leading to a natural co-lamination Bn ~ 03A3n#n Bn#
Ci, C2 are minimum demands in this free algebra context but, as it turns

out, there is some incompatibility between the further conditions.

1.8. Uniform lamination-colamination

Imposing CI, C2 and C5 (order compatibility) totally fixes the first pro-
jection tensor. If the sequences n, n’ are repetition-free, we get :

If n, n’ involve repetitions, with multiplicities kl, k2 ..., we must consider
all kl! k2! ... sequences n, n’ that coincide with n, n’, except that identical
terms are now regarded as distinct, in all possibe ways, and then set 1Hn’n :=
03A31Hn’n with Hn’n calculated according to the rule (1.31) Then condition C6
is automatically fulfilled, in its strong form (1.30), leading to a natural
colamination. But we have neither C3 (symmetry) nor C4 (orthogonality).

1.9. Quadratic lamination-colamination

If we now add C3 (orthogonality) to CI, C2, all projection tensors dHn’n
are fixed at once. Although they lack simple, closed expressions, the asso-
ciated u-function dh(03C3), especially the first one (d = 1) possess remarkable
properties (see §5.18 and §7.9). Condition C3 (symmetry) is then automat-
ically fulfilled (the implication is non-trivial), as well as a weaker form of
C6 : the right-hand side of (1.30) may involves partial sequences ni which
are not always order-compatible with n.
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2. Combinatorial aspects of arborification

2.1. Basic mould operations

Moulds are functions of a variable number of variables : they depend
on sequences 03C9 := (03C91,..., 03C9r) of arbitrary length r = r(03C9). The sum
~03C9~ of a sequence is simply 03A3ri03C9i. Sequences are systematically written
in boldface, with upper indexation when such is called for, and with the
product denoting concatenation: e.g. w - wl. w2. The elements wi which
make up these sequences are written in normal print, with lower indexation.
The sequences themselves are affixed to the moulds as upper indices A2022 =

{A03C9}, since moulds are meant to be contracted

with dual objects (often differential operators or elements of an associative
algebra), the so-called comoulds B2022 = {B03C9}, which carry their own indices
in lower position. Moulds may be added, multiplied, composed.

Mould addition is what you expect : components of equal length get
added.

Mould multiplication ( mu or x) is associative, but non-commutative:

(This includes the trivial decompositions ca = 03C9.Ø and 03C9 = Ø.03C9).

Mould composition (o) too is associative and non-commutative :

with a sum extending to all possible decompositions of cv into s  r(03C9)
non-empty factor sequences wi

The operations (+, x, o) on moulds interact in exactly the same way as
their namesakes for power series. Thus (A2022 B2022)oC2022 ~ (A2022oC2022) (B2022oC2022).
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2.2. Basic mould symmetries

Nearly all useful moulds fall into a few basic symmetry types.

A mould A* is said to be symmetral (resp. alternal) iff :

A mould A* is said to be symmetrel (resp. alternel) iff :

Here sha(03C91,03C92) (resp. she(wl, w2 )) denotes the set of all sequences w
obtained from 03C91 and w2 under ordinary (resp. contracting) shufning. In a
contracting shuffie, two adjacent indices Wi and Wj stemming from 03C91 and
w2 respectively may coalesce to wij := wi+wj.

Thus, for a sequence 03C91 := (wi) of length 1 and a sequence 03C92 :=

(W2, W3) of length 2, the symmetrality (resp alternality) condition reads :

and the symmetrelity (resp alternelity) condition reads :

For arbomoulds, i.e. moulds A with an arborescent order on their indices,
two new symmetries come into play : separativity and atomicity.

Separativity means that whenever 03C9 is many-rooted, with one-rooted
subsequences 03C9i, the arbomould factors accordingly :

Atomicity means that whenever 03C9 has more than one root, the arbo-
mould vanishes :

 is many-rooted
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Mould-comould contractions

Let Bw be the homogeneous components of some local-analytic, v-

dimensional vector field X (resp of the postcomposition operator F
associated with some local-analytic v-dimensional diffeomorphism f ) and
let

The comould B. so defined is said to be co-symmetral (resp co-symmetrel)
if its action on a product ~1~2 obeys the Leibniz rule :

with a sum extending to all pairs (03C91,03C92) such that cv E sha(03C91,03C92) (resp
03C9 E she(03C91,03C92)).

The four main symmetry types admit a simple characterisation in terms
of mould-comould contractions :

Indeed :

A2022 : B. ~ C.

alternal : field ~ field
symmetral : field ~ diffeo
alternel : diff eo field
symmetrel : diff eo diffeo

Most stability properties follow from this interpretation. Thus :

symmetral2022 x symmetral2022 = symmetral2022
symmetrel2022 x symmetrel2022 = symmetrel2022
alternal2022 0 alternal2022 - alternal2022

symmetrel2022 o symmetrel2022 = symmetrel2022
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2.3. Constant-type moulds

mould value symmetry type associated series

) symmetral

) alternal

alternel

symmetral

symmetrel

2.4. Différence-type flat moulds

For any t - (t1,..,tr) ~ Rr, ti ~ tj, we set p := 03A3titi+1 1, q :=

03A3ti&#x3E;ti+1 1 and define the symmetral mould sad2022a (special case: sad* - sad20221)
and the alternal mould lad* as follows :

sac

Sc

sad

la

2.5. Difference-type polar moulds
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2.6. Sum-type flat moulds

We first settle some notations, then define our moulds :

2.7. Sum-type polar moulds. The "organic" family
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2.8. Main properties

Symmetry types :15

All the above moulds fall into one or the other of the main symmetry types.

All pairs (mould2022, antimould2022) have the same symmetry type.

Useful identities and closure properties : .

(15) flat moulds should be regarded as distribution-valued: for them the symmetries
hold almost everywhere, not necessarily everywhere.
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2.9. Smooth and form-preserving arborification

Smooth or size-preserving arborification

All the above moulds possess the property of smooth arborification

(meaning that their arborified variants admit essentially the same type of
bounds) the only exception being the moulds log’ and tua* for a ~ Z and
in, particular for a == 1/2. This is in relation with the fact that the stan-
dard alien derivations (which admit log* as their left-lateral mould) and the
standard or median convolution average (which admits tu20221/2 as its right-
and left-lateral mould) are not well-behaved. 16

Of course, for alternal or symmetral (resp alternel or symmetrel) moulds,
one should take the ordinary (resp contracting) form of arborification.

Form-preserving arborification

All the sum-type moulds listed above, i.e. all those moulds whose defini-
tion involves forward sums xi or cv2 (resp backward sums xi or Wi) have the
stronger and very useful property of form-preserving arborification. This
means that they retain their outward analytical expression, except that the
sums Xi or Wi (resp xi or Wi) are now relative to the arborescent (resp an-
tiarborescent) order. The same holds for the difference-type moulds tas2022a,~
and tas2022~,b.

Thus, it is an easy matter to check that for any arborescent sequence
03C9 (resp antiarborescent sequence 03C9) we still have :

exactly as in §2.1.10, except that Wi (resp i) now denotes the sum of all
indices wj that follow (resp precede) wi inside 03C9 (resp 03C9). Of course, as

(16) See §4.10, §4.11 and [Ell].
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in the case of totally ordered sequences, cvi itself should be included in that
sum.

2.10. Mould mixing and arborification

For any pair A2022, B* of moulds carrying real indices 03C9i, the mould mixture
C* := A2022 mix B* is defined by :

with a sum extending to all permutations 7r of the séquence (1,..., r) . This
sum involves the mould A* itself and the conjugate B8 of the mould B*:

as well as a ’disorder coefficient’ which is defined as follows :

and assumes the values 0, ±1. Here, the sign function 03C3± and the forward

sums i := 03C9i + ... LUr are as in §2.6, and the signs Ei are given by :

The usefulness of mix derives from the automatic sign separation which it
brings about in the index sequences. Indeed, the sum on the right-hand
side of (2.26) involves only terms of the form A03B11,..,03B1r1 and B03B21,...,03B2r2 such
that :

Mould mixing also respects symmetrality (in particular, self-mixing leaves
symmetral moulds unchanged) and commutes with pre-multiplication by a
third mould :
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Moreover - and this is essential for the sequel - the mixing operation retain,
its form under arborification. Indeed, if we construct C* :- A2022 mix B* as il
(2.26), then the standard (non-contracting) arborification C is given by a
straightforward variant of (2.26) :

with disorder coefficients MIX03C903C0,m still given by (2.28), except that the for-
ward sums i are now relative to the arborescent order on 03C9, and with a
suitable redefinition of the signs Ei :

2.11. Mould flattening and arborification

Let us also mention two more mould transforms which turn alternel

(resp symmetrel) moulds A* into alternal (resp symmetral) moulds B*.
The first transform is quite elementary and applies to all cases. The second
transform is more subtle, but also more relevant to the present investigation.
It applies only to moulds A* with indices ni in N and turns them into ’flat’ or
’piecewise-constant’ moulds B8 with indices ti in R. Both transforms respect
multiplication in the sense that transf(A20221 x A20222) ~ transf(A20221) x transf(A20222).
Here is how they are defined :

First mould transform:

direct

inverse

Second mould transform:
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direct :

inverse

In the last but one identity, all sign subsequences Ei consist of (ri - 1) initial
- signs and one final + sign (ri may be =1) and L* extends to all integer
sequences ni of sum ri, whereas in the last (reverse) identity the sum 03A3**
extends to all Ej e {+,-} except when j e {r1,r1+r2,..., r1+...+rs}, in
which case ej has to be +.

3. Combinatorial aspects of coarborification

3.1. The standard coarborification rule

Let {Bw, LV e Ç21 be any system of ordinary differential operators in the
variables x1,..., xv and define the comould B, as usual by setting :

Then there exists a privileged arborescent comould B2022, the so-called
standard or homogeneous coarborification of B., which is entirely charac-
terised by the following three properties :

Pl B2022 is coseparative 17 i.e. :

(17) 03C91 ~ 03C92 denotes the tree obtained by juxtaposition of 03C91 and 03C92, with no
other order relations than those inherited from the sub-trees 03C9i. The sum (3.2) extends
also to the trivial juxtapositions, with one summand 03C9i equal to 03C9 and the other one
empty.
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P2 If deg(03C9) = d i.e. if the tree 03C9 has exactly d roots, then the
operator is homogeneous in the ~i := ~xi with total degree d

P3 If w = cvl w* (in other words, if w is of degree one, with a root
element 03C91 followed by some arborescent sequence 03C9*) the corresponding
operator factors as :

Moreover, if B. is cosymmetral 18 (resp cosymmetrel 19), then B. and

B; are indeed correlated according to B03C9 := 03A303C903C9 B03C9 (resp B03C9 :=

03A303C903C9 B03C9). In other words, whereas symmetral and symmetrel moulds
obey different arborification rules (simple/contracting), the standard co-

arborification rules are exactly the same for a cosymmetral comould and
a cosymmetrel one.

Let us check, by induction on the length r of 03C9, the fact that Pl, P2,
P3 together do determine B03C9.

Either d(03C9) = 1, which means that 03C9 is of the form (3.4), in which
case B03C9 is as in (3.5) below :

Or deg(03C9) = d  2, which means that 03C9 is of the form (3.6), with
s clusters of dl , ... , ds identical, irreducible summands 03C9i1,..., 03C9is, in
which case B03C9 is as below :

3.2. Interpretation for cosymmetral/el comoulds

To see how one and the same operation works equally well in the seem-
ingly so different contexts of cosymmetrality and cosymmetrelity, the readei

(18) see §3.2.
(19) see §3.2.
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may examine the simplest non-trivial examples of cosymmetral and cosym-
metrel comoulds, with one variable x only and the factorisation property :

and then use the corresponding cosymmetries20:

to check that in both cases the same standard procedure of §3.1 leads to
comoulds B(a) and B(e) which are both coseparative, but verify the distinct
coarborification constraints (1.9) and (1.12).

3.3. Standard coarborification and norm reduction

Coarborification automatically diminishes comould norms. This of course is
its main property, its main justification, and the reason for its usefulness
in analysis. The phenomenon takes place for any reasonable norm on local
differential operators, for instance :

with DI, D2 two small open neighbourhoods of 0 and the uniform
norm on Di. To illustrate norm reduction, i.e. the improvement from (3.10)
to (3.11) :

let us fix a non-resonant spectrum À E CV and consider first-order differen-
tial operators of the form :

(20) Since Bôe) = 1 the sum (3.8) includes as extreme terms B(e)n ~ 1 and 1 ~ B(e)n.
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Next, let us carry out homogeneous coarborification for three extreme types
of arborescent séquences :

We find

and in all three cases we observe the disappearance of the factor r! , though
for rather distinct reasons :

- in (3.13) we have a first-order differential operator Bwl preceded by
innocuous scalar factors Bw2 xni-1

- in (3.14) we have a differential operator B*03C91 ... Bwr (all terms com-
mute) of order r and of factorially large norm, but with a more
than factorially small front factor xllnll since x is small and llnll
const. r1+1 v

- in (3.15) we have again a differential operator B*03C91 ... B*03C9r (all terms
are equal) of order r and of factorially large norm, but with a multi-
plicity factor 1 r! in front.

4. The arborification-coarborification transform.

Fourteen applications to analysis

4.1. Application 1: Linearisation of vector fields with diophantine
spectra

A local analytic vector field X with diophantine, non-resonant spectrum
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Bn := homog. part of deg. n = (n1,..,nv) (ni  -1, at most one neg. ni)

admits a formal linearisation Oent which in operatorial form reads :

Prior to arborification, the normalising series (4.3),(4.4) are usually diver-
gent. After arborification, they are always convergent, because both moulds
Sa8 and invSa2022 suffer no significant norm increase. And the reason why
they don’t is that one of them, namely invSa2022 actually retains its form, i.e.
its outward analytical expression, under arborification.21

N.B. Here and in the sequel, we take advantage of the non-resonance of
the .Àï’s to substitute an indexation by wi = 03BB,ni &#x3E;~ C for the original
indexation by ni E Zv.

4.2. Application 2: Linearisation of diffeos with diophantine
spectra

A local analytic diffeo X with diophantine and (multiplicitively) non-
resonant spectrum := (l1,..., lv) : 

= homog. part of de -1, at most one neg. ni)

(21) For details, see [E3],[E9], also [Siel],[Sie2],[Br] for the historical background.
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admits a formal entire linearisation Oent which in operatorial form reads :

As before, and for the same reasons, arborification restores convergence in
the normalising series 0398±1ent.22

4.3. Application 3: Normalisation of vector fields with resonant
spectra

Here normalisation rather than linearisation is the order of the day, with
normalising transformations Qres that are generally divergent but resurgent.
To simplify, assume the resonance to be of degree 1 (only one relation be-
tween the Àï’s), in which case one single ’normal’ variable z bears the whole
burden of divergence and resurgence.

In operatorial form, the resurgent normalising transformations 0398±1res read :

with mould elements Ve(z)’, Ve(z)03C9 that are elementary resurgent mono-
mials. The normalising transformations being usually divergent, the only

( 22 ) For details, see [E3],[E9], also [Siel],[Sie2],[Br],[Rü] for the background.
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question that arises is of course whether the 0398±1res are convergent as series
of resurgent functions. Sometimes they already are, prior to arborification;
sometimes arborification is called for.23

4.4. Application 4: Normalisation of diffeos with resonant spectra

The picture is much the same as in the previous example.

with resurgent normalising transformations 0398±1res of the form :

and with suitable resurgent monomials We(z)* and invWe(z)2022. 24

4.5. Application 5: Ramified linearisation of vector fields with

quasi-resonant spectra

Here, we assume pure quasi-resonance. In other words, we have no (exact)
resonance, but a violation of Bryuno’s classical diophantine condition.

Bn := homog. part of deg. n = (nl, .., nv) (ni  -1, at most one neg. ni)

Quasi-résonance doesn’t prevent formal entire linearisation, but it usually
renders 0398±1ent divergent. To get hold of something convergent, we must har-
ness the phenomenon of compensation and work with ramified transforma-
tions 0398±1ram. These are ’ramified’ in the sense that they involve positive,

(23) For details, see [E2],[E3],[E5].
(24) For details, see [E2],[E3],[E5].
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irrational powers of at least one, but sometimes two or three variables xi
Moreover, instead of being defined on ordinary (uniform) neighbourhoods o
the origin 0 E Cv, they are defined in spiral-like, ramified neighbourhoods
The operatorial expansions for O âm are always of the form :

with

but the analysis very much depends on the ’badness’ of the quasiresonance.

Case 1: Real, semi-mixed spectrum:

This is the case when Ai  0 but 0  À2, 03BB3,..., Av.
Then one ramification suffices :

with z~2022~ II used as short-hand for z~w~ -- z03A303C9i, Here the expansions for
0398±1ram are already convergent before arborification.25

Case 2 : Real, mixed spectrum:

This is the case when we have at least two negative and two positive
Ài. Here, two ramifications become necessary, attached to two eigenvalues
of our own choosing, but of opposite signs, say Ai  0  À2, and we must
resort to the sophisticated operation of mould mixing, which is described in
§2.10. The mould ingredients for 8;alm now read:

but the novelty is that now 0398±1ram requires arborification to become conver-
gent (in a suitable space of ramified functions, of course).

(25) of course, they remain so after arborification : arborification is sometimes unneces-
sary, but never harmful.
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Case 3 : Full-blown quasiresonance with complex spectrum

The same approach as above applies, but with three ramifications and
more intricate forms of mixing. Here again, one cannot avoid arborification.

Link with the so-called ’compensators’

The mould ingredients Sa2022ram(x) and invSa2022ram(x) which enter the con-
struction of 0398±ram are actually sums of compensators of the form :

which remain bounded even when the ai’s get dangerously close to one
another. This simple remark underpins the whole theory of compensation. 26

4.6. Application 6: "Correction" of vector fields with resonant

spectra 

This section and the two that follow deal with a remarkable, often misun-
derstood phenomenon : the non-appearance of supermultiple small denom-
inators27 when resonance interacts with diophantine small denominators.
The present section tackles the phenomenon in its purest form and at the
simplest level. Take a resonant vector field X with diophantine spectrum.
Since resonance generally precludes linearisation (even formal), that leaves
two options. In the first one, we add a resonant series to the linear part
Xlin to get a normal or prenormal form, leading to an entire, but divergent
and resurgent conjugation of X to that normal form, as in §4.3. In the sec-
ond option, we subtract a resonant series (the ’correction’) from the field X
to force formal conjugation with xlin. But this time, despite the deceptive
symmetry of the two approaches, the formal conjugation turns out to be
analytic as well.

Translating the second option into mould expansions, we find :

(26) For details, see [E8], also [E6].
(27) very roughly : small denominators with such abnormally high multiplicities that

their presence would automatically thwart convergence.
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The key ingredient here is a mould Carr* inductively defined by :

Vc

with a variation operator var that acts as follows :

We have analogous formulas for Scarr*. Two points must be emphasised
here. The first is that the above induction leaves us sufficient latitude

(through the choice of the index i) to prevent the occurence of supermulti-
ple small denominators. The second point is that it takes arborification to
make the expansions (4.36) and(4.37) convergent. 211

4.7. Application 7: Floquet theory 

Floquet theory concerns itself with differential equations with quasi-
periodic coefficients. A test case is the system :

In order to reduce (4.41) to an elementary, ’self-solving’ équation :

by means of a change of unknown X(t) = 0398(t) Y(t), we must solve :

with a constant matrix V whose spectrum (iv1,..., inv) can be read off the
asymptotic behaviour of the solution of (4.41). The next steps are broadly

(28 ) There exists a parallel theory for diffeos. For details, see [EV1],[EV2].
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parallel to those in the preceding section, except that now multiplication or
division by the frequencies 03C9i must be replaced respectively by the action of
the operators :

The elementary identities :

upon whose repeated use the induction (4.39) rests, give way to the identi-
ties :

The last step - arborification - is not required in all cases : whether it is or
not depends on the group we work in.29

4.8. Application 8: KAM theory and the survival of invariant tori

Working under the classical (analytic) KAM assumptions, we perturb
an integrable hamiltonian h:

(with Q-independent basic frequencies Ài) into a non-integrable H :

The whole point is to start from Bryuno’s (not Siegel’s) diophantine as-
sumptions on the Ài ’s and to prove the convergence, for y = 0 and a small
enough perturbation parameter E, of the uncorrected Lindstedt séries :

(29 ) For some details, see [E10].
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Going over from the potential H to the vector field X H, we must partially
correct and partially normalise our field X H :

by allowing only terms of zero (resp non-zero) grade on the left- (resp right-
hand) side of (4.54). Like in §4.3 the correction still possesses a mould

expansion of type :

with frequencies Wi :=mi,03BB&#x3E; and grades ~i := -1 + ~ni~. The normal
part xnor also has a similar mould expansion, but we need not worry about
it, since it vanishes for y = 0 and so does not contribute to the Lindstedt
series.

The alternal mould Bicarr8 is more complex than, but essentially similar
to, the mould Carr* of §4.3. In fact, Bicarr* reduces to Carr* when all
the grades ~i are 0 or, more generally, when to each vanishing partial sum
Wi +... + 03C9j = 0 there corresponds a vanishing partial sum ili + + ~j =0.

We can duplicate in this case all the steps of §4.6 and prove, once again,
the non-occurence of supermultiple small denominators, except that now
the formal multiplicity of a divisor is exactly twice what it was in §4.6. That
apart, precious little changes. We still must arborify to get the convergence
of xcor. This establishes, for a small enough perturbation parameter 6, the
convergence of the Lindstedt series for the corrected hamiltonian. Then a
standard argument going back to Poincaré (known as "killing the constants"
and using the possibility of changing the integration constants) readily yields
the convergence of the Lindstedt series for the given hamiltonian itself.30

4.9. Application 9: Well-behaved alien derivations

Roughly speaking, a System 0394 = {039403C9,03C9 E R+} of alien derivations is
said to be well-behaved if, getting them to act on natural resurgent functions
~, we get exponential bounds of type ~039403C9~~  coec103C9. This condition,
which is useful in certain (not all) applications, is not fulfilled by the simplest

(30) For some details, see [E10].
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and oldest system - that of standard alien derivations. Now, a system A is
completely characterised by a system of weights d(e1,...,e1 03C91,...,03C91) withei E {+, -}
and wi E R+. Further, due to so-called self-consistency constraints, knowing
these weights reduces to knowing any one of the three following moulds 31:

and we have this very useful criterion: the system A is well-behaved iff,
after arborification, one of these moulds (and therefore all three) admit ex-
ponential bounds.32

4.10. Application 10: Well-behaved uniformising averages

For uniformising convolution averages33 m the requirement of being well-
behaved is even more essential than for alien derivations. These averages were
first devised to overcome the vexing phenomenon of faster-than-exponential
growth in the Borel plane along singularity-carrying axes. Like alien deriva-

tions, averages admit a description in terms of weights m(~1 ,..., ~1 03C91 ,.., 03C91) that are
subject to sévère self-consistency constraints, and all the information can
be compressed into either of three moulds 34:

Here again, well-behavedness has a simple characterisation : the uniformis-
ing average m is well-behaved i after arborification, one of these moulds
(and therefore all three) admits exponential bounds. 35

(31) the first two are alternel; the last one is alternal.
(32) For details, see [E11].
(33) they turn multivalued functions ’P over R+ into uniform ones and respect convo-

lution : m( ’Pl * cp2) =- m(1) * m(cp2)
(34) the first two are symmetrel; the last one is symmetral.
(35) For details, see [Mel],[EM],[Ell].
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4.11. Application 11: ’Display’ of a résurgent function

The display of a resurgent function f is defined by :

f ~ display(/;

It encapsulates in user-friendly form all the information about f. It involves
all (successive) alien derivatives of f, along with dual objects, the so-called
pseudovariables, which multiply according to the shuffle product, behave
predictably under alien derivation, and remain inert under natural deriva-
tion :

These rules ensure that the display commutes with all operations (addition
multiplication, ordinary and alien derivation) and makes it an extreme
useful tool for

(a) writing down in compact form all the obstructions to convergence 36

(b) proving transcendence results37.

There are precautions to take, however: although the display may b«
written down in any dual bases of ALIEN and PSEUDO, if we want thE
expansion (4.64) to be convergent38 we must

(a) work with a well-behaved basis of ALIEN and PSEUDO

(b) arborify the expansion (4.64).39

4.12. Application 12: Canonical-spherical Ob ject Synthesis

Object Analysis is concerned with finding the analytic invariants {A03C9} o
local analytic objects Ob.40 Object Synthesis, conversely, starts from som(

(36) i.e. all the Stokes constants, whose non-vanishing prevents f from being convergent.
(37) since any relation R( f 1, f 2, ... ) = 0 immediately translates into a corresponding

relation between the displays, whose impossibility is often conspicuous, in view of the
huge mass of constraints which it implies.
(38) relative to the natural topology of RESUR ~ PSEUDO
(39 ) For some details, see [E10].
( 40 ) these are mostly, but not only, vector fields or diffeomorphisms.
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(admissible!) system of invariants f A, l and endeavours to produce an ob-
ject Ob with precisely those prescribed invariants. The beauty is that there
exists :

(a) a canonical solution Obcan

(b) an entirely explicit, easy-to-handle expression of Obcan in terms of
mould-comould expansions which involve (on the comould side) the invari-
ants f A, 1 and (on the mould side) a special system of resurgence monomi-
als, the so-called ’spherical’ or ’twisted’ monomials.

Here again, the mould-comould expansions always can, and often must
be arborified to achieve convergence.41

4.13. Application 13: Non-linear q-equations (F. Menous)

The technique of arborification has recently been used to great effect by
F. Menous 42 to prove that the q-difference équation :

with analytic right-hand side and (03C3qf)(x) := f(qx), is analytically conju-
gate to one of the following normal forms :

4.14. Application 14: The "sandwich equation"

The "sandwich equation" of unknown f :

is clearly the most general equation that may be considered on an unspec-
ified group G. If we now take G to be the group of local diffeos of C and
assume the data g2 to be quasirotations, i.e. of the form x H ci x + o(x) with
ICi | = 1, then, barring global resonance and quasiresonance and assuming
03A3ni ~ 0, the unique formal solution of (4.70) is also analytic. To estab-
lish this fact, massive arborification of the ’template-preserving’ sort 43 is

required.44

(41) For details, see [E10].
(42) For details, see [Me2].
(43) see §1.3
(44) For some details, see [EV3].
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5. Algebraic aspects of arborification-coarborification.
Haukian moulds and Haukian a-functions

5.1. Quadratic coarborification and quadratic fission: induced
matrices, induced a-functions, induced moulds

We recall that the general fusion-fission transform :

involves a fusion rule and a dual fission constraint. The latter leaves con-
siderable latitude. In a differential operator context, there is a natural way
of satisfying it.45 In a free-associative context, there exists another natural
answer, which is the quadratic fission rule.46 In matrix notations :

Fusion rule :

Fission constraint :

Quadratic fission rule :

For definiteness, we concentrate on the case when all r indices inside 2022 are
distinct. Then r!! denotes some integer larger than r! that only depends on
the chosen type of order. For the arborescent order, there exist exactly r!
arborescent # compatible with a given. and so r!  r!!  r!2.

Among all the fission rules compatible with the fission constraints, qua-
dratic fission stands out as the only one that admits a simple matrix expres-
sion.

(45) the so-called standard coarborification rule, studied at length in §3.
(46) it minimizes the quadratic fission norm ~B2022~2fission := 03A3#2022  B#, B# &#x3E;.
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Likewise, among all the fusion-fission transforms of type (5.1), the spe-
cial case of arborification-coarborification stands out in at least three re-

spects :

(i) it gives rise, in the group algebra A(Sr) of the symmetric group Sr, to
a pair of elements (has, kas) which, despite being mutually inverse,
are both expressible by simple, totally explicit formulae.

(ii) after normalisation to (has, kas) under the condition 03A303C3~Sr has(03C3) =
03A303C3~Sr kas(03C3) = 1, these elements in turn give rise to a pair of
moulds (has2022, kas2022) which are unexpectedly simple, extend to the

whole of N and even Z, and are of symmetral type.

(iii) both as moulds and a-functions, the above objects extend naturally to
a two-parameter family, the haukian objects, which possess a wealth of
rather improbable properties, all the more remarkable for completely
disappearing when we substitute for the arborescent order any other
type of order.

5.2. The symmetric group algebras and a-functions

Throughout, Sr shall denote the group of all permutations 03C3 of {1, ..., r}
and A(Sr) shall be the corresponding group algebra, relative to the standard
convolution product *. As for the a-functions, they are functions or F--+ h(03C3)
that are defined simultaneously and uniformly on all groups Sr. Most of the
03C3-functions h, k we shall encounter will stand in natural relation to integer-
indexed moulds h2022, k2022. They will also possess simple invariance properties
under a finite group of order 8 that acts on all Sr. This "octo-group" consists
of the following operations {o0, 01 ... , o7}:

with rev = reVr E Sr denoting the particular permutation ("reversion")
such that rev(i) + i - r + 1. We shall refer to o1 03C3 and 02 cr as the inverse
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and reverse of (J. Apart from the unit element 00’ the octo-group comprises
five involutions 01,..., 05 and two elements 06, 07 of order 4.

5.3. Quadratic coarborification and the fully explicit u-functions
has, kas

cr-functions (has, kas) induced by the matrices (H:, K:):

For any fusion-fission transform, the matrices H; and K: are clearly
invertible47, symmetric, and of the form:

So, knowing (H:, K:) reduces to knowing the induced a-functions (h, k).
Moreover, since H: and K: are symmetric and mutually inverse, we have :

For a general fusion-fission transform, this is about all there is to say. But for
the arborification-coarborification transform, (h, k) specialises to a highly
remarkable pair (has, kas), which becomes easier to handle when normalised
to (has, kas) under the condition :

We shall now succinctly describe these two objects and their teeming progeny.

D irect expression of has(cr):

ha

ha has

witl

and

These formulas easily follow from the interpretation of has(03C3) as the number
of arborescent sequences that are order-compatible with both {1,..., rl and
{03C3(1),...,03C3(r)}. More unexpected is the existence of a closed expression for
the convolution inverse kas(03C3).

(47) because of their interpretation in terms of norm minimisation. See §5.1



- 617 -

Direct expression of kas((r). We have:

kas(c

kas(03C3

with elementary summands defined by :

with

or equivalently :

with

The sums extend to all maximal coherent binary bracketings48 of the se-
quence 0, cr(l),..., cr(r). Maximal binary bracketings are systems of nested
pairs of brackets. They correspond one-to-one to binary trees. The coher-
ence condition means that the integers within each bracket should be some
permutation of consecutive integers (s, s + 1, ...). Thus, ’holes’ are prohib-
ited. As for the products (5.31),(5.33), they extend to all pairs i of nested
brackets or, equivalently, to all nodes i in the associated binary tree. Each of
these pairs (or nodes) involves a sequence pi of length pi in the left bracket
and a sequence qi of length qi in the right bracket, and gives rise to two
factors:

(i) the integer factor ca*pi,qi defined above

(ii) a sign factor which is 1 (resp -1) if pi  qi (resp. pi &#x3E; i meaning
of course that each element of pi is less (resp. greater) than each
element of qi .

(48) when no such bracketings exist (which becomes possible for r  4, and tends to
occur with a probability approaching 1 as r increases), then of course the right-hand side
of (5.28) should be taken as 0.



- 618 -

Multiplied together, the factors cap2,q2 yield the "factorial" P(0, cr)! and
the sign factors yield the global sign(P(0,03C3)). This global sign is actually
independent of the bracketing P. It depends solely on the permutation cr.
So it may be denoted as 03BE(03C3) and factored out of the sum on the right-hand
side of (5.29). Beware that 03BE(03C3) is not the permutation’s signature ~(03C3).

Let us show on two examples how the above rules work.

First, let r = 4 and (0,cr) = (0,2,1,4,3). We find only two coherent
bracketings. Here they are, along with the attached factors :

The global sign factor being (-1) x (-1) = 1 , we find kas(03C3) = 9.
Now, consider the case r = 4 and (0,03C3) = (0,3,1,4,2). It is easy to check
that there exits no coherent bracketing here. Therefore kas(03C3) = 0.

Normalisation:

The reason for normalising (has, has) to (has, has) is that the latter
form alone leads to an interesting mould extension. In this context, let us
record the two parallel formulas :

with ~(03C3) := signature of 03C3 and ent(x) integer part of x.

5.4. The associated moulds has2022, kas2022

Definition of hasn and kasn for arbitrary positive sequences n:

The relations

define hasn, kasn for any standard sequence n of length r, i.e. for any per-
mutation of {1,..., r}. Now, any sequence of positive integers n, of length
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r, coherent or not, but without repetitions, may, for r* large enough, be em-
bedded in a standard sequence n* of length r* . Surprisingly, the following
two sums :

which range through all r*!/(r* -r)! standard sequences n* containing n,
do not depend on the choice of r*. Thus has* and kas* possess a natural
extension to all positive, repetition-free sequences n.

Symmetrality of hase (conditional) and kas* (unconditional) :

The two moulds so defined are symmetral:

but whereas the first identity is conditional on all three sequences nI, n2,
nln2 being coherent 49, the second identity holds in all cases, at least when-
ever it makes sense, i.e. for any repetition-free sequences nl, n2, nln2.

Form preservation under arborification:

The direct expressions for has(03C3), kas(03C3) carry over trivially to hasn,
kasn, at least for standard n, but they also carry over, almost unchanged, to
the arborified variants hasn, kasn. For instance, (5.30) remains in force,
with maximal binary bracketings as in (5.30), with the very same Catalan
factors and sign rule, and a "coherence" condition which demands that each
parenthesis should contain

(i) some coherent subsequence

(ii) some connected portion of the original tree n

(49) i.e. permutations of unbroken integer sequences.
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Factorisation properties of kasn:

Any sequence n of positive integers factors uniquely into a product of
maximal coherent sequences n1n2 ... nk and so too does the mould kas. :

No such rule holds for hasn, but this is immaterial, as the direct definition
is so simple.

Shift parameter of hasn and kasn:

For any sequence n = (n1,...,nr) and any shift parameter sEN let
us set ’n :- ( s + n1,..., s + nr). The shift-dependence of has S n and kassn
turns out to be remarkably simple. It is : -

(i) rational 50 of degree at most 2.r for the former,

(i) polynomial of degree at most r for the latter.

Extension of hasn and kasn to arbitrary integer séquences n:

Simply write any (repetion-free) sequence n as Sm for some positive
m and negative s, and using rational (resp. polynomial) shift-continuation,
set :

The result won’t depend on the pair (s, m), but on n alone. Symmetrality
also is guaranteed by construction, and so too is the persistence of the
factorisation (5.44). The only hurdle, namely the occurence of s-poles which
may render hasn (but not kasn ) infinite for certain sequences n of mixed
signs, will be removed by the introduction of a ’twist’ parameter t. See
below.

(50) with simple poles at the points s = -2, -3,..., -r - 1.
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5.5. The twist parameter t and the shift parameter s

Introduction of a ’twist’ parameter t and survival of all essential

properties of hasn, kasn

Fixing a real or complex parameter t, we first define hast and its nor-
malised variant hast by formulae closely patterned on (5.24) and (5.25) :

has ’ha

ha has

wit

Next, we derive kas t and kas t by straightforward inversion in the group
algebra A(Sr). We then construct the moulds hast and kas; exactly as
before, successively for sequences n of standard, then positive, then arbitrary
type. For this last step, we use the same trick as before, introducing a shift-
parameter s and setting :

As before, we get the bonus:

(i) of conditional symmetrality for has2022t and has2022t,s
(ii) of unconditional symmetrality for kas2022t and kas2022t,s.

Broadly speaking, all known properties of has* and kas’ seem to survive
the introduction of the ’twist’ parameter t. The t-dependence itself closely
resembles the s-dependence : rational for has; and polynomial for kas;. Ac-
tually, the shift and twist 51 parameters coexist and commingle amicably,
and the t-dependence even turns out to be the simpler of the two.

Twist- and shift-dependence of has

hasnt,s is a rational function of t, s, of total degree no larger than 2 r’, and
with at most r’ simple poles of the form t + s + 1 + k, inf(n)  k  sup(n).
Note that here r’ is not the length r of n, but its span := l+sup(n)-inf(n).

(51) this is a mere label, of course : the twist attached to has* and kas* bears no relation
to the one attached to the resurgence monomials.
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Twist- and shift-dependence of kas*

kasnt,s is a polynomial in (t, s), of t-degree at most r - 1, of s-degree ai
most 2 r - 2, and of total (t, s)-degree also no larger than 2 r - 2. The mair
thing, however, is the existence of a closed expresssion for kasnt,s. First, w(
set52 : 

Next, we define mappings Pt,s by the following induction:

with a sum extending to all factorisations of n into non-empty sequences
nI, n2 of length rl, r2 ; and with sign coefficients defined in this way :

We should pay attention to the highly dissymmetric role assigned to nI and
n2 on the right-hand side of (5.55). Now, with all the ingredients in place,
we may write down the required formulas for any a E Sr . They read :

witl

For future use let us also define a related, parameter-free u-function ka :

The corresponding mould ka* turns out to be alternal.

(52) of course, for x « N, x! means r(x + 1).



- 623

Let us point out, lastly, that hast,s, kas t, s are mutually inverse in A(Sr)
only for s = 0. For other values of s, the inverse of hast,s is unremarkable,
and that of kas t, s is remarkable (i.e. factorisable and explicitable) only for
s ~ {0, -1,...,-r}.

5.6. Basic symmetries for has, kas

These a-functions present a large number of symmetries, which involve
the ’octo-group’ (see §5.2) and become easier to write down after suitable
parameter changes (t, s) ~ (t’, s’) or (t", s") that mix up twist, shift, and
length.

First, we have the parity relations in o- (or 01-invariance):

Now to the symmetries proper. It is convenient to set :

The u-function has is invariant under one involution only:

but the a-function kas is invariant under 11 involutions (4 independent) :
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The next symmetries involve a 03C3-function lokas derived from kas by taking
the (mould) logarithm of the corresponding moulds, but after reversion to
the original (s, t) parameters, like this :

This u-function lokas is invariant under 7 involutions (3 independent) :

These new symmetries are as unexpected as the previous ones. In par-
ticular, they are no direct consequences of the symmetries for kas 53

5.7. Factorisation properties for has, kas

The factorisaton property for kas already encountered in §5.4 survives
the introduction of the twist and shift parameters. For any repetition-free
integer sequence n with its decomposition nI ... nk into a product of coher-
ent factor sequences, we still have :

In combination with the formula (5.61), which already settles the case of
coherent sequences n, the rule (5.88) covers all possible cases.

Moreover, if a sequence n contains indices ni of both signs, we have a
further factorisation result :

(53) indeed, due to the non-linearity of the taking of mould logarithms, the (t, s) +--+

(t", s") shuttle has the effect of mixing up quite distinct sequence lengths.



- 625 -

5.8. Proofs : main steps

Catalan numbers and polynomials

They relate under can = ca*n+1 and cap,q = ca*p+1,q+1 to the earlier coeffi-
cients and polynomials, but are sometimes more convenient. Useful identi-
ties :

Induction for has* and hast

It is implicit in the factorisation rule

Induction for kas’ and kas;

Thanks to the factorisation property (5.88) we may limit ourselves to
coherent sequences n, and by playing on the shift parameter s, we may
even assume n to be some permutation of the basic sequence ( l, ... , r) .
That leaves the distinction between normal and antinormal sequences, de-

pending on whether the smallest element 1 precedes or follows the largest
element r. The simpler induction rules apply for antinormal sequences. As
usual, we have the choice between two (non-trivially equivalent) variants,
one privileging the smallest element, the other the largest. They go like this:

For antinormal sequences n= ( ... r ... 1 ... ) = (a, 1, b) = (c, r, d) of length r :

witl i

For normal sequences r , n is antinormal54 and the rule is

(54) so the first term in (5.95) may be calculated according to the rule (5.93) or (5.94).
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Main steps : One checks that the elementary induction for has and hast
translates into the above induction for kas and kast . Then one shows that
the latter agrees (is equivalent) with the direct expressions (5.30) for kas
and (5.60) for kast.

5.9. Factorisation properties for the connecting functions hak, hiik

Fix tl, t2. Since hastl , kast2 are even 03C3-functions55, it is readily seen
that all 2 x 8 x 8 convolution products of the form (Oi hastl) * (oj kast2)
and (oj kas t2) * (oi hast1), with 0  i, j  7, actually reduce, modulo the
oi-action of the octo-group, to just two of them, e.g. hakt1,t2 and hiiktl,t2 :

But the real surprise is that both these "connecting" u-functions should
enjoy the property of maximal factorisation, which hast1 already possesses,
but not kast2. 56 Indeed, we have :

with coefficients -yj , 03B4j given by :

and with the same 03B2j(03C3) as in the definition (5.24), (5.26) of has.

(55) i.e. invariant under the change 03C3 ~ a-1 
(56) at least not in that sense. Its own factorisation properties (5.88) are of a markedly

different nature.
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For j = 1 or r, the above inequalities involve numbers 03C3(0) or 03C3(r + 1)
which are not defined, since u E Sr, but even then one does get the correct
answer by setting o’(0) 0 or 03C3(r+1) : = r + 1. We may also note that there
is always a factor57 tl + 2 on the numerator of (5.99) , which cancels the
tl + 2 on the denominator. Similarly, unless 0" = id, there always has to be
at least one factor58 tl - t2 on the numerator of (5.99) since hakt,t(03C3) ~ 0
when CF ~ id.

Analogous formulas hold for the coefficients 03B3*j, 03B4*j. In fact :

Here again, there is always a factor59 t1+2 on the numerator of (5.100) ,
which cancels the one on the denominator. But since generally häkt,t(03C3) ~ 0
there is no ’permanent’ factor tl -t2 on the numerator of (5.100).

Proof. - These factorisation properties haven’t been proved yet in all
cases, but they have been systematically checked on a computer up to r = 9.
Moreover, for a large proportion of permutations cr, they result from the
three, clearly equivalent identities that follow :

These identities involve new a-functions ha, ka. The first is elementary, and
can be read off the defining identity :

(57) it corresponds to the largest value of j such that 03C3(1) &#x3E; 03C3(2)... &#x3E; 03C3(j).
(58) it corresponds to the value of j such that cr(l)  03C3(2)  ...  o, (j) &#x3E; 03C3(j + 1)

(o, :0 id).
(59) it corresponds to the largest value of j such that cr(l) &#x3E; cr(2) ... &#x3E; 03C3(j).
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The other one, ka, has already received a direct definition in (5.62). It is

closely related to the leading t-terms in kas t and kas t, , . Indeed :

It displays maximal symmetry under the action of the octo-group :

The corresponding moulds ha*, ka* are clearly alternal. 60 D

Convolution group. Link with the ’organic’ family

From the construction of the connecting functions there follow the iden-
tities : 

To derive from these a true convolution group we must take the limits :

We end up with much simpler 03C3-functions :

with automatic stability under convolution ;

and an unexpected connection with the organic mould family: see §5.19.
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5.10. Yet more factorisation properties

Two ’dual objects’, namely the scalar products 03A303C3~Sr hastl (03C3) hast2 (03C3)
and the convolution products 03A303C3103C32=03C3 hast, (03C31) hast2 (03C32) evaluated at a ==
id also display, as functions of the twist parameters tl, t2, quite unexpected
factorisation properties. Actually, this holds for all k-linear sums :

and also for convolutions evaluated at more general permutations a E Sr,
like for instance those acting like rev on {1,.., j0} and like id on {1+j0, .., r}:

Indeed, the numerators Nr,k and N:,k factor into products of r polynomials,
each of total degree k, and the numerator N*r,j0 factors into a product of r
quadratic polynomials. 61

There is no point in either writing down or proving the above factorisa-
tions, since they will turn out to be special cases of a more general result.
Indeed, the factorisations (5.119),(5.120) will reduce to (5.124),(5.125) infra
with tij := 1 2 ti +j, and the factorisation (5.121) will reduce to (5.126) infra
with aj :== 2 tl + J and bj 2 t2 + j.

Though not nearly as deep as the factorisations of’the previous sections,
in particular those for the mould kas. or the a-functions hak, hâk, the
unexpected splitting phenomenon occurring in (5.119), (5.120), (5.121) has
one merit : when looking for the underlying mechanism, one is led quite
naturally to a generalisation of the a-functions hast, kas t under with the
twist parameter t is replaced by a parameter sequence T = {tj}. The next
section shall be devoted to this extension, and the subsequent sections to
a search for those particular sequences T that yield the most interesting
a-functions.

(61) The denominators Dr,k and D*r,j0 also break down into simple factors, but this
was entirely predictable, since all terms in the sums being considered already share the
same elementary factors.
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5.11. Extending has, kas to haus, kaus

Starting from any sequence T = {t1, t2, t3 ...} we set :

with 03B2j(03C3) as in (5.26). Normalisation is non-trivial but automatic:

and the ’superficial’ factorisations of the last section have exact analogues :

The factorisation (5.121) for convolution products also has an analogue

which holds for all sequences A={a1, a2 ...}, B={b1, b2...} and all permu-
tations a of the form 03C3j0:

But we would also like the deeper properties of has, kas to survive. In
other words, we would like to come up with pairs hausT’ kausT of mutually
inverse u-functions such that :

(i) kausT (03C3) has low degree denominators and is expressible in closed,
transparent form

(ii) kausT (03C3) vanishes for most 62 permutations 03C3

(62) more precisely, for all permutations that admit no maximal coherent binary brack-
eting : see §5.3
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(iii) hausT’ kausT admit natural mould extensions haus2022T, kaus; with
nice properties such as symmetrality.

(iv) there exist simple connecting u-functions 63 with maximum factorisa-
tion.

(v) hausT , kausT possess simple images under most linear representa-
tions of the symmetric groups Sr.

As it turns out, there are three types of sequences T, and only three,
which answer this long wish list. They are :

’arithmetic sequence’ (5.128)

’geometric sequence’ (5.129)

’bigeometric sequence’ (5.130)

Moreover, since (hausT’ kaus,) depend, not on the sequence T as such, but
on its class T up to homotheties {t1,t2,...} ~ {ct1,ct2,...}, these three
classes Tat, Tux, Tux,t constitute a two-dimensional connected manifold.
Indeed :

Arithmetic sequences yield the familiar pair (hast, kast )=(hausTat , kausTat ).
So let us turn successively to the geometric and bigeometric sequences.

5.12. Restricting haus, kaus to hus, kus

a-functions husx and kusx. Setting :

(husx,kusx):=(hausT, kausT) with T=Tux:= {x,x2,x3,...}(5.133)
we get :

hL

kus

(63) i.e. a-functions haukT1,T2 such that hausT1 ~ haukTl,T2 * hausT2 ’
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with simple, cyclotomic denominators :
-1 ft:.

and with simple numerators. Those of hus x are monomials of exponent :

and those of kus x are even 64 polynomials of low degree.

Numerators of husx and kusx

Unexpected as the simplicity of the denominators DKr(x) may be, the
truly interesting part is the numerators kusx. Like with kas t, they depends
on the maximal coherent binary bracketings of the sequence {03C3(1), .., 03C3(r)} :

- when no such bracketings exist, the numerator vanishes

- when there is only one bracketing, we have maximal factorisation into
cyclotomic factors

- when there are several bracketings, we get very peculiar superposi-
tions of such products, with many residual aspects of ’cyclotomicity’.

All cases are covered by a completely explicit generalisation of formula
(5.60) which involves the so-called Gaussian polynomials which are the q-
analogues of the binomial coefficients so abundantly present in the definition
of the operators Pt,, of (5.60).

Svmmetries of husr and kusr. With 03BE(03C3) as in (5.29), we have :

(64) up to an occasional factor x, present whenever 03BE(03C3) = -1.
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with ~r:=1 if r = 0 or 1 mod 4 and ~r:=-1 if r = 2 or 3 mod 4.

Connections between kusx and kast:

where 03C3+ stands for the natural extension of a to Sr+1. 65

5.13. Endowing hus, kus with a twist parameter t

Turning now to the bigeometric sequences, we set :

As usual, the ’direct’ cr-function husx, t holds no mysteries. Its numerator
is elementary, and its denominator breaks up into simple factors that are
immediately obtainable from the general formula (5.122) for hausT after
the substitution tn  xn t - t

More remarkable are the simplifications that occur with the u-function
kusx, t. Its denominator DKr (x, t) also breaks up into simple factors : we
have on the one hand the cyclotomic factors of x alone, already present in
the denominators DKr(x) of kusx , and on the other hand, in equal number,
elementary factors that depend on both x and t. Explicitely :

hu:

kus

L

L

The really non-trivial part of kusx, t, however, is its numerator. Like with
kast and kusx,t, the new numerator kus*x,t(03C3) depends on the maximal
coherent binary bracketings of the sequence {03C3(1),.., 03C3(r)} :

- when no such bracketings exist, the numerator vanishes
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- when there is only one bracketing, the numerator breaks up con
pletely into simple factors

- when there exist several bracketings, we get a superposition of su(
terms.

All cases are covered by a suitable generalisation of formula (5.61).

5.14. Factorisation properties for the connecting functions
huk, hük

Their construction runs parallel to that of hak, hàk. We set :

hu

hül

and we encounter once again the miracle of maximal factorisation, for both
numerators and denominators :

hu

hü1

DH

huk
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hül

with the very same 03B3j, 03B4j, 03B3*j, 03B4*j as in §5.966 and with elementary corrective
factors t03B3(03C3)2x03B4(03C3) or t03B3*2(03C3)x03B4*(03C3) which account for the global invariance
under the change (x,t1,t2) ~ (x-1,t-11,t-12). To highlight this invariance,
we may also write down our connecting functions as follows :

When the parameters x, tl, t2 go to 1 simultaneously and with all three
numbers x - 1, tl - 1, t2 - 1 in fixed ratios, we clearly retrieve as a special
case the factorisations (5.99),(5.100) for the ’arithmetic’ case:

5.15. The pair hus, kus as a q-analogue of has, kas. The ’haukian’
family of a-functions

The pairs (hus x, kus x) and (hus x, t, kus x, t) of 03C3-functions may be
looked upon as q-analogues of (has, kas) and (has t, kas t) respectively, with
x functioning here as q-parameter. But the analogy goes farther than that.
Indeed, the associated moulds (hus2022x, kus2022x) and (hus2022x, t, kus*x, t) as well as
the moulds (hus2022x;s,kus2022x;s) and (hus2022x, t; s, kus2022x, t; s) obtained from these
after addition of a shift parameter s - all these eight moulds display a
symmetry sui generis, which resembles symmetrality and may be called

(66) Note in passing that 8j(O’) and 8;(0-) always being even integers, the above products
amount to entire factorisations.
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q-symmetrality, or rather x-symmetrality since we are stuck with the pa-
rameter x here. Let us in this section sketch the main definitions and results.

Notion of x-symmetrality

For any three repetion-free sequences a === fail, 03B2 = {03B2j}, 03C9 = {03C9k},
we set :

with sha(03B1, 03B2) denoting as usual the set of ordinary shufflings of ce and 0.

A mould M* is said to be x-symmetral if it verifies identities of the
form :

for some given function fx defined on sequense pairs (03B1,03B2) and subject to
suitable constraints.67 If x = 1 and fx(03B1,03B2) = 1, the mould M2022 is symme-
tral in the usual sense, and its values for components w of length r are by
no means determined by the ’earlier’ values, corresponding to shorter sen-
tences. But if x is neither 1 nor a unit root, the picture changes completely :
the system (5.153) together with the function fx inductively determines the
mould M* as soon as its values for components of length 1 are known. In
fact, at each inductive step r(w) = r, it is enough to consider the subsystem
(5.153) corresponding to the sole indices ce, 0 of length respectively rl, r2,
for some fixed pair (r1,r2) such that ri +r2 = r and ri  1. That subsystem
admits a solution of the form :

with rather elementary coefficients [[03C9 03B1,03B2]]x that depend only on a substi-
tution cr in Sr == Sr1 +r2. Indeed we have :

Thus, taking pairs (rl, r2) of the form (r - 1, 1), we may drop the lower
index (rl , r2) and everything reduces to determining a mould Hx with upper

(67) to ensure the existence of non-trivial solutions M* for the system (5.153).
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indices n that are permutations of the first r integers. The mould in question
is given by H1x := 1 for r = 1 and then by the simple induction rules :6g

with m:- (ml-1,...,mk-1) if m := (ml,...,mk) and with integers ri
denoting the lengths r(ni) of the partial sequences ni . Of course, if nr is

either 1 or r, only one of the sequence factorisations (5.157),(5.158) holds
and we are left with only one Hx-term on the right-hand side of (5.156).

The x-symmetral mould kus*x;,:

Following the previous pattern69, we associate with the sigma function
kusx two moulds kus2022x and kus2022x;s, with s being the familiar shift parame-
ter70 : 

The first three relations define our moulds for all coherent sequences 71 n
while the last two extend the definition to all repetition-free sequences n,
using the latter’s (unique) decomposability as products of maximal coherent
subsequences n

The moulds kusx and kusx; s so defined can be shown to be x-symmetral
with respect to a function f x which for any pair (a, b) of coherent sequences
is given by :

(68) but mark the reversions (nI, 1,n2) r-t (n2,n1) and (n3,r,n4) ~ (n4, n3).
(69) see §5.5
(70) to distinguish it from the twist parameter t, the shift parameter s is always preceded

by a semicolon.
(71) i.e. for permutations of some integer interval [p + 1,... p + r] C Z.
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with the notation a - b (resp. a  b ) signalling that min(b) - max(a)
- 1 (resp. &#x3E; 1). And for general repetition-free sequences a, b expressed as
products of maximal coherent sequences ai, bj, the splitting property:

rounds off the definition.

The x-symmetral mould kus2022x,t;s:
If we now adduce the twist parameter t, we find that the a-function

kusx,t still possesses mould extensions kus2022x,t and kus2022x,t; s that are x-

symmetral relative to a slightly more complex function f x . It is defined
as follows :

for coherent sequences a, b, and for general repetition-free sequences, the
splitting property still holds :

For any given n, kusnx,t:s is a rational function of (x,xs,xs2, t, ts) viewed
as independent variables. Explicit (though rather involved) formulas for
kusnx,t;s do exist, but the induction rule (5.154), together with the initial
conditions’ for r = 1 and n = (1) :

also provide a very efficient way of calculating kusnx,t;s for any given n.

The x-symmetral moulds hus2022x;s and hus2022x,t;s:
’Direct’ moulds husx;s and hus2022x,t;s may be defined in similar manner,

and these too exhibit x-symmetrality properties, but of a slightly weaker
sort. Indeed, with these moulds the relation (5.152) holds only for sequences
a, b that are coherent, singly and jointly. This reflects the difference, com-
mented upon in §5.4, between the conditional symmetrality of the moulds
hass and hast; S and the unconditional symmetrality of kas2022s and kas2022t;s.
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Symmetries under the octogroup:

The symmetries listed in §5.6 for the case x = 1 have their exact ana-
logues here, but rather than changes of type {t*, s*; 03C3} ~ {El t*, E2S*; oj03C3}
with ~i ~ {1,-1} and with oj running through the octogroup, they now
involve changes of type {x*, t*, S*; 03C3} r--7 {x~0*, S*; oj03C3}.

The ’haukian’ family

Summing up, it is fair to say that the three pairs :

(has t, kas t ) : ’arithmetic’

(hus x, kusx) : ’geometric’

(husx,t, kusx,t) : ’bigeometric. ’
which due to (5.131), (5.132) constitute a connected manifold, seem to enjoy
a unique status, not only among all pairs (hausT, kausT), but even among
all pairs (h, k) of mutually inverse 03C3-functions. They fully deserve a name
of their own : let us call them haukian functions.72

5.16. Représentation theory of finite groups and ’haukian’
03C3-functions

The existence of simple images La h(03C3) 03C1(03C3), 03A303C3k(03C3) 03C1(03C3) under the
elementary, one-dimensional representations p(cr) 1 (trivial) or 03C1(03C3) :=
~(03C3) (signature) is garanteed for all pairs (hausT, kausT) by the formulas
(5.124), (5.125). But if we move on to general, higher-dimensional represen-
tations p of the symmetric groups Sr, the haukian family once again stands
out for the simplicity of its behaviour, in particular for the distribution pat-
tern of its standard factors inside the determinants of the representations.
Results here are still incomplete, so we mention just two formulae, relative
to the r-dimensional representations :

Typically, we get the familiar factors but with altered multiplicities :

(72) the h stands for the direct function; the k for its convolution inverse; and the
diphthong au refers to the a and u of the arithmetic and (bi)geometric cases.
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5.17. 03C3-functions originating in uniform lamination

We now take leave of the haukian family and consider a few other 0--

functions that arise in the context of our fusion-fission transforms. The first
is connected with the uniform lamination-colamination described in §1.8. It
involves the alternal mould lad8 ( of flat, différence-type : see §2.4) which
also occurs in the construction of the standard alien derivations. The closely
related mould sad2022a will resurface in §5.19.

5.18. u-functions originating in quadratic lamination

The quadratic lamination-colamination described in §1.9 also gives rise
to interesting o’-functions hes, kes, ke. The first two are mutually inverse
and all three are simple. Let B be the associative algebra freely generated
by el, e2,... and let 1B be the corresponding Lie algebra, with its natural
embedding in B. The projection projl : B ---+1 B characterised in §1.9 in-
volves a o7-function ke which, though not invertible, is closely related to an
invertible one, kes, whose inverse hes is unexpectedly simple : it assumes

only zeros or powers of 2 as its values.

Projection projl : B ~1 B: We have five equivalent expressions :

which make manifest the one-to-one correspondance that exists between
kes(T) as defined on 8r-1 == 8l and ke(03C3) as defined on Sr:
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Only the second relation calls for comments. For convenience it is written in
mould form, and the sum ranges over all shuffles n of n1 and of the reverse
n2 of n2. The integer r2 is of course the length of n2.

Properties of kes. Here are the main ones :

Properties of hes. We have :

with the actual values given by a simple rule. That rule is best described by
deriving hes from a more general, real-indexed and flat (i.e. locally constant)
mould hes’ . The link is simply :

and hes* is defined by the following induction :

Here w = (03C91,...,1 wl) is any sequence of l distinct real number. The se-

quence wl (resp 03C93) is obtained from w by retaining only the terms w2 such
that wi  cvl (resp wi &#x3E; 03C9l). The mid-sequence w2 is obtained from w by
retaining only the terms wi such that WI  03C9i  wi as well as the term

w- immediately inferior to WI (if it exists) and the term wt immediately
superior to 03C9l (if it exists). Some of the factor sequences wi may reduce to
the empty sequence 0, but the above relations amount to a true induction
since in all cases length (03C92)  length (w) - 2.
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To complete the induction rules we must set:

Remark about the proofs. - Though less than two page long, the proof has
to be skipped in this expository paper. Let us just point out the reason for
the occurrence of powers of 2 in hes. They stem from the standard scalar
products of Lie elements of the form [..[e03C3(1), e03C3(2)], ...,e03C3(k)] which happen
to be exact powers of 2.

5.19. a-functions with treble stability

Stability under *, x , o

To conclude in character this unashamedly ’botanical’ chapter, we give
two instances of o--function that display a treble stability :

(i) stability under the convolution product * .

(ii) stability of the associated mould under mould multiplication x .

(iii) stability of the associated mould under mould composition o .

Of course, all three stabilities are completely independent.73

The ’uniform’ mould family

The following moulds are associated with the so-called uniform average
of resurgent theory. Setting remu2022a = tu2022-a as in §2.3 and namu2022a = sad2022a as
in §2.4 we have :

remua x remu2022b ~ remu2022a+b ~a,b ~ C (5.195)
remu2022a o remu2022b ~ remu2022ab Va, bEC (5.196)

namu2022a * namub - namu2022ab ~a,b ~ C (5.197)
The proofs are quite short. Far more interesting is the next example.

(73) the first one is at constant length r, the others mix up various lengths.
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The ’organic’ mould family.

The mould remo2022a and the closely related mould romo2022a were defined in
§2.7. They are essentially the ’lateral moulds’ (see §4.10) associated with the
important ’organic average’ which is central to resurgence theory. Built from
these one-parameter moulds, we have the two-parameter mould somo2022a, b,

also defined in §2.7, and its unexpected closure properties under mould mul-
tiplication and mould composition (see §2.7). But on top of these, we have
also stability under convolution. Indeed, along with these ’lateral’ moulds

there goes a ’neutral’ mould namo2022a, whose associated u-function namoa
turns out to essentially coincide with the u-function hok already encoun-
tered in connection with the family {has, kas, hak}. Indeed, it can be shown
that :

namoa(03C3) ~ ar hok 1 (u) ~03C3~Sr , VaeC (5.198)

The closure under convolution follows at once :

namo2022a * namo2022b ~ namo2022ab ~a,b ~ C (5.199)

6. Conclusion and complements

6.1. Unique status of arborification-coarborification among
all fusion-fission transforms

In the introduction, we pointed out the effectiveness of the arborification-
coarborification transform in analysis. In §4 we backed up this claim with a
string of applications . In §2 and §3 we examined the combinatorial mecha-
nisms behind the method’s success, and the reasons for its superiority over
other, a priori equally attractive fusion-fission transforms. In the last sec-
tion, §5, this unique status received a further boost, and that too from an
unexpected quarter : algebra.

To take stock, let us briefly retrace our main steps in §5. Starting from a
series74 of mutually inverse matrices (H:, K:), which arise naturally when
investigating arborification in a free associative context, we have successively

(74) these square matrices of order r! are defined for all r.
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encountered all the objects which grace the following table :

These haukian objects, some of them moulds, the others a-functions, turned
out to possess no end of unexpected properties :

a) the a-functions go in pairs of mutually inverse 75 elements, with both
terms admitting numerous symmetries, possessing quite explicit ex-
pressions, notably simple denominators, and also presenting a ten-
dency towards maximal factorisation - all of which is quite uncom-
mon for mutually inverse a-functions.76

b) unlike a-functions ’picked at haphazard’, ours possess natural exten-
sions to integer-indexed, rational valued moulds, the only restriction
being that the indices have to be pair-wise distinct.

c) the moulds so produced, in turn, display precise symmetries (either
symmetrality or, more rarely, alternality), which may be common
enough in "natural moulds", but rather surprising in the present in-
stance77

d) there is a tantalising connection between these "haukian" moulds and
the moulds of the "organic family", which have a quite distinct origin.

But now comes the crux : although the entire construction, starting from
the matrix pair (H:, K:) down to the whole set of characters in the above

(75) in the convolution algebras A(Sr) of the symmetric groups Sr.
(76) indeed, inversion in the algebras A(Sr) tends to produce huge denominators.
(77) at any rate, these mould symmetries are not a simple rephrasing, nor even a con-

sequence, of the u-function symmetries.
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Table, can be duplicated for any other fusion-fission transform, relative to
any type of order (all partial orders, laminescent orders, arborescent orders
of binary, or ternary type, etc etc) none of these parallel constructions 78
retains any of the rich structure or endearing simplicity which is the hall-
mark of the haukian family. Although, at the moment, these curious haukian
properties seem to have no direct relevance to arborification-coarborification
as a tool for convergence-restoration in analysis, they certainly enhance its
uniqueness status. Even if devoid of deeper meaning, this ’agreement’ be-
tween analysis and algebra79 which we observe here is very gratifying.

6.2. Local-analyticity, free-analyticity, alien-analyticity

C[[x1, ..., xv]] resp. C{x1, ..., xv} are well-established notations for the
ring of all formal, resp. local-analytic 80 power series in the v commuting
indeterminates xi and with coefficients in C. Going over to non-commuting
indeterminates Xi, the question arises : What could be the natural counter-
part C{{X1,..., Xv}} of C{x1,...,xv}? And how could we characterise its
elements :

preferably in terms of bounds on A2022 ? That of course will depend on which
future ’specialisations’ we have in mind for our indeterminates Xi.

Si : finite-dimensional specialisations, e.g. in spaces End(V) of endomor-
phisms of tc-dimensional vector spaces V, with tc finite but otherwise
unrelated to v.

S2 : infinite-dimensional specialisations, e.g. in the spaces Der(C{x1, ..,
x03BC}) of ordinary derivations of the ring of convergent power series of 03BC
variables. 81 For definiteness, let us restrict ourselves to specialisations
Xi ~ spe(Xi) that are homogeneous and degree-increasing :

spe(Xi) : xm C ~ xm+di C (di E N03BC , Vm E NJ-l) (6.2)

S3 alien specialisations, i.e. incarnations in the space ALIEN of alien

derivations of some space of resurgent functions. Here again, assume

(78) as far as we could see. We did explore quite a few options.
(79) a similar ’convergence’ is also a feature of resurgence theory which, despite having

its moorings in analysis, often tastes like pure algebra.
(80) i.e. with non-zero convergence radius.
(81) here again, m is unrelated to v, and can be any finite number.
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for definiteness that spe(Xi) specialises to homogeneous alien deriva-
tions. 82

So, against this backdrop of possible specialisations, let us weigh the
merits of the three types of majorisations on A2022 which naturally spring to
mind. They are :

for some finite positive constants co = co (SS), c1 = c1 (SS) and with, on the
third line, the usual convention of straight arborification (see §1.2).

Condition Ml is adequate for specialisations of type SI, but clearly not
for those of type S2, even in the case of a single XI, and much less for type
S3.

Condition M2, on the other hand, ensures the convergence of specialisa-
tions S2 and S3, but is unnecessarily stringent.

The "proper" condition would seem to be the one involving arborifica-
tion, namely M3. As we saw, it implies the convergence of all specialisations
S2, and it does so at a much lesser cost83 - in fact, at a minimal cost.
Moreover, the space C{{X1,...,Xv}} of all SS subject to M384 enjoys all
the stability properties that one may wish for, e.g. under multiplication and
substitution. We then speak of free-analyticity.

Condition M3 also happens to be the weakest condition that guarantees
the convergence of specialisations of type S3. Dually, it is the strongest
condition to be verified by the displayed and restricted forms of natural
resurgent functions. We speak in that context of alien-analyticity.

(82) i.e. alien derivations of a given frequency w, like Aw or [..[039403C91,039403C92]...039403C9r]
with L Wi = w, but no superpositions corresponding to different w’s.
(83) in the uninteresting case of a single variable Xi, where non-commutativity doesn’t
come into play, M3 is readily seen to coincide with M2, but for several variables it is

considerably weaker.
(84) with constants that depend on SS.
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7. Tables

7.1. The a-functions has, kas

To handle integers only, we set : has*(03C3) := r!(1+r)! 2r has(03C3) ~03C3 E Sr .
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7.2. The a-functions has, kas with a twist parameter
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7.3. The a-functions has, kas with twist and shift

We set :
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7.4. The a-functions hak, hok
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7.5. The (7-functions hâk, hök
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7.6. The a-functions haus, kaus

7.7. The a-functions hus, kus

Reverting to the simple cyclotomic polynomials of §5.12, we set :
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7.8. The u-functions hus, kus with a twist parameter

We set :
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Jean Ecalle, Bruno Vallet

7.9. The (7-functions huk, hük

7.10. The u-functions ke and hes, kes

We set :
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The arborification-coarborification transform
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Jean Ecalle, Bruno Vallet
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