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On the relation between the Borel sum
and the classical solution of the Cauchy problem

for certain partial differential equations (*)

KUNIO ICHINOBE (1)

ABSTRACT. - For a divergent solution of the Cauchy problem of a non-
Kowalevskian equation such as the heat equation or the Airy equation
or the Beam equation, the condition for the k-summability or the Borel
summability was obtained by Miyake [Miy] and the integral representation
of the Borel sum was obtained by Ichinobe [Ich 1] (see Ichinobe [Ich 2] for
more détail). By the results of Ichinobe, we know that for such an equation
except the heat equation the Borel sum is far or different from the classical
solution which can be obtained by the theory of Fourier integrals.
In this paper, we shall show the manner how the integral representation of
the classical solution is derived from that of the Borel sum by deforming
the paths of integrations, which may be regarded as a decomposition of
the fundamental solution in the real Euclidean planes into the complex
planes.

RÉSUMÉ. - Pour la solution divergente du problème de Cauchy pour
une équation non Kowalevskienne telle que l’équation de la chaleur ou
l’équation d’Airy ou encore l’équation de Beam, la condition pour la k-
sommabilité ou la sommabilité de Borel a été obtenue par Miyake [Miy]
et la représentation intégrale de la somme de Borel a été obtenue par
Ichinobe [Ich 1] (voir Ichinobe [Ich 2] pour le détail).
Par les résultats d’Ichinobe, nous savons que, pour une telle équation
exceptée l’équation de la chaleur, la somme de Borel est loin ou différente
de la solution classique qui peut être obtenue par la théorie des intégrales
de Fourier.

Dans cette note, nous montrons comment la représentation intégrale de la
solution classique est dérivée de celle de la somme de Borel par déformation
des chemins d’intégration, qui peut être considérée comme la formule de
décomposition de la solution fondamentale de l’équation aux plans Eucli-
diens réels dans les plans complexes.
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1. Introduction

We consider the following two Cauchy problems for equations of non-
Kowalevski type

where q  2, a == 1 (arg a = 0) when q -= 2, 3 (mod 4) and a = - 1
(arg a = 7r) when q - 0,1 (mod 4). These assumptions for a are only
for the simplicity of the statement of our result. Especially, under these
conditions for a, the Cauchy problem (CP)R is uniquely solvable in the
class S of Schwartz’ rapidly decreasing functions in x variable.

In this paper, we shall give a relationship between the "Classical solu-
tion" of (CP)R and the "Borel sum" of the divergent solution of (CP)C,
where the Cauchy data ~(z) is assumed to be holomorphic in a neighbour-
hood of the origin. Precisely, we shall show that the "Classical solution" of
(CP)R is derived from a deformation of paths in the integral representation
of the "Borel sum" in 0 direction under some conditions for the Cauchy
data ~(z) of (CP)C.

First, we give the definition of the "Classical solution" of (CP)R. Let
the Cauchy data cp(x) be taken from S. Then the unique solution uc(t,x)
in S is given by

Here the kernel function E(t, y; q, a) is given by

with the function q,03B1(z) given by

where the path of intégration is given as follows.

(I) When q is even, the path 03B3 runs from -ioo to +ioo.

(II) When q is odd, the path 03B3 is any curve which begins at oo in the
sector 37r/2 - 7r/q  arg s  37r/2 and ends at oo in the sector 7r/2 
arg s  03C0/2 + 03C0/q.
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Figure 1. - The case q = 3

We remark that the kernel function Eq,a (z) has the following asymptotic
estimates on the real axis as z ~ (see (3.20) and (3.21)).

(I) When q is even,

(II) When q is odd,

From these asymptotic estimates, we see that the integral formula (1.1)
of the solution does work in a wider class than S for the Cauchy data cp(x)
(see Remark 3.3).
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We call the solution of (CP)R, which is given by the integral formula
(1.1), the "Classical solution" of (CP)R.

Next, we give the "Borel sum" of the divergent solution of (CP)C.

The Cauchy problem (CP)c has a unique formal solution

By Cauchy’s integral formula, we see that the coefficients un(z) have the
following estimates

by some positive constants rl , C and K. From the assumption that q  2,
this formal solution û(T, z) is divergent with respect to T-variable.

In order to state the Borel summability of the divergent solution and to
give the integral representation of the Borel sum, we need some definitions
(cf. [Bal]).

For d E R, /3 &#x3E; 0 and p (0  03C1  oo), a sector S(d,(3, p) is defined by

and d, 03B2 and p are called the direction, the opening angle and the radius oj
this sector, respectively.

Let û(03C4, z) be the divergent solution (1.6) of (CP)C, and u(t, z) be an
analytic function on S(d,(3,p) x B(r2), B(r2) := {z~ C; |z|  r2}. Then wE
say that u (-r, z) has an asymptotic expansion û (-r, z) of Gevrey order 1/(q-1)
in S(d, 03B2, p), if for any relatively compact subsector S’ of S’(d,03B2,03C1), therE
exists r3( min{r1,r2}) such that for any N, we have

by some positive constants C and K. In this case, if u(T, z) is a solution of
the equation of (CP)C, u(-r, z) is called an asymptotic solution of Û(T, z) of
Gevrey order 1 / (q - 1) in S(d, {3, p).
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When the opening angle /3 is less than (q - 1)03C0, there always exist in-
finitely many asymptotic solutions u(T, z) for any direction d ~ R and any
Cauchy data ~(z) which is holomorphic in a neighbourhood of the origin
(cf. [LMS]).

When /3 &#x3E; (q - 1)03C0 for the opening angle /3, there does not exist such
an asymptotic solution without any condition for the Cauchy data cp(z)
(see Theorem 1.1 below). But if such asymptotic solutions exist, then it is
unique. In this sense, such an asymptotic solution u(T, z) is called the Borel
sum of û(t, z) in d direction. We write it by udB(t, z), and we say that û(t, z)
is Borel summable in d direction.

Now, we give a theorem for the Borel summability which is a special
case in Miyake’s paper [Miy].

THEOREM 1.1 (MIYAKE). - The formal solution û(t, z) of (CP)c is

Borel summable in d direction if and only if there exists a positive constant
c such that

(1) the Cauchy data cp can be continued analytically in a domain

(see below Figure 2),

(2) the Cauchy data ~ has a growth condition of exponential order at
most q/(q - 1) in 03A903B5(d; q, a), that is, there exist positive constants C and 03B3
such that the following growth estimate holds.

In order to give the explicit formula of the Borel sum, we need a prepa
ration of the Meijer G-function.

The Meijer G-Function. (cf. [MS, p. 2]) For et = (03B11,..., ap) E Cp an(
03B3 - (03B31,..., 03B3q) E Cq with 03B1~ - 03B3j E N (~ = 1, 2,..., n; j = 1, 2,..., m
such that 0  n  p, 0  m  q, we define
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where the path of integration I which runs from k - ioo to k + ioo for any
fixed k ~ R is taken as follows; all poles of r(1j + s), {-03B3j-k; k  0, j =
1,2,..., m}, lie to the left of I and all poles of 0393(1 - 03B1~ - s), {1 - 03B1~ + k ;
k  0,~ = 1, 2,..., n}, lie to the right of I, which is possible by the condi-
tions that 03B1~ - 03B3j E N.

Figure 2. - 03A903B5(0, 3,1) and 03A903B5(0, 4, -1)

In the following, the integration ~(03B8)0 denotes the integration from 0 t
0o along the half line of argument 0, and we use the following notations.

and j is the (q - l)-ple of integers, which is obtained by omitting j-th
component from q.

Next, we give a theorem for the integral representation of the Borel sum
in 0 direction, which is a special case in the author’s paper [Ich 1, 2].

THEOREM 1.2 (ICHINOBE). - Under the conditions (1) and (2) in The-
orem 1.1, the Borel sum u0B(t, z) is obtained by the analytic continuation of
the following function
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where (t, z) E S(0, 03B2, p) x B(r) with 03B2  (q - 1)7r, 03C9q = exp(203C0i/q), and
the kernel function kq (t, 03B6; 03B1) is given by

with

In special cases the kernel function is given explicitly (cf. [LMS], [Ich 1]).

PROPOSITION 1.3. -

(a) The case (q, a) = (2,1), that is, the case of the heat equation. The
kernel function is given by

(b) The case (q, 03B1) = (3,1), that is, the case of the Airy equation. The
kernel function is given by

Here Ai denotes the Airy function which is defined by

where the path 03B3 is given by the same one as in (1.3) with q == 3 (and a = 1).

The statement (a) was given by [LMS] and the statement (b) was given
by [Ich 1].

When q = 2, the kernel function for the Borel sum is given by the heat
kernel. Therefore, the integral representation (1.13) of the Borel sum just
coincides with (1.1) that of the Classical solution. On the other hand, when
q  3, the integral representations (1.1) and (1.13) are completely different.
Therefore, our interest in this paper is to ask the relationship between the
integral representations (1.1) and (1.13) when q  3.
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2. Main result

We can give the relationship between the integral representations (1.1)
and (1.13) as follows.

THEOREM 2.1. - Under the additional conditions for the Cauchy data
~(z) which are stated below, the integral representation (1.1) is obtained by
deforming the paths of integrations in (1.13) as the following manner. We
divide q rays of integrations in the representation (1.13) into two groups, R+
and R_. Here R+ (resp. R_) denotes the group of the rays which are in the
right (resp. left) half plane of the complex plane. Then all the integrations
along the rays in R+ (resp. R_) can be changed into the integration on the
positive (resp. negative) real axis.

(I) ( Generalization of the heat equation) When q is even, the Cauchy
data ~(z) can be continued analytically in two sectors 0394q = S(0,03C0 -
203C0/q, ~) U S(03C0, 7r - 203C0/q, oo) with the same growth condition as in the
Borel summability in Theorem 1.1. We remark that 03942 = ~ (q = 2) by
the definition, and in this case it is not necessary to assume additional
condition.

(Il) ( Generalization of the Airy equation) When q is odd, we define
0394q = S(0,03C0 - 303C0/q, ~) U S(03C0,03C0 - 03C0/q, ~) for q &#x3E; 3, and 03943 =
S(03C0,203C0/3,~) for q = 3. We assume that the Cauchy data ~(z) can
be continued analytically in 0394q with the same growth condition as in
the Borel summability in Theorem 1.1. Further, we assume that there
exists a positive constant 03B4 such that, in the region S(03C0, 03B4, ~), ~(z)
has the following decreasing condition of polynomial order

by some positive constants C and 03BB.

Remark 2.2. - When q is even, the condition for 03B1 corresponds to that
the equation is of parabolic type in t positive direction like the heat equation.
Let us consider the Schrôdinger type equation, that is, the equation is given
by 

with an even integer q. Then we can give the similar result to Theorem
2.1, but in this case, we ask the same decreasing condition as (2.1) for the
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Cauchy data in two sectors S(O, 6, oo) U S(03C0, J, oo). We do not give the proof
of this statement, since it is done by the similar way with that of Theorem
2.1 (II).

3. The proof of Theorem 2.1

Before we give the proof of Theorem 2.1, we introduce the auxiliary
functions.

We first define the integral paths of the auxiliary functions. For that
purpose, we divide the complex plane into 2q sectors whose directions are
j03C0/q (mod 27r) (j = 0, 1,..., 2q - 1) and their opening angles are 7r/q for
all. We name q sectors among these as follows. For any integer j, we define
sectors Sj by

(See below Figure 3). Note that Sj == Sj+q for any integer j.

Then for any integer j, the path is defined by any curve which begins
at oo in the sector Sj+1 and ends at oo in the sector Sj (see below Figure 3).

By employing these paths, we define the auxiliary functions by the fol-
lowing form.

for any integer j. Since 5j = Sj+q, we have Vj == vj+q.

We define an another auxiliary function

where the path 1 is given as follows.
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Figure 3. - Sectors Si ’s and paths 03B3j’s in the case q = 5

(1) When q is even, the path "Y runs from -ioo to +ioo.

(Il) When q is odd, the path "Y is any curve which begins at 00
in the sector S(303C0/2 - 03C0/(2q),03C0/q,~) and ends at oo in the sector

S(03C0/2 + 03C0/(2q), 03C0/q, ~).

We summarize the important properties and relations between {vj (z)}
and w (z) as a proposition without proofs.

PROPOSITION 3.1. -

(a) The functions vj’s and w satisfy the following ordinary differential
equation
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(b) There are the following relations between {vj (z) 1. For any integer j

(c) There are the following relations between {vj (z)} and w (z) .

(i) When q ~ 0,1 (mod 4), we put q = 4n, 4n + 1 (n  1). Then we have

(ii) When q ~ 2, 3 (mod 4), we put q = 4n - 2 (n  2), 4n - 1 (n  1).
Then we have

Next, we can prove the following.

PROPOSITION 3.2. -

(a) Let q,03B1(z) be the kernel function of the Classical solution, which is
given by (1.3). Then we have 

(b) Let kq (T, (; a) be the kernel function of the Borel sum, which is given
by (1.14). Then we have

The statement (a) follows from the definitions of two functions. The proof
of the statement (b) will be given in the next section.

Proof of Theorem 2.1. - By Proposition 3.2, we have the following ex-
pressions.
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where (T, z) E S(0, 0,,o) x B(r) with (3  (q - 1)7r and

By using the functional equalities (V1), the Borel sum u0B(t, z) is rewrit
ten in the form

We fix T = t &#x3E; 0.

When the Cauchy data ~(z) satisfies the conditions (I) or (II) in Theo-
rem 2.1, we can prove the following formula.

where

For a while, by assuming this formula (3.11), we prove our theorem.

2022 (i)-l. The case q = 4n (n  1). Since the rays of integrations in (3.10)
with m = 0,..., n - 1, 3n,..., q - 1 (resp. m = n, ..., 3n - 1) belong to R+
(resp. R-), we have
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where t &#x3E; 0 and z E R. The second equality is obtained by using vj = Vj+q
for any integer j.

2022 (i)-2. The case q - 4n + 1 (n  1). Since the rays of integrations in
(3.10) with m = 0,..., n - 1, 3n + 1,..., q - 1 (resp. m = n, ... , 3n) belong
to R+ (resp. R-), we have

where t &#x3E; 0 and z ~ R.

2022 (ii)-l. The case q = 4n - 2 (n  2). Since the rays of integrations in
(3.10) with m = 0,..., n - 1, 3n - 1,..., q - 1 (resp. m = n, ..., 3n - 2)
belong to R+ (resp. R-), we have

where t &#x3E; 0 and z e R.

2022 (ii)-2. The case q = 4n - 1 (n  1). Since the rays of integrations in
(3.10) with m = 0,..., n - 1, 3n,..., q - 1 (resp. m = n, ... , 3n - 1) belong
to R+ (resp. R-), we have

where t &#x3E; 0 and z E M.

Therefore, by inserting the functional equality (V2)(i) or (V2)(ii) into
the formulas (*)(i)-1 and (*)(i)-2 or the formulas (*)(ii)-1 and (*)(ii)-2, and
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by putting z == x E R, we obtain the desired result.

In order to complete the proof of Theorem 2.1, we shall prove the formule
(3.11).

For that purpose, we use the asymptotic expansion of the G-function

with q  3, which can be seen in [Luk, p. 179].

We recall the relationship between V2n and the G-function

which follows from (1.14) and (3.6) which will be proved in the next section.
Now, by the asymptotic expansion (3.13) and the functional equalities (V1)
and (3.14), we have the following asymptotic expansions for v2n-m(X)

in the region larg (X03C9-mq) - arg 03B1/q|  7r -03C3’ by some positive constants c
and a’.

Proof of (3.11). - Now, we give the proof of the formula (3.11) by di-
viding into four cases q = 4n, 4n - 1, 4n - 2 and 4n + 1.

e The case q = 4n - 2. In this case, we note that ex = 1 and the rays of in-

tegrations with m = 0,1, ... , n-1, 3n-1,...,q -1 (resp. m = n,..., 3n - 2)
belong to R+ (resp. R-) (see below Figure 4).
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Figure 4. - Rays of integrations for the Borel sum in the case q = 6 (n = 2)

From the asymptotic estimate (3.15), each kernel function

v2n-m(03B6/(qt)1/q) in (3.10) for which the ray of integration belongs to R+
(resp. R-) has the exponential decreasing estimate of order ql(q - 1) as
1 (1 ~ oo in the sector

which contains the positive (resp. negative) real axis. This enables us to
change the ray of integration with the argument 27rmlq in R+ (resp. R-)
into the positive (resp. negative) real axis under the conditions (I) for the
Cauchy data ~(z). The proof of the formula (3.11) in the case q = 4n - 2 is
complete.



-450-

2022 The case q = 4n. In this case, we note that a = -1 and the rays of

integrations with m = 0,1,..., n-1, 3n,..., q -1 (resp. m = n,... 3n -1)
belong to R+ (resp. R-).

By noticing these facts, the proof of the formula (3.11) in the case q = 4n
is done in the similar manner to the case q = 4n - 2.

2022 The case q = 4n - 1. In this case, we note that a = 1 and the rays of

integrations with m = 0,1, ... , n - 1, 3n, ... , q -1 (resp. m = n,..., 3n - 1)
belong to R+ (resp. R-) (see below Figure 5).

Figure 5. - Rays of integrations for the Borel sum in the case q = 7 (n = 2)

When m = 0,...,n-1,3n,...,q-1 (resp. m = n+1,...,3n-2), eac
kernel function v2n-m(03B6/(qt)1/q) in (3.10) has the exponential decreasin
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estimate of order q/(q - 1) as 1 (1 ~ ~ in the sector

which contains the positive (resp. negative) real axis. Therefore, for these
m’s the formula (3.11) follows by the same reasoning with the above.

We have to remark that the cases m = n and m = 3n -1 are exceptional,
because the functions v2n-m(03B6/(qt)1/q) with m = n and m = 3n - 1 do not
have the exponential decreasing estimate as ( -+ -oo on the negative real
axis. In deed, when m = n, the function vn(03B6/(qt)1/q) has the following
estimate, for small c &#x3E; 0

When m = 3n - 1, the function v2n-(3n-1) (03B6/(qt)1/q) = v3n(03B6/(qt)1/q) has
the following estimate, for small c &#x3E; 0

Therefore if the Cauchy data ~(z) is analytic in Aq and has the growt]:
condition of exponential order at most q/(q-1) there, then for a small fixée
03B5 &#x3E; 0, we have

Further, if the Cauchy data cp(z) has the polynomial decreasing conditior
(2.1) in the sector S(7r, 03B4, ~) with 03B4 &#x3E; 203B5, then from the estimates (3.16)
and (3.17), the absolute integrability on the negative real axis do hold foi
the integrals in the right hand side of (3.18) and (3.19), and we obtain th(
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formula (3.11). This completes the proof of the formula (3.11) in the case
q=4n-1.

e The case q = 4n + 1. In this case, we note that 03B1 = -1 and the rays of

integrations with m = 0,1,..., n -1, 3n +1,...,q-1 (resp. m = n, ... , 3n)
belong to R+ (resp. R-).

By noticing these facts, the proof of the formula (3.11) in the case

q = 4n + 1 is done in the similar manner to the case q = 4n - 1.

From above observations, the proof of Theorem 2.1 is complete. D

Remark 3.3. - We remark the reason why the formula (1.1) works in a
wider class than S for the Cauchy data c.p(x). 

From the asymptotic estimates (3.15), (3.16) and (3.17), and the func-
tional relations (V2)(i) and (V2)(ii), we have the following asymptotic esti-
mates for w(X).

When q is even,

by some positive constants C and c.

When q is odd,

by some positive constants C and c.

Therefore, when q is even, the formula (1.1) works in a class such that
the Cauchy data cp(x) has the growth condition of exponential order at most
ql(q - 1) as ixl ~ 00 on the real axis. When q is odd, the formula (1.1)
works in a class such that the Cauchy data ~(x) has the growth condition
of exponential order at most q/(q - 1) as x ~ +~ on the positive real axis
and has the decreasing condition of polynomial order at most ql2(q - 1) + A
(À &#x3E; 0) as x ~ -oo on the negative real axis.
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4. Proof of the formula (3.6) in Proposition 3.2

In this section we shall prove the formula (3.6) in Proposition 3.2. For
that purpose, it is enough to prove

where

a = 1 when q ~ 2, 3 (mod 4), a = -1 = e03C0i when q ~ 0,1 (mod 4) and
Cq = 1/ 03A0q-1j=1 0393(j/q).

The following formula for the G-function can be seen in [Luk, p. 150].

where a + 03C3 = (ai + 03C3, a2 + 03C3,..., ap + 03C3). Then we have

Therefore it is enough to prove the following lemma.

LEMMA 4.1. -

where

We note the following relation between Za and X.
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In order to prove the formula (4.5) in Lemma 4.1, we shall show that
the power series expansions of both hand sides are the same ones. Precisely,
we give the power series expansion at Za = 0 of the left hand side and at
X = 0 of the right hand side, respectively.

To do so, we give the definition of the generalized hypergeometric series.

The Generalized Hypergeometric Series. (cf. [Luk, p. 41]) For

et = (03B11,..., 03B1p) E CP and 03B3 = (03B31,..., 03B3q) ~ Cq, we define

where

By employing this terminology, we can obtain the following three foi
mulas.

e When q = 4n (n  1) or q = 4n + 1 (n  1), we have

2022 When q = 4n - 2 (n  2) or q = 4n - 1 (n  1), we have

2022 We have
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From these formulas, we can see that the power series expansions of both
hand sides of the formula (4.5) in Lemma 4.1 are same ones by noticing the
following relation

In order to complete the proof of the formula (4.5) in Lemma 4.1, we
prove the above three formulas (4.8), (4.9) and (4.10).

a We first give the proof of the formula (4.8).

In the case q = 4n (n  1) or q = 4n + 1 (n  1), we note a = -1 by
the assumption.

By expanding eXs in the integrand into its power series and by termwise
integrating, we have

We take the path ’Y2n as a summation of two rays with the arguments
7r - 27r/q and 7r. Then these integrals can be expressed in terms of the
gamma integrals.

Since
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we have

The left hand side

Now, we divide the summation into q summations as follows.

The left hand side 

When f = q - 1 in the above summation, we notice that 1/0393(1 - (f + 1)/q -
k) = 1/r(-k) = 0. Then we have

The left hand side of (4.

From the relations

the left hand side of (4.8) is continued by

This completes the proof of the formula (4.8).

e We next give the proof of the formula (4.9). In the case q = 4n - 2

(n  2) or q = 4n - 1 (n  1), we note a = 1 by the assumption.

By taking the path /2n as a summation of two rays with the arguments
7r - 7r/q and 7r + 7r/q, we obtain the formula (4.9) in the similar way with
the above procedure.
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. At the end, we give the proof of the formula (4.10).

In order to do so, we employ the integral representation (1.12) of the
G-function. The following expansion is obtained by calculating the residues
of the left side of the path of integration I = {Re s - k; k &#x3E; 0} in (1.12).

Therefore, the proof of the formula (4.10) is complete by noticing the
following relation.

which is obtained from the multiplication formula for the gamma functior
(cf. [Luk, p. 11])

where z+j/m ~ Z0 := {0,-1,-2,...} (j =0,1,...,m- 1).

From above observations, the proof of the formula (3.6) in Proposition
3.2 is complete. 0
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