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Extension of correspondences between rigid
polynomial domains(*)

NABIL OURIMI (1)

ABSTRACT. - We study the holomorphic extension of proper holomor-
phic correspondences between rigid polynomial domains in (c2 (or convex
in Cn). Moreover, we show that any irreducible correspondence between
rigid polynomial domains is a mapping, if the target one is strongly pseu-
doconvex. This can be viewed as an extension of a result of Bell-Bedford

[1] for this class of unbounded domains.

RÉSUMÉ. - Nous étudions le prolongement holomorphe des correspon-
dances holomorphes propres entre domaines polynomiaux rigides de C2
(ou convexes de Cn). Nous montrons aussi qu’une correspondance irréduc-
tible entre de tels domaines est une application, si le domaine d’arrivée est
strictement pseudoconvexe. Ceci peut être vu comme une extension d’un
résultat de Bell-Bedford [1] pour cette classe de domaines non bornés.

Annales de la Faculté des Sciences de Toulouse Vol. XIV, n° 3, 2005

1. Introduction

A domain D c en is called rigid polynomial if

for some real polynomial P(wi) - P(w1, w1). The purpose of this paper
is to study the boundary regularity of proper holomorphic correspondences
between rigid polynomial domains. The main result is the following

THEOREM 1.1. - Let f : D ~ D’ be a proper holomorphic correspon-
dence between nondegenerate rigid polynomial domains in C2 (or convex in
Cn). Then we have the following stratification of the boundary :
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aD = Sh U S~ where Sh is the set of holomorphic extendability of f as
a correspondence and

Moreover, S’ is an open dense subset of OD.

Note that the pseudoconvexity of domains is not required. A similar
result was proved earlier by Coupet-Pinchuk [8] in the case of proper holo-
morphic mappings. For bounded domains in e2 with real analytic boundary
the holomorphic extension of proper holomorphic correspondences was stud-
ied by K.Verma [24] under additional condition on the correspondence f-1.
It is a generalization of the work of Diederich-Pinchuk [12] who proved the
same result at the level of proper holomorphic mappings. For other related
results and without mentioning the entire list we refer the reader to [11],
[9], [1], [2], [14], [15], [20]. 

Our second theorem concerns a version of Bedford-Bell’s theorem (see
theorem 3 in [1]) for this class of rigid polynomial domains.

THEOREM 1.2. - Let f : D ~ D’ be a proper holomorphic irreducible
correspondence between nondegenerate rigid polynomial domains in C2 (or
convex in Cn).

(1) If D’ is strongly pseudoconvex, then f is a mapping.

(2) If f is a mapping and D is strongly pseudoconvex, then f is a bi-

holomorphism and D’ is strongly pseudoconvex.

In particular, if f : D ~ M is a proper holomorphic mapping from a
strongly pseudoconvex nondegenerate rigid polynomial domain in C2 onto
a complex 2-dimensional manifold, the correspondence F = f-1 of is a
self-proper holomorphic correspondence of D. Theorem 2 implies that each
irreducible component of F is a biholomorphic mapping. Let G be the group
given by these components. Then for all z E D, f-1 of(z) = {g(z), 9 E G}.
This proves that f is factored by a finite subgroup of automorphisms. The
same result holds if D is convex in Cn and M is a complex n-dimensional
manifold.

2. Background material

Let D and D’ be two domains in en and let A be a complex purely n-
dimensional subvariety contained in D x D’. We denote by 7ri : A ~ D and
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7r2 : A ~ D’ the natural projections. When 7r1 is proper, (7r2 0 03C0-11)(z) is a
non-empty finite subset of D’ for any z E D and one may therefore consider
the multi-valued mapping f = 7r2 0 03C0-11. Such a map is called a holomorphic
correspondence between D and D’; A is said to be the graph of f. Since
7r1 is proper, in particular it is a branched analytic covering. Then, there
exist an n - 1-dimensional analytic subset V f C graph f and an integer m
such that 7r1 is an m-sheeted covering map from the set AB03C0-11(03C01(Vf)) onto
DB03C01(Vf). Hence, f(z) = {f1(z),..., fm(z)} for all z E DB03C01(Vf) and the
fj’s are distinct holomorphic functions in a neighborhood of z E DB03C01 (Vf).
The integer m is called the multiplicity of f and 03C01(Vf) is its branch locus. If
both 7r1 and 7r2 are proper then f is a proper holomorphic correspondence. If
A is irreducible as an analytic set, then f is called an irreducible holomorphic
correspondence. Given a holomorphic correspondence f : D ~ D’ with
graph A C D x D’, one can find the system of canonical defining functions

where ~IJ(z) E O(D) and A is precisely the set of common zeros of the
functions ~I(z, w) (see [7] for details). 

For (zo, z’o) E A, let Al be an irreducible component of A containing
(zo, z’o). Since (zo, z’o) is isolated in the fiber above zo in A, there exist
neighborhoods U ~ zo and U’ :3 z. such that the projection 7r : A1 n (U x
U’) ~ U is proper (see [7]). We denote by f’ : U ~ D ~ U’ n D’ the
correspondence defined by the analytic subset A’ - Ai n (U x U’) which
is the local correspondence obtained by isolating certain branches of the
correspondences f.

DEFINITION. - Let f : D ~ D’ be a holomorphic correspondence be-
tween domains in Cn and z, be a point in aD. Then f extends as a holomor-
phic correspondence near zo if there exist a connected neighborhood U ~ zo
in Cn and a closed complex analytic set A C U x Cn of pure dimension n,
which may possibly be reducible, such that,

i) graph f n f (U n D) x Cn} C A

ii) 7r : A ~ U, the natural projection is proper.

Note that in general the extending correspondence of f may have more
branches than the correspondence f. Let D c en be a rigid polynomial
domain as in theorem 1. We say that D is nondegenerate if its boundary
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contains no nontrivial complex variety. When P is homogeneous these do-
mains naturally appear as an approximation of domains of finite type and
may be considered as their homogeneous models. These ones are useful in
studies of many problems for more general domains.

Let z = (zo, z1) and w = (wo, w1) be points in C x Cn-1. We define

r (z, i-v) - zo + wo 2 + P(zl, w1), the complexification of the function r. We
call Segre variety of w associated to D the smooth algebraic hypersurface

It can be expressed as the graph of a holomorphic function; since we
can write Qw as Qw = {(hw(z1), z1), z1 ~ Cn-1}, where hw(ZI)
= -wo - 2P(zl, wl). Segre varieties have played an important role in the
study of the boundary regularity of holomorphic correspondences and map-
pings when the obstructions are real analytic.

For all p E ~D and U a neighborhood of p, we denote by the S = S(U)
the set of Segre varieties {Qw, w E U} and À the so-called Segre map
defined by

Let Iw := {z : Qw = Qz} be the fiber of À over Qw. For any w E 9D,
the set Iw is a complex variety of ~D (see [9] and [13]). Since the domain
D is nondegenerate, then for any w E aD, there exists a neighborhood Uw
of w, such that Iw n Uw is finite. We can also define a structure of complex
analytic variety of finite dimension in S such that the map À is a finite
antiholomorphic branched covering. The set Iw contains at most as many
points as the sheet numbér of À. Note also that the Segre map À is locally
one to one near strictly pseudoconvex points of 9D. We refer again the
reader to the papers of Diederich-Fornaess [9] and Diederich-Webster [13]
for more details and more properties of Segre varieties.

Finally, we recall that for z E aD, the cluster set clf(z) is defined as :

clf(z) = {w e C2 U oo : lim dist(f(zj), w) = 0, for zj E D, zj ~ z}.
j 00

3. Algebraicity of proper holomorphic correspondences

In this section we shall prove the following theorem which will play a
big role in the proof of our main result.
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THEOREM 3.1. - Let D and D’ be nondegenerate rigid polynomial do-
mains in C2. Then, any proper holomorphic correspondence f : D ~ D’ is
algebraic (i. e., its graph is contained in an algebraic set of dimension 2 in
C2 x CC2 J.

In the end of this section, Theorem 3.1 will be generalized to nondegen-
erate rigid polynomial convex domains in Cn. A similar result was proved
earlier by Berteloot-Sukhov in the case of bounded algebraic domains in
Cn and by Coupet-Pinchuk [8] in the case of proper holomorphic mappings
between rigid polynomial nondegenerate domains in Cn (see also [10] in the
case of bounded algebraic domains). For the algebraicity of local holomor-
phism between real algebraic submanifolds, we refer the reader to [25] with
references included.

For the proof of Theorem 3.1, we start by the following proposition.

PROPOSITION 3.2. - Let f : D ~ D’ be a proper holomorphic corre-
spondence between nondegenerate pseudoconvex rigid polynomial domains in
CC2. Then we have the following stratification of the boundary : aD = S~~S~
where

Sc = {z E aD : f extends continuously in a neighborhood of z}

Furthermore, S’ is an open dense subset of OD.

Proof. - Let p E 9D. If the cluster set cl f (p) does not contain infinity,
then according to [5] f extends continuously in a neighborhood p. Thus, we
get the desired stratification. To show the density of S’, suppose that S’
has an interior point q E aD. According to Bedford-Fornaess [3] (see also
[4], lemma 1) there exists a holomorphic function h(w) with the following
properties :

Set the function g(w) = (ah(w) - 1)/(ah(w) + 1), where a &#x3E; 0 is

small enough. Then g(w) is holomorphic in D and satisfies |g(w)|  1 in

D and g(w) ~ 1 as Iwl ~ oo. The function G(z) = 03A01jm[g o fi - 1]
is holomorphic in DB03C3, 03C3 C D is an analytic set of dimension  1. Since
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G(z) is bounded (|G(z)|  2m), it extends as a holomorphic function on
D. The function G(z) -+ 0 as z tends to a boundary point close to q. By
the boundary uniqueness theorem (see for instance [7]) we get that one
of the branches fi - 00 on D. This contradiction completes the proof of
Proposition 3.2.

Proof of Theorem 3.1. - If D is not pseudoconvex, there exist p E aD
and a neighborhood U of p such that all functions in the representation
(2.1) of f extend holomorphically to U. Moreover, we can replace p by a
nearby point q E U n aD so that f splits at q to biholomorphic mappings
fj, j ~ {1,..., m}. Now the classical Webster’s theorem implies that the fj
extend to algebraic mappings; therefore, f is algebraic by the uniqueness
theorem.

Now, assume that D is pseudoconvex, which implies that D’ is also

pseudoconvex. Since S’ is nowhere dense in ~D, there exists a point p E ~D
such that f extends continuously in a neighborhood U of p and "splits" in
U to holomorphic mappings fi, j ~ {1,...,m} defined on D n U, which
are continuous up the boundary of D. We denote 03C9(~D’) the set of weakly
pseudoconvex points of D’. First we will prove that f3 (U n aD) is not

contained in w(aD’) for all j. Fix jo E {1, ..., 1 mi and assume that fjo (U n
aD) C 03C9(~D’). The set 03C9(~D’) has the following local stratification

where Ml,..., Mk are smooth varieties with holomorphic dimension zero
(see [6]). Set d to be the integer defined by :

Let Mio be the variety of dimension d and zo E U n aD such that
fjo(zo) E Mio. By the continuity of fjo, there exists a small neighborhood
V :3 Zo so that fjo(V~~D) c Mio. Then, without loss of generality we may
assume that zo is a strongly pseudoconvex point. According to S.Sibony
[18], in a neighborhood of fjo(zo) the variety Mio is contained in a smooth
strongly pseudoconvex hypersurface Sio. Then, fjo is a non-constant CR

mapping between strongly pseudoconvex hypersurfaces. According to [17],
fjo is a Coo diffeomorphism. Using the reflection principle [16], it follows

that fjo extends as a biholomorphism. This contradicts the fact that fjo(U~
~D) c 03C9(~D’).

Hence, there exists a point p E Sc n ~D such that f (p) c aD’Bw(aD’).
In view of the continuity of f we can assume that p is strongly pseudoconvex
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(moving slightly p if necessary). Then, the same argument as above proves
that the mappings fi extend holomorphically past p for all j - 1,..., m.
Now again the classical Webster’s theorem implies that the fj extend to
algebraic mappings; therefore, f is algebraic by the uniqueness theorem. D

Let P - {z E 9D : clf(z) c ~D’}. Note that F = ~DBS~ and r =1 0.
Indeed, if D is pseudoconvex (which implies that D’ is also pseudoconvex), in
view of proposition 1, F is an open dense set in ~D. If D is not pseudoconvex,
there exist z E aD and a neighborhood U~z such that all functions in the
representation (2.1) of f extend holomorphically to U. Thus, U n aD c r
and so 0393 ~ 0.

As a consequence of Theorem 3.1, we have the following corollary.

COROLLARY 3.3. - r is a dense set in ~D.

Proof. - Since f is algebraic, its components f 1 and f 2 are also alge-
braic. Then, there exist two polynomials 

where akjj (.) are holomorphic polynomials for all kj E {0,..., mj} such
that for z E D, P1(z,f1(z)) = P2(Z, f2(z)) = 0. Without loss of generality
we may assume that amjj ~ 0 in C2 for j = 1, 2. If p E S’, we have either
am11 (p) = 0 or am22 (p) = 0. So the polynomial function a = am11.am22 vanishes
identically on S’ . If S’ admits an interior point, then by the uniqueness
theorem the polynomial â vanishes identically in C2. This completes the
proof of Corollary 3.3. D

Remark 3.4. - The proof of Theorem 3.1 uses the existence of a holo-
morphic peak function at infinity for D (due to Bedford-Fornaess [3] in

C2). Such a function exists also in the case of unbounded hyperbolic convex
domains in en. Indeed; if D is an unbounded hyperbolic convex domains
in en, there are n hyperplanes Hi,... Hn independent over C, such that
D is on one side of each of these hyperplanes. There exist complex coor-
dinates Z = (1,..., n) such that Hj = {Z E Cn : Rej = 0} and D is
contained in the half space {Z E Cn : Rezj  0}. The image of infinity
by the associated Cayley transform is contained in the zero of the function

 ~ 03A01jn(j - 1). According to theorem 6.1.2 of [22] this is the peak
set of holomorphic function. Then, Theorem 3.1 is also proved in the case
of nondegenerate rigid polynomial convex domains in Cn. It seems very

likely that this theorem holds in Cn without the assumption of convexity
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of domains, but the main difficulty is to show in proposition 1 that 800 is
nowhere dense in the boundary of D.

4. Proof of Theorem 1.1

First of all, we give a proof for domains in C2. Without loss of generality
we may assume that the correspondence f is irreducible. Since f is algebraic,
there exists an algebraic set A C ([2 x C2 of dimension 2 such that the
graph r f of f is contained in A. We may assume that A is irreducible;
otherwise we consider only the irreducible component of 4 containing Pf.
Let 7r1 : A -+ C 2be the coordinate projection to the first component and
let E = {z e C2 : dim 03C0-11(z)  1}. We denote by F : C2BE ~ C2 the -
multiple valued map corresponding to 4; that is,

We denote by SF its branch locus (i.e., z E SF iff the coordinate projectio]
7r1 is not locally biholomorphic near 03C0-11(z)).

Recall that r = {z E aD : clf(z) ~ ~D’}. To prove Theorem 1.1, w
need to prove that F n E = Ø (i.e., for all z e F, 03C0-11(z) is discrete). Th
proof (Lemma 4.1 and Lemma 4.2) uses the ideas of Shafikov developed ii

[20] to study the analytic continuation of holomorphic correspondences and
equivalence of domains. For the sake of completeness we recall it here.

LEMMA 4.1. - If a E r and Qa e E, then a ~ E

Proof of Lemma 4. 1. - By contradiction, suppose that a E E. Since
Qa e E, there exist a point b E Qa and a small neighborhood Ub 3 
such that Ub n E = 0. We may choose small neighborhoods Ua and U
such that for any z E Ua, the set Qz n Ub is non-empty and connected. Le
E = {z E Ua : Qz n Ub C SF}. Since the boundary contains no nontrivia
complex variety and dimCSF = 2 - 1, by shrinking Ua if necessary, E wil
be a finite set. Following the ideas in [9] and [12] we define

We follow the convention of using the right prime to denote the objects
in the target domain. For instance, Qw, will mean the Segre variety of w’
with the respect to the hypersurface ~D’. Note that the choose of Ua and
Ub such that for any z E Ua, the set Qz n Ub is non-empty and connected,
is to avoid ambiguity in the condition F(Qw n Ub) C Q’w’; since different
components of Qw n Ub could be mapped to different Segre varieties.
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We prove the following properties on the set X.

Claim. -

i) X is not empty

ii) X is a complex analytic set

iii) X is closed

iv) 03A3 x C2 is a removable singularity for X.

Proof. 2013 2022 Since dim E  2 - 1 and r is a dense set in the boundary
(see Corollary 3.3), there exists a sequence {aj} C (Ua n 0393)B(E ~ 03A3) such
that aj ~ a as j ~ oo. Let w E Qaj n Ub be an arbitrary point, and let
w’ E F(w). It follows from the invariance property of Segre varieties under
holomorphic correspondences [24] that F(Qw~Ub) C Q’w’. But aj E Qw, so
aj E Q’w’ for all aj e F(aj). Since w E Qa, n ub was arbitrary, we conclude
that F(Qaj n Ub) C Q’a’. Thus, (aj, a) ~ A and so 4

2022 Let (w, w’) E X. Consider an open simply connected set 03A9 C UbBSF
such that Qw n Ç2 ~ 0. The branches of F are globally defined in S2. Since
QwnUb is connected, the inclusion F(Qw n Ub) c Qw, is equivalent to

where the Fj denote the branches of F in Ç2. Let r’(w, w) be a defining
function of D’. The inclusion F-7 (Qw n Ç2) C Q’w’ j = 1,...,m can be
expressed as

Since Qw = {(hw(z1), z1), z1 ~ C} where hw(ZI) = -wo - 2P(z1, w1),
we obtain

Thus, X is defined by an infinite system of holomorphic equations in
(w, w’). By the Noetherian property of the ring of holomorphic functions,
we can choose finitely many points z11,...,1 z’ so that (4.1) can be written
as a finite system
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where k == 1,..., m, d is the degree of r’ in w’ and 03B1kJ holomorphic in w.
Thus, X is a complex analytic set in (UaB03A3) x C2.

The set X is closed in (UaB03A3) x C2. Indeed, let (wj, w’j) a sequence
in X that converges to (w°, w’°) E (UaB03A3) X C2, as j ~ oo. Since

Qwj ~ Qwo and Q’w’j ~ Q’w’o, from the inclusion F(Qi w n Ub) C Q’w,
we obtain F(Qwo n Ub) C Q’w,o, which implies that (w°, w’°) E X and thus
X is a closed set.

e Now, let us show that E x C2 is a removable singularity for X. Let
p e 03A3. It follows that X n ({p} x C2) C {p} x {z’ : F(Qp) n Ub c Qz’}.
If w’ E F(Qp) C Qz’, then z’ e Qw,. Since dîme Qwl = 1, then {z’ :
F(Qp) n Ub c Qz’} has dimension at most 2 and X~(03A3 x C2) has dimension
4-measure zero. Now, Bishop’s theorem can be applied to conclude that
03A3 x C2 is a removable singularity for X. D

We continue now with the proof of Lemma 4.1. First of all, notice that
for small neighborhoods Uj :3 aj (aj as defined in the proof of the claim)
we have :

We denote again by X the closure of X in Ua x C 2. Without loss of
generality we may assume that X is irreducible, then in view of (4.2) and
by the uniqueness theorem (see for instance [7]) we have :

Let F be the multiple valued mapping corresponding to X (the closure
of X in Ua x C2). By construction, for any a’ e F(a), F(a) - I’a’. Since
F(a) ~~D’ is not empty, it follows that F(a) c ~D’ and so F(a) is a finite
set. Therefore, there exists a bounded part r’ of ~D’ such that F(a) ~0393’.
Thus, we can choose Ua such that X~(Ua x ~U’) = 0, where U’ is a bounded
open neighborhood of 0393’. Otherwise; there exists a sequence (zj, z’j)j in X
such that (zj)j converges to a and (zj)j converges to z’o E ~U’. This implies
that (a, z’o) E X and z’o ~ r’. This contradiction completes the proof of
Lemma 4.1. D

Now, we can conclude that r n E = 0 by using the following lemma
whose proof is defered until the end of this section.
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LEMMA 4.2. - There exists a holomorphic change of variables, such
that in the new coordinates Qa et E.

Conclusion of the proof of Theorem 1.1. In view of Lemma 4.1 and
Lemma 4.2, we conclude that F n E - 0. Thus, for a E r there exists a small
neighborhood Ua of a such that Ua n E - 0. It follows that for any bounded
neighborhood U’ of cl f (a) the set 4 n ({a} x U’) is finite. Hence, we can
assume that A n ({a} x ~U’) = 0. Now, we can choose Ua so small that
,4 n (Ua x ~U’) = 0; otherwise , there exists a sequence (zj, z’j)j in A such
that (zj)j converges to a and (zj)j converges to z’o E ~U’. This implies that
(a, z’o) E 4 and zô ~ ~U’ : a contradiction. This shows that A n ( Ua x U’)
defines a holomorphic correspondence from Ua onto U’.

If we assume that the domains are convex in en, then the correspondence
is algebraic and so we can repeat the same argument of proof. D

We complete this section with the proof of Lemma 4.2 (the proof is given
for domains in Cn).

Proof. - Assume that Qa C E. From proposition 4.1 of [19] there exists
a point p E rBE such that Qa n Qp i= 0. In view of [20] (Lemma 3.1),
there exists a neighborhood V of Qp such that the germ F of the correspon-
dence defined at p (as in the conclusion of the proof Theorem 1.1) extends
holomorphically to VB(Al ~ 039B2), where Ai == 03C0(03C0’-1(Ho)), Ho C pn is

the hypersurface at infinity, 7r : X ~ V and 7r’ : X ~ pn are the natu-
ral projections, X = {(w, w’) E (VBE) x Cn : F(Qw n Ub) C Q’w’ and
X is the closure of X in V x pn; it is well defined since D’ is algebraic.
Note that Ai is a complex manifold of dimension at most n - 1 in Cn and
A2 - 03C0{(w, w’) E A : dim 03C0-1(w)  1} is a complex analytic set of di-
mension at most n - 2. By dimension considerations, we may assume that
Qa ~V ~ A2. We may also assume that Qa n V e Ai; since we can defined a
linear fractional transformation such that Ho is mapped onto another com-
plex hyperplane H C pn. Thus by the holomorphic extension along Qp, we
can find points in Qa where F extends as a holomorphic correspondence.
This implies that in the new coordinates Qa e E. D
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5. Proof of Theorem 1.2

We start this section by the following proposition

PROPOSITION 5.1. - Let zo be a point in 9D and zô be a strong pseudo-
convexity point in clf(zo). Then for small neighborhoods U ~ zo and U’ ~ z’o
the local correspondence f’ : U ~ D ~ U’ n D’ obtained by isolating certain
branches of f is a mapping which extends as a holomorphic mapping to U.

Proof. - Since f is algebraic, there exists an algebraic irreducible set
,4 containing the graph of f. Then for small neighborhoods U 3 zo and
U’ 3 zl, An (U x U) defines a holomorphic correspondence that extends the
correspondence f’. We denote by F the multi-valued mapping corresponding
to A~(U  U’). Let 03BB : U ~ S := {Qw : w ~ U} and 03BB’:U’~S’:= {Q’w’ :
w’ E U’} be the Segre maps. We denote by E’ the critical set of and by
SF the branch locus of F. First, we verify SF C F-1(E’). Let x E Sp. Then,
there exist sequences (xn)n converging to x and (Yn) and (zn) converging
to x’ E F(x) such that Yn E F(xn) and Zn E F(xn) with yn ~ Zn- In view
of corollary 4.2 of [12], there exists a single valued mapping (/? : S ~ S’
such that À’ o F = Sp o 03BB. Then we conclude that 03BB’(yn) = 03BB’(zn). Hence A’
is not one to one in a neighborhood of x’. This implies that x’ E E’ and
so x E F-1(E’). Since U n aD is strongly pseudoconvex, 03BB’ is one to one

antiholomorphic mapping and so E is empty. This implies that SF is also
empty. Then (by shrinking U and U’ if necessary) F : U~D~U’~D is a
proper holomorphic mapping which extends as a holomorphic mapping in
view of [12] (see also [21]). D

Proof of Theorem 1.2. - (1) Let f be a proper holomorphic correspon-
dence as in Theorem 1.2. Note that the domain D is pseudoconvex; since
D’ is strongly pseudoconvex. We shall prove that the branch locus Sf of f
is empty. By contradiction assume Sf ~ 0. The correspondence is algebraic,
then Sf and its image f(Sf) are algebraic. Let W’ be an irreducible com-
ponent of f(Sf). First of all, we show that W’ n aD’ is not empty. Let h be
an irreducible polynomial in C2 such that W’ = {03BE E D’ : h(03BE) = 0}. If W’
does not extend across ~D’, the defining function r’ of D’ will be negative
in W’ - {03BE E C2 : h(03BE) = 0}. According to [7] (see prop.2, pp.76), there
exists an analytic cover 7r : ’ ~ C. Let gl, ... , gk be the branches of 7r-1
which are locally defined and holomorphic in CBo-, with o- C C an discrete
set. Consider the function ’(w) = supfr’ o gl (w), ..., r’ 0 gk (w)}. Since 7r
is an analytic cover, r’ extends as a subharmonic function in C. Then it is
constant; since it is negative. This contradicts the fact that the domain D’
is nondegenerate. So, we conclude that the variety f(Sf) extends across the
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boundary ~D’. Let zô E f(Sf)~~D’ and zo E Sf~~D such that z’o E clf(zo).
Proposition 5.1 implies that the local correspondence obtained by isolating
certain branches of f is a mapping near zo. This contradicts the fact that
zo E Sf. Thus, Sf = 0. The correspondence f is irreducible and the domain
D is simply connected (since it is homeomorphic to {(z’o, z’) : Re(z’o)  0}),
therefore f is a mapping.

(2) Let f be a mapping from D onto D’. If D is strongly pseudoconvex,
then in view of (1) of Theorem 1.2 the correspondence f-1 is a mapping
from D’ onto D. It follows that f is a biholomorphism. Let q = (qo, ql ) be a
point in aD’ and let us consider the complex line L = {(zo, z) E C2, z = q1}.
The line L intersects D’ by the set 03A9 = {(zo, z) : Rezo  -P’(q1), z = q1}
and the restriction F’ of f-l to Q is algebraic. Therefore there exists a
finite subset S of l = ~03A9 = {(zo, z) E C2 : z = qi, Rezo = -P’(q1)} such
that F’ extends holomorphically to l BS. According to [8] (theorem 2.1),
f-1 extends holomorphically to lBS. Replacing f-1(Z) by f-1(Z - Zl)
with Z1 = (Reqo + P(qi), 0), we get a biholomorphism from D’ ~ D
which extends holomorphically in a neighborhood of q. Applying the same
arguments to f, we obtain a local biholomorphism in a neighborhood of q.
This shows that q is strongly pseudoconvex. Since q is an arbitrary point in
~D’, we get the required result.

If the domains are convex in Cn the proof is the same; since f is algebraic.
D

1 would like to thank the referee for his useful remarks and suggestions
on this material.
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