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The geometry of nondegeneracy conditions
in completely integrable systems

NICOLAS ROY(1)

ABSTRACT. 2014 Nondegeneracy conditions need to be imposed in K.A.M.
theorems to insure that the set of diophantine tori has a large measure.
Although they are usually expressed in action coordinates, it is possible
to give a geometrical formulation using the notion of regular completely
integrable systems defined by a fibration of a symplectic manifold by la-
grangian tori together with a Hamiltonian function constant on the fibers.
In this paper, we give a geometrical definition of different nondegeneracy
conditions, we show the implication relations that exist between them,
and we show the uniqueness of the fibration for non-degenerate Hamilto-
nians.

RÉSUMÉ. 2014 Dans les théorèmes de type K.A.M., on doit imposer des
conditions de non-dégénérescence pour assurer que l’ensemble des tores
diophantiens a une grande mesure. Elles sont habituellement présentées
en coordonnées actions, mais il est possible d’en donner une formulation
géométrique en considérant des systèmes complètement intégrables définis
par la donnée d’une fibration d’une variété symplectique par des tores
lagrangiens et d’un Hamiltonien constant sur les fibres. Dans cet article,
nous donnons une définition géométrique de différentes conditions de non-
dégénérescence, nous montrons les différentes relations d’implication qui
existent entre elles, et nous montrons l’unicité de la fibration pour les
Hamiltoniens non-dégénérés.
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Introduction

On a symplectic manifold (M, w), the completely integrable systems (CI
in short) are the dynamical systems defined by a Hamiltonian
H E C°° (M) admitting a momentum map, i.e. a set A = (Al, ..., Ad) :
M - R d of smooth functions, d being half of the dimension of M, satisfy-
ing {Aj, HI - 0 and {Aj, Ak} = 0 for all j, k : 1... d, and whose differentials
dAj are linearly independent almost everywhere. Then, the Arnol’d-Mineur-
Liouville Theorem [?, ?, ?] insures that in a neighborhood of any connected
component of any compact regular fiber A-1 (a), a e Rd, there exists a
fibration in lagrangian tori along which H is constant. These tori are thus
invariant by the dynamics generated by the associated Hamiltonian vector
field XH.

Despite the "local" character of the Arnol’d-Mineur-Liouville Theorem,
one might be tempted to try to glue together these "local" fibrations in
the case of regular Hamiltonians, i.e. those for which there exists, near
each point of M, a local fibration in invariant lagrangian tori. Nevertheless,
we would like to stress the fact that not all regular completely integrable
Hamiltonians are constant along the fibers of a fibration in lagrangian tori.
For example, a free particle moving on the sphere S2 can be described by a
Hamiltonian system on the symplectic manifold T* S2. If we restrict ourself
to the symplectic manifold M = T*S’2 B S2, we can easily show that M
is diffeomorphic to SO (3) x R and that the Hamiltonian H depends only
on the second factor. The energy levels H = cst are thus diffeomorphic to
SO (3). On the other hand, if there exists a fibration in lagrangian tori such
that H is constant along the fibers, then each energy level is itself fibered
by tori. But a simple homotopy group argument shows that there exists no
fibration of ,S’O (3) by tori.

This example actually belongs to the non-generic (within the class of
regular CI Hamiltonians) class of degenerate Hamiltonians. Those Hamil-
tonians might not admit any (global) fibration in lagrangian tori, or they
might admit several different ones. But, as we will see, imposing a non-
degeneracy condition insures that there exists a global fibration of M in
lagrangian tori along which H is constant, and moreover that it is unique.

On the other hand, nondegeneracy conditions arise in the K.A.M. theory
where one studies the small perturbations H + 03B5K of a given CI Hamilto-
nian H. The K.A.M. Theorem deals with the regular part of a completely
integrable system and is usually expressed in angle-action coordinates. This
theorem actually gives two independent statements. The first statement is
that the tori on which XH verifies a certain diophantine relation are only
slightly deformed and not destroyed by the perturbation 03B5K, provided E is
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sufficiently small. The second statement is that the set of these tori has a
large mesure whenever H is non-degenerate.

There exist different K.A.M. theorems based on different nondegene-
racy conditions, such as the earliest ones of Arnol’d [?] and Kolmogorov
[?], or those introduced later by Bryuno [?] and Rüssmann [?]. They are
always presented in action-angle coordinates and this hides somehow their
geometrical content. But they can be expressed in a geometric way if we
consider CI systems defined on a symplectic manifold M by a fibration in la-
grangian tori M 1 B, where B is any manifold, together with a Hamiltonian
H e C°° (M) constant along the fibers 7r-’ (b), b E B. Such a Hamiltonian
must have the form H = F o 03C0, with F E C°° (B), and all the nondegener-
acy conditions express simply in function of F and of a torsion-free and flat
connection which naturally exists on the base space B of the fibration.

In the first section, we review the geometric structures associated with
a fibration in lagrangian tori that allow one to define the connection on
the base space. In Section 2, we give several nondegeneracy conditions,
including those mentionned above, expressed both in a geometric way and
in flat coordinates. Then, we show in Section 3 the different implication
relations that exist between these different conditions. Finally, in the last
section, we give some properties of non-degenerate CI hamiltonians, as for
example the uniqueness of the fibration in lagrangian tori.

1. Geometric setting

Let (M, 03C9) be a symplectic manifold of dimension 2d and (H, M 03C0 ~ B) a
regular CI system composed of a fibration in lagrangian tori MB together
with a Hamiltonian H e C~(M) constant along the fibers

Mb = 7r-’ (b), b E B. Since by definition the fibers are connected, H must
be of the form H = Fo7r, with F E C°° (B). On the other hand, Duistermaat
showed in [?] that there exists a natural torsion-free and flat connection ~
on the base space B of each fibration in lagrangian tori. It can be seen as
follows.

First of all, a theorem due to Weinstein [?, ?] insures that there exists
a natural torsion-free and flat connection on each leaf of a lagrangian folia-
tion. Moreover, whenever this foliation defines locally a fibration, then the
holonomy of the connection must vanish. Given a fibration in lagrangian tori

(H,MB) the space Vo (Mb) of parallel vector fields on Mb = 7r-1 (b),
for each b e B, is thus a vector space of dimension d, and the union
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Ubes Vv (Mb) is actually endowed with a structure of a smooth vector
bundle over B.

On the other hand, since each fiber Mb is a standard’ affine torus, one
can define for each b E B the space 039Bb C Vv (Mb) of 1-periodic paral-
lel vector fields on Mb, which is easily shown to be a lattice of Vv (Mb).
Moreover, one can show that the union A = Ubes Ab is a smooth lattice
subbundle of Ub~B Vv (Mb), called the period bundle. This is in fact the
geometrical content of the Arnol’d-Mineur-Liouville Theorem [?, ?, ?]. To
prove this, one constructs explicitly smooth sections of Ubes Vv (Mb) which
are 1-periodic, namely Hamiltonian vector fields X03B6o03C0 whose Hamiltonian
is the pullback of a function 03B6 e C°° (M) of a special type called action.
Now, the symplectic form on M provides for each b an isomorphism between
Vv (Mb) and Tb*B. The image of the bundle A by this isomorphism is then a
smooth lattice subbundle E* of T*B, called the Action bundle, and its dual
E (called the Resonance bundle) is a smooth lattice subbundle of TB. This
lattice subbundle E provides a way to associate the tangent spaces TbB for
neighboring points b. This thus implies the existence of a natural integer,
torsion-free and flat connection V on the base space B (as discovered by
Duistermaat [?]). Actually, angle-action coordinates are semi-global canon-
ical coordinates (x, ç) : 03C0-1 (0) -* 1rd x Rd, where O is an open subset of
B, with the properties that the xj’s are flat (with respect to Weinstein’s
connection) coordinates on the tori, and the differentials dçj are smooth
sections of the Action bundle E* (this implies that the coordinates çj are
flat with respect to Duistermaat’s connection on B).

In the sequel, the space of parallel vector fields will be denoted by Vv (B)
and the space of parallel 1-forms by S2ô (L3). We mention that in general the
holonomy of Duistermaat’s connection does not vanish. As a consequence,
the spaces Vv (B) and S2ô (B) might be empty. Nevertheless, when one works
locally in a simply connected subset O c B, the spaces of local parallel
sections Vv (0) and 03A91~ (0) are d-dimensional vector spaces.

2. Diffèrent nondegeneracy conditions

Let (H, MB) be a regular CI system composed of a fibration in
lagrangian tori M 1 B together with a Hamiltonian H e C°° (M) constant
along the fibers. As mentionned before, H is of the form H = F o 7r, with
F e C°° (B). It turns out that all the nondegeneracy conditions can be
expressed in terms of the function F and Duistermaat’s connection V which
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naturally exists on B. On the other hand, these conditions are local : F is said
to be non-degenerate if is non-degenerate at each b E B. Moreover, some of
these conditions are expressed in terms of the space of parallel vector fields
Vo (B), but the local character of the nondegeneracy conditions means that
one needs actually only the spaces Vo (0) of local parallel vector fields in
a neighborhood 0 c B of each point b e B. We will use a slight misuse of
language and say "for each X e Vv (8)" instead of "for each b e B, each
neighborhood O c B of b and each X e Vv (O)".

For our purposes, let’s define for each X e Vo (B) the function

Ç2x e C°° (B) by Ç2x - dF (X) and the associated resonance set

We will also denote by K = Ub Kb the integrable distribution of hyper-
planes Kb C TbB tangent to the hypersurfaces F = cst, i.e. Kb = ker dF|b.
The Hessian B7B7 F, which is a (0,2)-tensor field on 8, will be denoted by
Fil. It is symmetric since ~ is torsion-free. The connection ~ yields also
an identification of the cotangent spaces T*bB at neighboring points b and
allows to define the frequency map p : 8 -* Ç2’ (3) by p (b) = dF~b, where
dFb e Ç2’ (B) is the parallel 1-form which coincides with dF at the point
b. In the sequel, the expression A oc B means that the vectors A and B are
linearly dependent.

We now review different nondegeneracy conditions, including those used
in the literature. We give both a geometrical formulation and the corre-
sponding (usual) formulation in flat coordinates.

Condition "Kolmogorov" : For each b E B, the Hessian, seen as a linear
map Fb’ : Tb8 -* T*bB, is invertible, i.e

In flat coordinates, this condition reads :

Condition "Locally diffeomorphic frequency map" : The frequency
map is a local diffeomorphism. In flat coordinates, this condition means that
the map ~: 03B6j e Ilgd ~ 9F ~ Rd is a local diffeomorphism.
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Condition "Iso-energetic" or "Arnol’d" : For each b E B the restriction
to J’Cb (for the two slots) of the Hessian F"|kb : Kb ~ K* is invertible, i.e.

In flat coordinates, this condition reads :

Condition "Bryuno" : For each b E B, the set of vectors X E TbB satis-
fying ~X~F oc dF is 1-dimensionnal, i.e. :

This amounts to requiring that for each b, the linear map U : TbB~R~ T*b B
defined by

has a rank equal to d. In flat coordinates, this condition reads :

Condition "N" : For each b e B, the restriction to Kb (for the first slot)
of the Hessian F"|kh : JCb ~ T*bB is injective, i.e. :

This is equivalent to requiring that for each b, the linear map

V : TbB ~ Tb B ~ R defined by
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has a rank equal to d. In flat coordinates, this condition reads :

Condition "Turning frequencies" : Let P (Ç2’ (B)) denote the projec-
tive space of Ç2’ (B) and 7r : Ç2’ (B) ~ P (Qi (B)) the associated pro-
jection. We require the map 7r o cp : B ~ P (Qi (B)) to be a submer-
sion. In flat coordinates, this condition amounts to requiring that the map
7r o p : Rd ~ P (Rd) defined by 03B6 ~ ÊF (03B6)] is a submersion.

Condition "Iso-energetic turning frequencies" : The restriction of the
frequency map p : B -* Ç2’ (B) to each energy level SE = {b| F (b) = E}
is a local diffeomorphism 7r o cp between SE and P (03A91~ (B)).

Condition "Regular resonant set" : For each non-vanishing parallel
vector field X E Vv (B) and each point b e 03A3x, one has

This implies that for each X E Vv (B) the resonant set 03A3X is a 1-codimen-
sionnal submanifold of B.

Condition "Resonant set with empty interior " : For each non-

vanishing parallel vector field X e Vv (B), the resonant set 03A3X has an

empty interior.

Condition "Rüssmann" : For each non-vanishing parallel vector field
X E Vv (B), the image of the frequency map does not annihilate X on
an open set. In flat coordinates, this condition means that the image of
~ : çj e Rd ~ 9F ~ Rd does not lie in any hyperplane passing through the
origin. 
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3. Hierarchy of conditions

First of all, we will show that

Consequently, those four equivalent conditions will be denoted by " Weak
nondegeneracy". Then, we will show the following equivalences.

In the second subsection, we will show that we have the following impli-
cations :

3.1. Equivalent conditions

PROPOSITION 3.1. - Condition "Bryuno" is equivalent to Condition
"N".

Proof. - Consider the linear maps U : TbB ~ R ~ Tb B and V : TbB -
T*bB ~ R of Conditions "Bryuno" and "N". We will show that Ut - V.
Indeed, for each X E TbB and each (Y, cx) E TbB ~ R, the transposed Ut :
TbB ~ Tb B ~ R verifies :

where the symmetry of F" has been used. Therefore, one has

This implies that rank (V) = rank(Ut) = rank (U) and thus that Condi-
tions "N" and "Bryuno" are equivalent. D
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PROPOSITION 3.2. - Condition "Bryuno" is equivalent to Condition

"Turning frequencies ".

Proof. - Let dFb~ = ~ (b) be the parallel 1-form which coincides with
dF at the point b. Condition "TF" ( "Turning frequencies" ) means that the
derivative (7r o ~) * of the map 7r o ~ : B~P (Ql (B)) is surjective. Since
P (Ç2’ (B)) is (d - l)-dimensionnal, Condition "TF" means that the kernel
of (03C0 o ~)* is 1-dimensionnal. Now, the kernel of (03C0 o ~) * is precisely the
space of X such that cp* (X) is in the kernel of 03C0*, i.e. tangent to the fibers
03C0-1. Using the natural isomorphism between Qi (B) and its tangent space
T (Ç2’ (B)), one easily sees that ker (7r o ~)* is composed of the vectors X
such that cp*Xb ce p (b). Condition "TF" is thus equivalent to requiring that
if Xb and Yb satisfy ~*Xb ce p (b) and ~*Yb ce p (b), then Xb oc Yb.

On the other hand, we show that ~* Xb = VXb 17F. Indeed, let t ~ b (t)
be a geodesic t ~ b (t), passing through b at t = 0, and let Xb the tangent
vector of b (t) at b. In a neigborhood of b, one can extend Xb in a unique way
to a parallel vector field X. We thus have ~tX (b) = b (t). We want to calculate
p*Xb = d (~(b (t)))t=0. By definition, for each t, ~ (b (t)) = dFb(t) is the

parallel 1-form which coincides with dfb(t) at the point b (t). It is invariant
by the flow of any parallel vector field, and thus by the one of X, i.e.

Using the definition of the Lie derivative, one obtains ~*Xb = (f-x (dF) ) b .
The Cartan’s magic formula then gives ~*Xb = d(dF(X))b. Finally, since
X is parallel, we find that ~*Xb = (~X~F)b.

Together with the previous result, we have thus proved that if Xb and
Yb satisfy (7Xb VF)b oc dFb et (Vyb’7F)b oc dFb, then they must be linearly
dependent. This is precisely Condition "Bryuno". D

PROPOSITION 3.3. - Condition "N" is equivalent to Condition "Regu-
lar resonant set".

Proof. - Indeed, for each X E Vv (B), one has Ç2x - ~XF and thus
d (ç2x) = V’7xF = VX17F. Condition "Regular resonant set" thus reads

This is equivalent to

i.e. precisely Condition "N".
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PROPOSITION 3.4. - Condition "Iso-energetic" is equivalent to Condi-
tion "Iso-energetic turning frequencies ".

Proof. - Condition "Iso-energetic turning frequencies" amounts to re-
quiring that at each point b the map (7r o )* restricted to an energy level
SE = F-1 (E) is a isomorphism between TbSE and T03C0(~(b))P (Ç2’ (B)), i.e.
the kernel of (7r o ~)* is transverse to SE. Arguing as in the proof of Proposi-
tion 3.2, this is equivalent to requiring that if Xb verifies (~Xb~H)b oc dHb,
then Xb must be transverse to SE, i.e. dF(Xb) ~ 0, which is precisely
Condition "Iso-energetic". D

PROPOSITION 3.5. - Condition "Russmann" is equivalent to Condition
"Resonant set with empy interior".

Proof. - By definition of the frequency map ~, for each X E Vv (B),
one has ~(b)(X)= dF~b(X ) . Since both X and dFb are parallel, the
contraction dFb (X) is a constant function on B and thus equals to its
value at the point b which is nothing but dFb (X) = 03A9X (b). We thus have
~(.) (X) = 03A9X (.). Now, ~ (b) annihilates X on an open subset iff the reso-
nant set Ex - nx1 (0) contains this open subset, and therefore its interior
is not empty. D

3.2. Stronger and weaker conditions

PROPOSITION 3.6. - Condition "Iso-energetic" implies Condition

"Weak".

Proof. - Condition "Iso-energetic" means that for each X e Kb, the
1-form ~X~F|Kb is non-vanishing. This property remains true whithout
the restriction to Kb, i.e.

which is Condition "N". D

PROPOSITION 3.7. - Condition "Kolmogorov" implies Condition
"Weak".

Proof Condition "Kolmogorov" means that for each X E TbB, one has
V’ xV’ F =1= 0. By restriction, this remains true for each X E Kb, which is
Condition "N". D
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PROPOSITION 3.8. - Condition "Weak" implies "Kolmogorov or

Iso-energetic".

Proof. - We will actually show the following equivalent logical state-
ment : if Condition "Weak" is fulfilled but not Condition "Kolmogorov",
then Condition "Iso-energetic" is fulfilled. Suppose that there is a vector
X e TbB such that ’7x’7F - 0 at b. We can then extend X around b to a
parallel vector field, and thanks to the symmetry of Fil , one has ~~XF = 0
at b, i.e. (d03A9X)b = 0. On the other hand, if Condition "Regular resonant
set" is fulfilled, this implies that b cannot belong to the resonant set 03A3X,
and thus X e Kb. Moreover, Condition "Bryuno" insures that each Y sat-
isfying ’7x’7F oc dF at b must be linearly dependent on X, i.e. Y oc X.
We thus have showed that for each Y E Kb satisfying ~Y~F oc dF, one
has Y oc X and therefore Y e Kb. This implies that Y = 0. It is precisely
Condition "Iso-energetic". D

PROPOSITION 3.9. - Condition "Weak" implies Condition "Rüssmann".

Proof. - Indeed, Condition "Regular resonant set" implies that for each
non-vanishing parallel vector field X e Vv (B), the resonant set 03A3X is a

1-codimensional submanifold, and thus has an empty interior. D

3.3. Examples

Example. "Kolmogorov" and "Iso-energetic". - On B = RdB 0, con-
sider the function F(03B6) = 1 2|03B6|2, where |03B6|2 = Ed 1 (03B6j)2. The differential
is dF Ej=l 03B6jd03B6j and the Hessian Fij (03B6)=03B4ij is the identity matrix at
each point 03B6. Therefore, one has det (Fij) = 1 , which means that F actually
satisfies Condition "Kolmogorov" on Rd. On the other hand, a straightfor-
ward calculation yields

This is non-zero whenever ç =1= 0, and thus F satisfies both Conditions
"Kolmogorov" and "Iso-energetic" on B = RdB 0.

Example. "Iso-energetic" but not "Kolmogorov". - On B = Rd B 0, let

us consider the function F (03B6)=|03B6|. The differential is
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the Hessian is Fij (03B6) = 03B4iJ|03B6|- 03B6i03B6J |03B6|3. We can see that Condition "Kolmogorov"
is nowhere satisfied since for each 03B6, the vector Xj == çj verifies VXVF = 0.
Indeed, for each i one has

Nevertheless, Condition "Iso-Energetic" is satisfied since whenever a vector
X verifies VX17F oc VF and ~XF = 0, this means that

By inserting the second equation into the first one, one must have

and this is possible only for 03B6 = 0, i.e. Condition "Iso-Energetic" is satisfied
on 8 = Rd B 0.

ExamDle. "Kolmogoroy" but not "Iso-energetic"

consider the function F (03BE) = 03BE31 3 + 1. The differential is dF = 03BE21d03BE1 + 03BE2d03BE2
and the Hessian is The determinant of F" is thus

simply det (F") = 26 which is non-zero on B. Condition "Kolmogorov" is
thus satisfied. Nevertheless, one verifies easily that

Outside from Ç1 == 0, this determinant vanishes on the curve given by the
equation 03BE31 + 203BE22 = 0. This means that Condition "Iso-energetic" is not

satisfied on this curve.

Example. "Rüssmann" but not "Weak". - On 03B2 = R 2 B 0, let us con-
sider the function F (03BE) = 03BE41 + 03BE42. The differential is i
implying that for each X E R2, one has
The associated resonant set is simply a

line passing through the origine and with slope equal , without
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the origin point. This set has an empty interior and therefore Condition
"Rüssmann" is satisfied. On the other hand, the differential of ex is given
by d03A9X = 12 (03BE21X1d03BE1 + 03BE22X2d03BE2). We can see that for some vectors X,
the differential d03A9X vanishes at some points belonging to 03A3X, and thus
Condition "Weak" is not satisfied. For example, for X = (XI, 0) the reso-
nant set 03A3X is the vertical axis {(0,03BE2); Ç2 =1= 01 without the origin point.
Now, at each point of this set, one has do x = 0.

4. Somes properties of ND hamiltonians

Let (H, MB) be a regular CI system composed of a fibration in
lagrangian tori M 1 B together with a Hamiltonian H E C°° (M) constant
along the fibers, i.e. H = F07r for some F E C°° (B). As explained in Section
1, such a fibration implies the existence of a natural torsion-free and flat
connection on the base space B, the Duistermaat connection. Moreover, one
can easily show that the Hamiltonian vector field XH associated with H is
tangent to the fibration and its restriction to each torus Mb is an element of
Vv (Mb), i.e. is parallel with respect to Weintein’s connection. Therefore, on
each torus, XH generates a linear dynamics that can be periodic, resonant
or non-resonant.

The resonance properties are actually well-parametrized by using the
Resonance bundle E. Indeed, for any given k E f (E), the previously de-
fined set 03A3k = 03A9-1k (0), with Ç2k = dF (k), is actually the set of tori on
which the Hamiltonian vector field XH satisfies at least one resonance re-
lation which reads _j=j kiXj = 0 in action-angle coordinates. On such
tori, the dynamics is actually confined in (d - 1 )-dimensionnal subtori. If
the dynamics of XH is periodic on a torus Mb, this means that it satisfies
d - 1 resonance relations, i.e. b belongs to the intersection of the resonant
sets 03A3k1, ..., 03A3kd-1, where the kj are linearly independent sections of F (E).
On the other hand, if XH is ergodic on some torûs Mb, this means that b
does not belong to any resonant set.

LEMMA 4.1. - If H E C°° (M) is "Rüssmann" non-degenerate, then
the set of tori on which the dynamics is ergodic is dense in B.

Proof. - Let F e C°° (8) such that H = F o 7r. If M b is an ergodic torus,
this means that b does not belong to any resonant set Sk, i.e. b E 8BUk Ek -
We will show that B B ~k 03A3k is dense in B by showing that the interior
of ~k Ek is empty. Indeed, whenever the function F satisfies Condition
"Rüssmann", then for each non-vanishing k e 0393(E), the subset Ek has
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empty interior. Moreover, 03A3k is a closed subset since it is the inverse image
of the point 0 e R by the continuous map dF (k) : B ~ R. We can then
apply the Baire’s Theorem (see for e.g. [?]) which insures that ~k03A3k has
empty interior. D

LEMMA 4.2. - If the Hamiltonian H E C°° (M) is "RÜssmann" non-

degenerate, then the space of smooth functions on M constant along the
fibers equals to the space of smooth functions on M which Poisson-commute
with H.

Proof. - Indeed, if a function A E C°° (M) satisfies {H, A} = 0, then
one has XH (A) = 0 and therefore A is constant along the trajectories of
XH. For each torus Mb on which the dynamics is ergodic, this implies
that A is constant over this torus. Now, Lemma 4.1 insures that when H
satisfies Condition "Rüssmann", then the set of ergodic tori is dense in

B. By continuity, this shows that A is constant along all the fibers Mb.
Conversely, if A is constant along all the fibers, then {H, A} = XH (A) = 0
since XH is tangent to the fibration. D

COROLLARY 4.3. - Let H E C°° (M) be a "Rüssmann" non-degenerate
Hamiltonian and A, B E C°° (M) two functions. Then, the following holds

Proof. - Indeed, if A and B commute with H, Lemma ?? implies that
A and B are constant along the fibers. Moreover, since the fibers are la-
grangian, XA is tangent to them and therefore (A, BI - XA (B) = 0.

~

THEOREM 4.4. - If H, MB) is a "Rüssmann" non-degenerate C.I

system, then MB is the unique fibration such that H is constant along
the fibers.

Proof. - Indeed, suppose M - B’ is another fibration such that H is

constant along the fibers. Let al, ..., ad E Coo (B’) be a local coordinate
system in an open subset O’ C B’ and Aj = ai o 03C0’, j = l..d, the pull-back
functions. Since the differentials dAj are linearly independent in 03C0-1 (O’),
the fibers (03C0’)-1 are given by the level-sets of the Aj’s. Moreover, we have
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{Aj, HI = 0 since by hypothesis H is constant along the lagrangian fibration
7r’. Now, Lemma ?? implies that the functions Aj must be constant along
the fibers of the first fibration 7r, since H is non-degenerate. This means
that the fibers 7r-1 are included in the level sets of the Aj’s, and thus are
included in the fibers of 03C0’. Since the fibers of both fibrations have the same
dimension, they must coincide. D
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