
ANNALES
DE LA FACULTÉ

DES SCIENCES

Mathématiques
GENNADY SAMORODNITSKY

Long memory and self-similar processes

Tome XV, no 1 (2006), p. 107-123.

<http://afst.cedram.org/item?id=AFST_2006_6_15_1_107_0>

© Annales de la faculté des sciences de Toulouse Mathématiques,
2006, tous droits réservés.
L’accès aux articles de la revue « Annales de la faculté des sci-
ences de Toulouse, Mathématiques » (http://afst.cedram.org/), implique
l’accord avec les conditions générales d’utilisation (http://afst.cedram.
org/legal/). Toute reproduction en tout ou partie cet article sous quelque
forme que ce soit pour tout usage autre que l’utilisation à fin strictement
personnelle du copiste est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://afst.cedram.org/item?id=AFST_2006_6_15_1_107_0
http://afst.cedram.org/
http://afst.cedram.org/legal/
http://afst.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/
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Long memory and self-similar processes(∗)

Gennady Samorodnitsky (1)

ABSTRACT. — This paper is a survey of both classical and new results and
ideas on long memory, scaling and self-similarity, both in the light-tailed
and heavy-tailed cases.

RÉSUMÉ. — Cet article est une synthèse de résultats et idées classiques ou
nouveaux sur la longue mémoire, les changements d’échelles et l’autosimi-
larité, à la fois dans le cas de queues de distributions lourdes ou légères.

1. Introduction

The notion of long memory (or long range dependence) has intrigued
many at least since B. Mandelbrot brought it to the attention of the
scientific community in the 1960s in a series of papers (Mandelbrot (1965);
Mandelbrot and Van Ness (1968) and Mandelbrot and Wallis (1968, 1969))
that, among other things, explained the so-called Hurst phenomenon, having
to do with unusual behavior of the water levels in the Nile river.

Today this notion has become especially important as potentially cru-
cial applications arise in new areas such as communication networks and
finance. It is, perhaps, surprising that what the notion of long memory re-
ally is, has never been completely agreed upon. In this survey we attempt
to describe the important ways in which one can think about long memory
and connections between long memory and other notions of interest, most
importantly scaling and self-similarity.
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support of Université Paul Sabatier during author’s visit there in 2005.
School of Operations Research and Industrial Engineering, and Department of Statistical
Science, Cornell University, Ithaca, NY 14853.
E-mail: gennady@orie.cornell.edu

– 107 –



Gennady Samorodnitsky

In the next section we discuss some of the classical approaches to long
memory, and point out some of the pitfalls along the way. Section 3 dis-
cusses self-similar processes and the connection between the exponent of
self-similarity and the length of memory of the increment processes. Section
4 describes recent results on memory of stationary stable processes, and the
last section present brief conclusions.

2. In what ways can on think about long memory?

There is an agreement in probability that the notion of long memory
should be considered in application to stationary processes only, i.e. only in
the context of phenomena “in steady state”. The point is, however, delicate.
First, in various applications of stochastic modeling this term is applied to
non-stationary processes. Thus, for example, the usual Brownian motion is
sometimes viewed as having long memory because it never really forgets
where started from (this is, however, very unreasonable to a probabilist
who immediately thinks about independent increments of the Brownian
motion.) Second, stationary processes with long memory (in whatever sense)
sometimes resemble their non-stationary counterparts, as we will see in the
sequel. It is, therefore, possible to think of long memory processes as being
that layer among the stationary processes that is “near the boundary” with
non-stationarity, or as the layer separating the non-stationary processes
from the “well behaved, usual” stationary processes.

What is, then, the difference between the “usual” stationary processes
and long memory ones?

The first thought that comes to mind is, obviously, about correlations.
Suppose that (Xn, n = 0, 1, 2, . . .) is a stationary stochastic process with
mean µ = EX0 and 0 < EX2

0 < ∞ (we will consider discrete time processes,
but the corresponding formulations for stationary processes with finite vari-
ance in continuous time are obvious.) Let ρn = Corr(X0, Xn), n = 0, 1, . . .
be its correlation function. How does the correlation function of the “usual”
stationary processes behave? It requires skill and knowledge to construct
an example where the correlation function decays to zero (as lag increases)
at a slower than exponentially fast rate. For example, the common linear
(ARMA) processes, GARCH processes, finite state Markov chains all lead
to exponentially fast decaying correlations. A process with correlations that
are decaying slower than exponentially fast is, then, “unusual”. If the cor-
relations are not even absolutely summable, then the term “long memory”
is often used. See Beran (1994).
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It is instructive to look at the simplest case, the so called AR(1) model.

Let Zj , j = 1, 2, . . . be i.i.d. random variables with zero mean and non-
zero finite variance. Choose a number −1 < ρ < 1, and an arbitrary (po-
tentially random, but independent of the sequence Zj , j = 1, 2, . . .) initial
state X0. The AR(1) process Xn, n = 0, 1, 2, . . . is defined by

Xn = ρXn−1 + Zn, n = 1, 2, . . . . (2.1)

It is elementary to check that the distribution of Xn converges to a lim-
iting distribution, which is then automatically a stationary distribution of
this simple Markov process. Choose the initial state X0 according to this
stationary distribution, which can be written in the form

X0 =
∞∑

j=0

ρjZ−j ,

where . . . , Z−1, Z0 are i.i.d. random variables independent of Z1, Z2, . . . ,
and with the same distribution. Then the entire AR(1) process is already
stationary, and

Xn =
∞∑

j=0

ρjZn−j , n = 0, 1, . . . . (2.2)

Notice that the correlation function of the stationary AR(1) process given
by (2.2) is given by ρn = ρn, n = 0, 1, 2, . . ., and it is exponentially fast
decaying. In this sense the stationary AR(1) process is “usual”. Notice also
that the exponential rate of decay of correlations becomes slower as ρ ap-
proaches ±1.

Of course, if ρ is exactly equal to −1 or 1, then the AR(1) process in
(2.1) cannot be made stationary; in fact, if ρ = 1, then the AR(1) process is
a random walk, which a is discrete-time equivalent of the Brownian motion.
Therefore, in this case there is no real boundary layer between the “usual”
stationary processes with exponentially fast decaying correlations and non-
stationary ones. Nonetheless, even here, when ρ is close to −1 or 1, we may
observe some features in the realizations of a stationary AR(1) process that
remind us of non-stationary processes, such as a random walk. See the plots
below.
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Figure 1. — Different AR(1) models and a random walk.

Overall, however, the class of AR(1) processes is too narrow to observe
“unusual” stationary models that are close to being non-stationary.

In order to construct stationary processes with non-summable correla-
tions we have to go to wider classes of processes. A natural way of doing
that is via spectral domain. The book of Beran (1994) can be consulted
for details. Briefly, we will consider stationary processes with a finite posi-
tive variance σ2, that possess a spectral density f , which is a nonnegative
function on (0, π) such that for n = 0, 1, 2, . . .,

ρn =
1
σ2

∫ π

0

cos(nx)f(x)dx. (2.3)

Intuitively, fast rate of decay of correlations is associated with a nice
spectral density, especially as far as the behavior of the spectral density
around zero is concerned. More specifically (but still informally), it is some-
times the case that if a spectral density diverges to infinity at certain rate,
then the covariance function converges to zero at an appropriate slow rate
(and vice versa). The association is real, even though imprecise statements
abound in the literature.

Below is one precise result; see Samorodnitsky (2002).

Theorem 2.1. — (i) Assume that

ρn = n−dL(n), n = 0, 1, 2, . . . , (2.4)

where 0 < d < 1 and L is slowly varying at infinity, satisfying the following
assumption:

for every δ > 0 both functions
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g1(x) = xδL(x) and g2(x) = x−δL(x) (2.5)

are eventually monotone.

Then the process has a spectral density, say, f , satisfying

f(x) ∼ x−(1−d)L(x−1)
2
π

Γ(1 − d) sin
1
2
πd (2.6)

as x → 0.

(ii) Conversely, assume that the process has a spectral density f satisfy-
ing

f(x) = x−dL(x−1), 0 < x < π, (2.7)

where 0 < d < 1, and L is slowly varying at infinity, satisfying assumption
(2.5) above. Suppose, further, that f is of bounded variation on the interval
(ε, π) for any 0 < ε < π. Then the covariances of the process satisfy

Rn ∼ n−(1−d)L(n)Γ(1 − d) sin
1
2
πd (2.8)

as n → ∞.

What is the conclusion? If the spectral density of a stationary process
satisfies the assumptions of the second part of the theorem, then the cor-
relations of the process will decay to zero at, roughly speaking, the rate of
ρn ∼ n−θ for some 0 < θ < 1, which makes the correlations non-summable.
The classical example of a process with this property is the Fractional Gaus-
sian noise to be discussed in the sequel. Such models are commonly viewed
as long range dependent and, in fact, a not unusual requirement on a long
memory process is to have correlations that are regularly varying at infinity
with exponent less than 1.

Sample paths of such processes often show features that make one to
suspect presence of non-stationarity, as will be seen on the simulations of
the Fractional Gaussian noise in the sequel. Observe also that this class of
stationary processes is close to non-stationarity models in another respect:
once the exponent d describing how fast the spectral density “blows up” near
the origin, crosses the level d = 1, it stops being the spectral density of a
stationary process. The general phenomenon of spectra with densities having
a hyperbolic-type of a pole at the origin is often referred to as 1/f noise,
especially in the physics literature. See Mandelbrot (1983). The distinction
between stationarity and non-stationarity is often missed in the engineering
and physics literature.

One of the reasons to concentrate on the lack of summability of correla-
tions is the obvious interest in understanding the order of magnitude of the
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partial sums of the observations. Let (Xn, n = 0, 1, 2, . . .) be a stationary
stochastic process with zero mean, finite variance σ2 and correlations (ρn).
Let S0 = 0, Sn = X0 + . . .+Xn−1, n � 1 be the partial sums of the process.
Note that

VarSn = σ2

(
n + 2

n−1∑
i=1

(n − i)ρi

)
.

If the correlations are summable, then the dominated convergence theorem
yields

lim
n→∞

VarSn

n
= σ2

(
1 + 2

∞∑
i=1

ρi

)
,

so that the variance of the partial sums grows at most linearly fast (it can
grow strictly slower than that if 1 + 2

∑∞
i=1 ρi = 0, which does happen in

certain common models.) Since the variance is often used as a measure of
the size of a random variable, this fact is taken to mean that for the “usual”
zero mean stationary models partial sums do not grow faster than the square
root of the sample size. Much of the classical statistics is based on that.

Once the correlations stop being summable, the variance of the partial
sums can grow faster than linearly fast, and the rate of increase of the the
variance is related to the actual rate of decay of correlations. For example,
if the correlations (ρn) satisfy (2.4) with some 0 < d < 1, then an easy
application of Karamata’s theorem (see e.g. Theorem 0.6 in Resnick (1987))
shows that

VarSn ∼ 1
(1 − d)(2 − d)

L(n)n2−d as n → ∞. (2.9)

One can see that a phase transition in the behaviour of the variance of
the partial sums occurs when the correlations stop being summable. In
particular, the dependence on d in the rate of increase of the variance in
(2.9) is the reason why specifically regular variation of the correlations (and
the concomitant, if not equivalent, pole of the spectral density at the origin)
are often viewed as the definition of long range dependence.

However, it is clear that the correlations and the variances give us sub-
stantial information about the process only if the process has a nearly Gaus-
sian structure. Furthermore, these notions are entirely undefined if the pro-
cess does not have a finite variance. Therefore, it is of great interest to
develop an approach to long range dependence broader than that based on
correlations. Phase transitions in the properties of the process, an example
of which was discussed above, can occur regardless of the finiteness of vari-
ances. Presence of such phase transitions can itself be taken as a definition
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of long memory. Such an approach is advocated in Samorodnitsky (2002),
especially when the phase transitions are related to large deviations.

The change in the order of magnitude in the variance of the partial sums
in (2.9) has also lead to establishing interesting connections between long
memory and self-similarity, as discussed in the next section.

3. Self-similar processes and long memory

Recall the definition of self-similarity: a stochastic process (Y (t), t �
0) is called self-similar with exponent H > 0 of self-similarity if for all
c > 0 the processes (Y (ct), t � 0) and (cHY (t), t � 0) have the same finite-
dimensional distributions (i.e. scaling of time is equivalent to an appropriate
scaling of space).

In applications a self-similar process is often a (continuous time) model
for a cumulative input of a system in steady state, hence of a particular
interest are self-similar processes reflecting this: processes with stationary
increments. The common abbreviation for a self-similar process with station-
ary increments is SSSI (or H-SSSI if one wants to emphasize the exponent
of self-similarity). We refer the reader to Samorodnitsky and Taqqu (1994)
and Embrechts and Maejima (2002) for information on the properties of
self-similar processes, including some of the facts presented below.

Suppose that (Y (t), t � 0) is an H-SSSI process with a finite variance.
Since we trivially have Y (0) = 0 a.s., we see that

E(Y (t)−Y (s))2 = E
(
Y (t− s)−Y (0)

)2

= EY 2(t− s) = (t− s)2HEY 2(1)2

for all t > s � 0, and so

Cov(Y (s), Y (t)) =
1
2

[
EY 2(t) + EY 2(s) − E(Y (t) − Y (s))2

]
(3.1)

=
EY 2(1)

2

[
t2H + s2H − (t − s)2H

]
.

Assuming non-degeneracy (EY (1)2 �= 0), the expression in the right hand
side of (3.1) turns out to be nonnegative definite if and only if 0 < H � 1,
in which case it is a legitimate covariance function.

In particular, for every 0 < H � 1 there is a unique zero mean Gaus-
sian process whose covariance function is consistent with self-similarity with
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exponent H and stationary increments and, hence, is given by (3.1). Con-
versely, a Gaussian process with a covariance function given by (3.1) is,
clearly, both self-similar with exponent H and has stationary increments.
That is, for every 0 < H � 1 there is a unique (up to a global multiplicative
constant) H-SSSI zero mean Gaussian process. This process is called Frac-
tional Brownian Motion (FBM), and will be denoted by (BH(t), t � 0). It
is trivial to check that for H = 1, E

(
tBH(1) − BH(t)

)2 = 0 for all t � 0,
which means that the process is a straight line through the origin and ran-
dom normal slope. The interesting and nontrivial models are obtained when
0 < H < 1, which is what we will assume in the sequel.

The increment process Xn = BH(n + 1)−BH(n), n � 0 of an FBM is a
stationary process called Fractional Gaussian noise (FGN). An immediate
conclusion from (3.1) is that

ρn = Corr(X0, Xn) ∼ 2H(2H − 1)n−2(1−H)

as n → ∞. Therefore, the correlation function of an FGN with 1/2 < H < 1
satisfies (2.4) with d = 2(1 − H) < 1. Fractional Gaussian noises with
H > 1/2 are commonly viewed as long range dependent. Since the process is
a Gaussian one, this is not particularly controversial, because the covariance
on whose behavior the term “long range dependent” hinges here, determines
the structure of the process.

Fractional Brownian Motion with H > 1/2 was used by Mandelbrot and
Van Ness (1968) and Mandelbrot and Wallis (1968) to give a probabilis-
tic model consistent with an unusual behaviour of water levels in the Nile
river observed by Hurst (1951), and it was noted already there that the re-
alizations of long range dependent Fractional Gaussian noises may exhibit
apparently obvious non-stationarity. For example, as one compares the four
plots on Figure 2, it appears that, for larger values of H, the plots tend
to indicate changing “level”, or the mean values, of the process at different
time intervals. The phenomenon is dramatic in the case H = .9. This is, of
course, in spite of the fact that the process is stationary and the mean is
always zero.

Notice that for 0 < H < 1/2 the correlations of a FGN tend to be
negative, and for H = 1/2 the FGN is simply an i.i.d. sequence.

For the increment process of a self-similar process (as a FGN is) not
only does the exponent H of self-similarity determine the asymptotic rate
of growth of the variance of partial sums, but it clearly determines the
distributional rate of growth of the partial sums. Indeed, if (Y (t), t � 0)
is an H-SSSI process, and Xn = Y (n + 1) − Y (n), n � 0 is its increment
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process, then Sn = X0 + . . .+Xn−1 = Y (n) d= nHY (1) = nHX0 (recall that
Y (0) = 0 for an H-SSSI process). Under the assumption of Gaussianity, the
variance does determine the distribution of a partial sum, but this is not
the case if the process is not Gaussian. The existence of a clear threshold
H = 1/2 that separates short and long memory for Fractional Gaussian
noises led researchers to concentrate on exponent of self-similarity itself,
instead of the variance. This is, obviously, particularly attractive in the
infinite variance case.

Figure 2. — Different Fractional Gaussian noises.

The case that has generated the most extensive research was that of
self-similar stable processes. Recall that a stochastic process (Y (t), t ∈ T )
(where T is an arbitrary parameter set) is α-stable, 0 < α < 2, if for any
A, B > 0 there is a non-random function (D(t), t ∈ T ) such that(

AY1(t) + BY2(t), t ∈ T
)

d=
(
(Aα + Bα)1/α

Y (t) + D(t), t ∈ T
)

in terms of equality of finite-dimensional distributions, where (Y1(t), t ∈ T )
and (Y2(t), t ∈ T ) are independent copies of (Y (t), t ∈ T ). Note that a
Gaussian process is stable, but with α = 2, and that an α-stable process
with 0 < α < 2 has infinite second moment (even the first absolute moment
is infinite if α � 1); we refer the reader to Samorodnitsky and Taqqu (1994)
for more information on α-stable processes. If T is a subset of R

n, a stable
process is usually referred to as a stable random field; a discussion of sym-
metric stable random fields and their sample path properties is in Nolan
(1988).

If (Y (t), t � 0) is an α-stable Lévy motion (a process with stationary
independent increments), then it is an SSSI process with H = 1/α (if α = 1,
this statement requires the process to be symmetric). If we recall that the
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value H = 1/2 is a critical value for the length of memory of the increments
of Gaussian SSSI processes, it is not surprising that the value H = 1/α has
attracted attention in the α-stable case. Specifically, suppose that (Y (t), t �
0) is an α-stable H-SSSI process. Consider its increment process Xn =
Y (n + 1)− Y (n), n � 0. Do the properties of the increment process change
significantly as the value of H crosses the threshold 1/α?

To consider this question, we need, first of all, to understand what values
the exponent H of self-similarity can take in this case. It turns out that the
feasible pairs (α, H) of the index of stability and exponent of self-similarity
in an α-stable H-SSSI process lie in the range

0 < α < 2, 0 < H � max
(

1,
1
α

)
,

see e.g. Samorodnitsky and Taqqu (1994). In particular, the value H =
1/α is an interior point of the feasible range only in the case 1 < α <
2. It is important to keep in mind here that, unlike the situation in the
Gaussian case, a feasible pair (α, H) does not, in general, determine the
(finite-dimensional distributions of) an α-stable H-SSSI process.

In this regard it is interesting to note that, for 0 < α < 1, the only
α-stable H-SSSI process with the highest possible value of H = 1/α is the
independent increment Lévy motion discussed above, for which the incre-
ment process is an i.i.d. sequence (see Samorodnitsky and Taqqu (1990)).
For α = 1, assuming symmetry, there are two obvious H-SSSI processes
with H = 1: the 1-stable Lévy motion, and the straight line process Y (t) =
tY (1), t � 0 with Y (1) having a symmetric 1-stable distribution. In the
former case the increment process is again an i.i.d. sequence, in the latter
case the increment process is a constant (at a random level) sequence. It
has been an open question whether the linear combinations of independent
Lévy motion and straight line processes exhausted all possible symmetric
1-stable H-SSSI processes with H = 1. This question has been recently an-
swered in negative by Cohen and Samorodnitsky (2005) who constructed
an entire family of such processes that do not have either a Lévy motion
component or a straight line component.

This leaves open the question whether, at least in the case 1 < α < 2,
the value H = 1/α is of a special importance for the length of memory of
the increment process.

To address this question we will describe some “standard” families of
α-stable H-SSSI processes that have been studied in the literature, and for
simplicity we will concentrate on the symmetric case. Henceforth we will
use the standard notation SαS for “symmetric α stable”. The first standard
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family of SαS H-SSSI processes is that of Linear Fractional Stable motions.
These are processes that have the form

Y (t) =
∫

R

g(t, x) M(dx) , t � 0 , (3.2)

where M is a SαS random measure with Lebesgue control on R and

g(t, x) = a
(
(t − x)H−1/α

+ − (−x)H−1/α
+

)
+b

(
(t − x)H−1/α

− − (−x)H−1/α
−

)
,

t � 0, x ∈ R ,

where H ∈ (0, 1), H �= 1/α. Here a and b are two real constants, and 0c = 0
for all real c. We refer the reader to Samorodnitsky and Taqqu (1994) for
information on stable random measures and integrals with respect to these
measures.

The second standard family of SαS H-SSSI processes is that of Real
Harmonizable Fractional Stable motions. These are processes of the form

Y (t) = Re
∫

R

eitx − 1
ix

|x|−H+1−1/αM̃(dx) , t � 0 , (3.3)

0 < H < 1, where M̃ is a complex isotropic SαS random measure with
Lebesgue control on R.

Finally, the third standard family of SαS H-SSSI processes is that of
sub-Gaussian Fractional Stable motions, having the form

Y (t) = A1/2BH(t) , t � 0 , (3.4)

where (BH(t), t � 0) is a Fractional Brownian motion independent of a
strictly α/2-stable positive random variable A. Obviously, here we also have
0 < H < 1.

It is straightforward to check that all the families of processes defined
above are families of SαS H-SSSI processes. All 3 families are restricted to
the case 0 < H < 1 (the Linear Fractional Stable motion requires a special
definition in the case 1 < α < 2 and H = 1/α), and their obvious extension
to the case α = 2 reduces, as it should, all 3 families to the Fractional
Brownian motion. The increment process Xn = Y (n + 1) − Y (n), n � 0
is called the Linear (Real Harmonizable, sub-Gaussian) Fractional Stable
noise, respectively.

Recall that we are considering the case 1 < α < 2 and trying to un-
derstand whether anything special happens to the properties of a Frac-
tional Stable noise when the exponent H of self-similarity crosses the value
H = 1/α.
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There are no correlations to look at, so one possibility is to look for a
substitute. One such substitute is the codifference defined for a stationary
process (Xn, n � 0) by

τ(n) = log Eei(Xn−X0) − log
(
EeiXnEe−iX0

)
= log Eei(Xn−X0) − log

(∣∣EeiX0
∣∣2) ,

n = 0, 1, 2, . . ., see e.g. Samorodnitsky and Taqqu (1994). For stationary
Gaussian processes τ(n) is equal twice the covariance at lag n. Surpris-
ingly, codifference carries enough information to ensure that for station-
ary stable processes (or, even more generally, for stationary infinitely di-
visible processes whose marginal Lévy measure does not charge the set
{2πk, k = ±1,±2, . . .}) a process is mixing if and only if τ(n) → 0 as
n → ∞ (see Rosiński and Żak (1996)). In the paper Astrauskas et al. (1991)
the authors looked at the asymptotic behavior as n → ∞ of the codifference
for the Linear Fractional Stable noise, and found that the this behavior
undergoes a change when the exponent of self-similarity crosses the level
H = 1−1/α(α−1), not H = 1/α! Furthermore, for Real Harmonizable and
sub-Gaussian Fractional Stable noises the codifference does not converge to
zero at all.

On the other hand, Mikosch and Samorodnitsky (2000) have looked at
the ruin probability instead of codifference. For a stationary ergodic process
(Xn, n � 0) with a finite mean µ and a number c > µ, the (infinite horizon)
ruin probability is defined by

Pruin(λ) = P (Sn > c n + λ for some n = 1, 2, . . .) ,

λ > 0. If (Xn, n � 0) is a Linear Fractional Stable noise, Mikosch and
Samorodnitsky (2000) showed that

Pruin(λ) ∼
{

C λ−(α−1) if 0 < H < 1/α

C λ−α(1−H) if 1/α < H < 1

as λ → ∞, where C = C(α, H, c, a, b) is a finite positive constant. There-
fore, one observes a change occurring here as the exponent of self-similarity
crosses the level H = 1/α.

Finally, the only interesting change one can hope for the sub-Gaussian
Fractional Stable noise can occur for H = 1/2, the critical value for FGN,
since the sub-Gaussian Fractional Stable noise is just a Fractional Gaussian
noise with a random scale.
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One can see that the evidence is, at best, sketchy that for the increment
processes of SαS H-SSSI processes with 1 < α < 2 the value of H = 1/α is
of a special importance as far as long memory of the increment process is
concerned.

4. Flows and long memory of stationary stable processes

In this section we indicate an alternative approach to long memory stable
processes, that does not depend on a value of a single parameter, as dis-
cussed above for the increments of self-similar processes. We will consider,
for simplicity, the symmetric case.

Let (Xn, n � 0) be a stationary SαS process. According to a theory
developed in Rosiński (1995), such a process has a representation of the
form

Xn =
∫

E

fn(x) M(dx) , n = 0, 1, 2, . . . , (4.1)

where M is a SαS random measure on a measurable space (E, E) with a
σ-finite control measure m, and

fn(x) = an(x)
(

dm ◦ φn

dm
(x)

)1/α

f ◦ φn(x) x ∈ E , (4.2)

for n = 0, 1, 2, . . ., where φ : E → E is a one-to-one map with both φ and
φ−1 measurable, mapping the control measure m into an equivalent measure
(a so-called measurable non-singular map). Further,

an(x) =
n−1∏
j=0

u ◦ φj(x) , x ∈ E ,

for n = 0, 1, 2, . . ., with u : E → {−1, 1} a measurable function and
f ∈ Lα(m, E).

Combining the Hopf decomposition and the null-positive decomposition
of the flow, (see Krengel (1958)), Rosiński (1995) and Samorodnitsky (2005)
showed that one can decompose the process (Xn, n � 0) into a sum of 3
independent stationary SαS processes

Xn = XD
n + XCN

n + XP
n , n = 0, 1, 2, . . . , (4.3)

where the first component in the right hand side of (4.3) is generated by a
dissipative flow (the dissipative component of the process), the second one
is generated by a conservative null flow (the conservative null part of the
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process) and last one in generated by a positive flow (the positive part of the
process). Once again, we refer the reader to Krengel (1985) for the ergodic-
theoretical notions. The decomposition in (4.3) is unique in distribution.

Here is an illustrative example of a decomposition (4.3). Let

E =
(
{1, 2, 3} × Z

)Z

endowed with the cylindrical σ-field. Let the control measure m be defined

as m = (m1 + m2 + m3)/3, where m1 is the law on
(
{1} × Z

)Z

of the
Markov chain with the entrance law (at time zero) equal to the counting
measure on {1} ×Z and transition matrix p

(1)
(1,i),(1,i+1) = 1 for all i ∈ Z, m2

is the law on
(
{2} × Z

)Z

of the Markov chain with the entrance law equal
to the counting measure on {2} × Z and transition matrix of the simple

symmetric random walk on Z. Finally, m3 is the law on
(
{3} × Z

)Z

of a
positive recurrent Markov chain with the entrance law equal to a stationary
distribution of that Markov chain.

Let the kernel fn is given by fn

(
xj , j ∈ Z

)
= 1

(
xn = 0

)
. Let φ be the

backward shift operator φ
(
. . . , x−1, x0, x1, . . .

)
=

(
. . . , x0, x1, x2, . . .

)
. Since

the measure m is, obviously, shift invariant, we obtain (4.2) with an ≡ 1,
the Radon-Nykodim derivative equal identically to 1, and f = f0. Here the
3 components in the decomposition (4.3) correspond to the restrictions of

the integral in (4.1) to
(
{k} × Z

)Z

with k = 1, 2, 3 correspondingly.

It has been known for some time that the nature of the flow affects the
probabilistic properties of the stable process, see Rosiński and Samorod-
nitsky (1996), Resnick et al. (1999, 2000) and Mikosch and Samorodnitsky
(2000). Recently it has become even clearer that the boundaries between
dissipative and conservative flows and between null and positive flows are
crucial for the length of memory of a stable process. For example, it turns
out that

n−1/α max (|X0, |X1|, . . . , |Xn−1|)

⇒
{

0 if XD ≡ 0 in (4.3)
a non-degenerate limit otherwise

See Samorodnitsky (2004). On the other hand, it turns out that the process
(Xn, n � 0) is ergodic if and only if XP ≡ 0 in (4.3); see Samorodnit-
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sky (2004b). One interpretation is that the the boundary between dissi-
pative and conservative flows results in the boundary between stationary
SαS processes with short and long memory (with processes generated by
conservative flows having long memory), while the boundary between null
and positive flows results in the boundary between stationary SαS processes
with finite and infinite memory (with processes generated by positive flows
having infinite memory).

This appears to be a much more promising approach to long memory
for stationary stable processes than that based on, say, the exponent of self-
similarity in the case of the increment process of an SαS H-SSSI process,
discussed in the previous section. In that regard it is interesting and im-
portant to note that the Linear Fractional Stable noise is generated by a
dissipative flow, while both the Real Harmonizable and sub-Gaussian Frac-
tional Stable noises are generated by positive flows. Therefore, it reasonable
to say that the latter processes have much longer memory than Linear Frac-
tional Stable noises, regardless of the value of the exponent of self-similarity.

It is interesting that no examples of SαS H-SSSI processes whose incre-
ment processes are generated by conservative null flows seem to had been
known, until recently Cohen and Samorodnitsky (2005) described a class of
such processes based on local times of Fractional Brownian motions.

We would also like to mention that there is a different connection be-
tween SαS H-SSSI processes and flows, due to Pipiras and Taqqu (2002a,b).
This decomposition is based on multiplicative, not additive, flows, and it ap-
plies to SαS H-SSSI processes whose increment processes are generated by
dissipative (additive) flows. Its implications for the probabilistic properties
of the process are still unclear.

5. Conclusions

This survey has been written to give the reader a way to look at the
issue of long memory and its relation to scaling and self-similarity. Much
has been written on the subject, and even more will, undoubtedly, be written
in the future; the area is highly active. If the reader has been convinced that
concentrating on a few numbers, like exponent of self-similarity, or the rate
of decay of correlations (or their substitutes) is not the right way to think
about long memory, then the author has been successful in his task.
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