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Properties of local-nondeterminism
of Gaussian and stable random fields

and their applications(∗)

Yimin Xiao (1)

ABSTRACT. — In this survey, we first review various forms of local non-
determinism and sectorial local nondeterminism of Gaussian and stable
random fields. Then we give sufficient conditions for Gaussian random
fields with stationary increments to be strongly locally nondeterministic
(SLND). Finally, we show some applications of SLND in studying sample
path properties of (N, d)-Gaussian random fields. The class of random
fields to which the results are applicable includes fractional Brownian
motion, the Brownian sheet, fractional Brownian sheets and so on.

RÉSUMÉ. — In this survey, we first review various forms of local non-
determinism and sectorial local nondeterminism of Gaussian and stable
random fields. Then we give sufficient conditions for Gaussian random
fields with stationary increments to be strongly locally nondeterministic
(SLND). Finally, we show some applications of SLND in studying sample
path properties of (N, d)-Gaussian random fields. The class of random
fields to which the results are applicable includes fractional Brownian
motion, the Brownian sheet, fractional Brownian sheets and so on.

1. Introduction

The most important example of self-similar (non-Markovian) Gaussian
processes is fractional Brownian motion (fBm) which was first introduced,
as a moving average Gaussian process, by Mandelbrot and Van Ness (1968)

BH(t) = κH

∫ t

−∞

[
((t − s)+)H−1/2 − ((−s)+)H−1/2

]
dB(s),
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where t+ = max{t, 0}, B is the ordinary Brownian motion and κH > 0
is the normalizing constant so that E(BH(1)2) = 1, where H ∈ (0, 1) is
called the self-similarity index, or Hurst index. Except the case H = 1/2,
fBm does not have independent increments, it is not a Markov process, nor
a semimartingale; see Lin (1995) or Rogers (1997) for a proof of this last
fact. Due to its self-similarity and long-range dependence (as H > 1/2), it
has been applied to model various phenomena in telecommunications, tur-
bulence, image processing and finance. As a result, the theory on fractional
Brownian motion has been developed significantly. We refer to Doukhan et
al. (2003) for further information.

Moreover, in recent years, many authors have proposed to use more gen-
eral self-similar Gaussian processes and random fields as stochastic models
in several different scientific areas; see e.g. Addie et al. (1999), Anh et al.
(1999), Benson et al. (2004), Bonami and Estrade (2003), Cheridito (2004),
Mannersalo and Norros (2002), Mueller and Tribe (2002), just to mention
a few. Such applications have raised many interesting theoretical questions
about Gaussian random fields in general.

One of the major difficulties in studying the probabilistic, analytic or
statistical properties of Gaussian random fields is the complexity of their
dependence structures. As a result, many of the existing tools from theo-
ries on Brownian motion, Markov processes or martingales fail for Gaussian
random fields; and one often has to use general principles for Gaussian
processes or to develop new tools. In this paper, we show that in many cir-
cumstances, the properties of local nondeterminism can help us to overcome
this difficulty so that many elegant and deep results of Brownian motion
(and Markov processes) can be extended to Gaussian (or stable) random
fields.

The rest of this paper is organized as follows. In Section 2, we recall the
definitions of various forms of local nondeterminism. In Section 3, we give
sufficient conditions for ordinary or strong local nondeterminism to hold for
Gaussian random fields with stationary increments. In Section 4, we show
applications of the properties of local nondeterminism in studying small ball
probabilities, Hausdorff dimension and exact Hausdorff measure functions
of the sample paths, and local times of Gaussian random fields.

We end this section with some general notation. Throughout this paper
(except in Section 2.4), X = {X(t), t ∈ RN} will denote an (N, d)-Gaussian
random field, where for every t ∈ RN ,

X(t) =
(
X1(t), . . . , Xd(t)

)
, (1.1)
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and we will assume E(Xj(t)) ≡ 0 for every 1 � j � d. When N = 1, X is
called a Gaussian process in Rd.

A parameter t ∈ RN is written as t = (t1, . . . , tN ) and if t1 = t2 = · · ·
= tN = c ∈ R, then we write t as 〈c〉. There is a natural partial order, “�”,
on RN . Namely, s � t if and only if s� � t� for all � = 1, . . . , N . When s� t,
we define the closed interval or rectangle,

[s, t] =
N∏

�=1

[s�, t�].

We will let A denote the class of all N -dimensional closed intervals T ⊂ RN .
We use 〈·, ·〉 and | · | to denote the ordinary scalar product and the Euclidean
norm in Rm respectively, no matter the value of the integer m.

Unspecified positive and finite constants will be denoted by c which
may have different values from line to line. Specific constants in Section
i will be denoted by c

i,1 , ci,2 , . . .. For two non-negative functions f and g
on RN , we denote f � g if there exists a finite constant c � 1 such that
c−1f(x) � g(x) � c f(x) for all x in some neighborhood of 0.

Acknowledgement. — The author thanks Professors Serge Cohen and
Jacques Istas for their invitation.

2. Definitions of local nondeterminism

In this section, we recall the definitions of different forms of local non-
determinism for Gaussian and stable random fields.

2.1. Local nondeterminism for Gaussian random fields

The concept of local nondeterminism (LND, in short) of a Gaussian
process was first introduced by Berman (1973) to unify and extend his
methods for studying the existence and joint continuity of local times of
real-valued Gaussian processes. Berman’s definition was later extended by
Pitt (1978) and Cuzick (1982a) to (N, d)-Gaussian random fields and by
Cuzick (1978) to local φ-nondeterminism for an arbitrary positive function
φ.

Berman’s definition of LND for Gaussian processes Let X = {X(t),
t ∈ R+} be a real-valued, separable Gaussian process with mean 0 and
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let T ⊂ R+ be an open interval. Assume that E[X(t)2] > 0 for all t ∈ T and
there exists δ > 0 such that

σ2(s, t) = E
[
(X(s) − X(t))2

]
> 0 for s, t ∈ T with 0 < |s − t| < δ.

Recall from Berman (1973) that X is called locally nondeterministic on T
if for every integer n � 2,

lim
ε→0

inf
tn−t1�ε

Vn > 0, (2.1)

where Vn is the relative prediction error:

Vn =
Var

(
X(tn) − X(tn−1)|X(t1), . . . , X(tn−1)

)
Var

(
X(tn) − X(tn−1)

) (2.2)

and the infimum in (2.1) is taken over all ordered points t1 < t2 < · · · < tn in
T with tn−t1 � ε. Roughly speaking, (2.1) means that a small increment of
the process X is not almost relatively predictable based on a finite number
of observations from the immediate past.

It follows from Berman (1973, Lemma 2.3) that (2.1) is equivalent to the
following property which says that X has locally approximately independent
increments: for any positive integer n � 2, there exist positive constants cn

and δ (both may depend on n) such that

Var
( n∑

j=1

uj

(
X(tj) − X(tj−1)

))
� cn

n∑
j=1

u2
j σ2(tj−1, tj) (2.3)

for all ordered points 0 = t0 < t1 < t2 < · · · < tn in T with tn − t1 < δ and
all uj ∈ R (1 � j � n). We refer to Nolan (1989, Theorem 2.6) for a proof
of the above equivalence in much more general setting.

Local nondeterminism for Gaussian random fields In order to study
the joint continuity of the local times of an (N, d)-Gaussian random field
X = {X(t), t ∈ RN}, Pitt (1978) extended Berman’s definition (2.1) of
LND to the random field setting; see also Geman and Horowitz (1980).
Assume that T ∈ A is an interval and for all s = t ∈ T , the covariance
matrix of X(s) − X(t) is positive definite and is denoted by Σ2(s, t). Then
there is a non-singular matrix Σ(s, t) such that Σ(s, t)Σ′(s, t) = Σ2(s, t).

According to Pitt (1978), a Gaussian random field X as above is called
locally nondeterministic on T if for every integer n � 2, there exist positive
constants cn and δn such that for all u = (u1, . . . , un) ∈ Rnd\{0},

Var
( n∑

j=1

〈uj , Σ−1
j (X(tj) − X(tj−1))〉

)
� cn

n∑
j=1

|uj |2 (2.4)
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Properties of local-nondeterminism of Gaussian and stable random fields

whenever the points t1, t2, . . . , tn are distinct and all lie in a sub-interval of
T with side-length at most δn, and satisfy

|tj − tj−1| � |tj − ti| for all 1 � i < j � n. (2.5)

Note that (2.5) introduces a partial order among t1, . . . , tn ∈ RN ; and there
are at least n different ways to order them using (2.5).

Cuzick (1982a) gives another definition of local nondeterminism: an
(N, d)-Gaussian random field X is locally nondeterministic on T if for all
integers n > 1, there exist cn > 0 and δn > 0 (depending only on n) such
that for any t1, . . . , tn ∈ T with |tj − tn| � δn, the conditional vector X(tn)
given X(tj), j = 1, . . . , n − 1 satisfies

detCov
(
X(tn)

∣∣X(tj), 1 � j � n − 1
)

� cn detCov
(
X(tn) − X(t∗)

)
, (2.6)

where t∗ = ti if |ti − tn| = infj<n |tj − tn| and detCov(Z) denotes the
determinant of the covariance matrix of the random vector Z.

Note that when d = 1 or, d > 1 and X has independent components,
Theorem 2.6 of Nolan (1989) implies that (2.4) and (2.6) are equivalent.
In general, however, it does not seem clear how these two definitions are
related.

Remark 2.1. — Both definitions of Pitt and Cuzick are applicable to all
(N, d)-Gaussian random fields. Even though so far most authors have been
working only with (N, d)-Gaussian random fields with independent com-
ponents, it has become clear that one also needs to study (N, d)-Gaussian
fields with dependent components. An interesting example of such Gaus-
sian random fields is the operator fractional Brownian motion defined in
Mason and Xiao (2002). It would be interesting to know whether it is LND
in the sense of Pitt and/or Cuzick. An affirmative answer will be useful
to establish many interesting sample path properties of operator fractional
Brownian motion.

The inequalities (2.3) and (2.4) have played significant roles in the works
of Berman (1969–1973) and Pitt (1978) on local time theory of a large
class of Gaussian random fields. Their results, in turn, imply irregularity
and fractal properties of the sample paths of Gaussian random fields. See
Geman and Horowitz (1980), Adler (1981), Geman et al. (1984) and the
references therein for further information. Moreover, local nondeterminism
has been applied by Rosen (1984) and Berman (1991) to study the existence
and regularity of self-intersection local times, by Kahane (1985) to study
the image and level sets of fractional Brownian motion, and by Monrad and
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Pitt (1987) to prove uniform Hausdorff dimension results for the image and
inverse image of Gaussian random fields. Because of its various applications,
it has been an interesting question to determine when a given Gaussian
process is locally nondeterministic. Some sufficient conditions for real-valued
Gaussian processes to be locally nondeterministic can be found in Berman
(1973, 1988, 1991), Cuzick (1978), Pitt (1978).

k-th order local nondeterminism Berman’s definition of LND was ex-
tended by Cuzick (1978) who defined local φ-nondeterminism for real-valued
Gaussian processes by replacing the variance function σ2(tn, tn−1) in (2.2)
by φ(tn − tn−1), where φ is an arbitrary positive function. Furthermore,
he has defined the so-called kth order local φ-nondeterminism, not for the
process X itself, but for the k-th divided differences of X; see Cuzick (1978,
p.73) for details. He has given sufficient conditions for a stationary Gaus-
sian processes to have this kth order LND property and then applied it to
estimate the moments of the number N(0, T ) of zero crossings of a smooth
stationary Gaussian process X in time interval [0, T ]. In particular, he has
provided verifiable sufficient conditions for the finiteness of the k-th factorial
moment Mk(0, T ) of N(0, T ); see also Cuzick (1975) and Miroshin (1977).
Even though the rest of this paper will not discuss the k-th order local φ-
nondeterminism any further, we mention that, in order to study the rate of
growth of Mk(0, T ) as a function of k, Cuzick (1978, p. 81) has noticed that
the k-th order local φ-nondeterminism is not enough and has suggested to
use a notion of k-th order strong φ-local nondeterminism. See Cuzick (1977)
for some partial results along this direction on a stationary Gaussian process
X such that X ′ exists in the quadratic mean sense. It would be interesting
to study this problem under the more general setting of Section 2.2.

2.2. Strong φ-local nondeterminism for Gaussian random fields

There are some drawbacks in the definitions of local nondeterminism in
Section 2.1: one is that the liminf in (2.1) and the constant cn in (2.3) depend
on the number of “time” points; the other is that there are many different
ways to order n points in RN using (2.5). Because of these, the properties
of local nondeterminism defined by Berman (1973), Pitt (1978) and Cuzick
(1978, 1982a) are not enough for establishing fine regularity properties such
as the law of the iterated logarithm and the modulus of continuity for the
local times or self-intersection local times of Gaussian random fields. For
studying these and many other problems on Gaussian random fields, the
concept of strong local nondeterminism (SLND) has proven to be more
appropriate. See Cuzick (1982b), Monrad and Pitt (1987), Csörgő et al.
(1995), Monrad and Rootzén (1995), Talagrand (1995, 1998), Xiao (1996,
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1997a, b, c), Kasahara et al. (1999), Xiao and Zhang (2002), just to mention
a few. In Section 4, we will address some of these aspects.

The following definition of the strong local φ-nondeterminism (SLφND)
was essentially given by Cuzick and DuPreez (1982) for Gaussian processes
(i.e., N = 1). For Gaussian random fields, Definition 2.2 is more general
than the definition of strong local α-nondeterministism of Monrad and Pitt
(1987).

Definition 2.2. — Let X = {X(t), t ∈ RN} be a real-valued Gaussian
random field with 0 < E[X(t)2] < ∞ for all t ∈ T , where T ∈ A is an
interval. Let φ be a continuous, non-decreasing function with φ(0) = 0.
Then X is said to be strongly locally φ-nondeterministic (SLφND) on T
if there exist positive constants c2,1 and r0 such that for all t ∈ T and all
0 < r � min{|t|, r0},

Var
(
X(t)|X(s) : s ∈ T, r � |s − t| � r0

)
� c2,1 φ(r). (2.7)

Remark 2.3. — By modifying the proof of Proposition 7.2 of Pitt (1978),
we can verify that if (2.7) holds and T is bounded away from 0, then for all
n � 2 there exists a constant c2,2 = c2,2(n) > 0 such that

Var
( n∑

j=1

uj(X(tj) − X(tj−1))
)

� c2,2

n∑
j=1

u2
j φ(|tj − tj−1|) (2.8)

for all uj ∈ R and tj ∈ T (j = 1, . . . , n) satisfying (2.5). That is, X is
locally φ-nondeterministic on T in the sense of Section 2.1. On the other
hand, Cuzick (1977) has given an example of stationary Gaussian process
X = {X(t), t ∈ R} in R that satisfies (2.8) for each fixed integer n and a
function φ � σ2, while the conditional variance in the left-hand side of (2.7)
equals 0. Hence SLND (2.7) is strictly stronger than Berman’s LND (2.1)
or (2.3).

Remark 2.4. — When N = 1, one could also define X to be strongly
locally φ-nondeterministic when the constant cn in (2.3) (with σ2 replaced
by φ) is independent of n. Clearly, this condition implies (2.7). It is not
known whether the converse is true; see Remark 2.3 for a weaker result. Even
though this alternative way of defining SφLND is not needed for Gaussian
processes, a modification of this is useful for stable processes; see Section
2.4.
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Remark 2.5. — We mention that in the studies of Gaussian processes
X = {X(t), t ∈ R}, due to the simple order structure of R, it is sometimes
enough to assume that X is one-sided strongly locally φ-nondeterministic,
namely, for some constant c2,3 > 0

Var
(
X(t)|X(s) : s ∈ T, r � t − s � r0

)
� c2,3 φ(r); (2.9)

see Cuzick (1978), Berman (1972, 1978), Monrad and Rootzén (1995). When
X = {X(t), t ∈ R} is a Gaussian process with stationary increments, some
sufficient conditions in terms of the variance function σ2(h) = E

[(
X(t+h)−

X(t)
)2] for the one-sided strong local nondeterminism have been obtained

earlier. Marcus (1968a) and Berman (1978) have proved that if σ(h) → 0
as h → 0 and σ2(h) is concave on (0, δ) for some δ > 0, then X is one-sided
strongly locally φ-nondeterministic for φ(r) = σ2(r).

The most important example of SLND Gaussian random field is the N -
parameter fractional Brownian motion BH = {BH(t), t ∈ RN} of index H
(0 < H < 1). This is a centered, real-valued Gaussian random field with
covariance function

E
(
BH(t)BH(s)

)
=

1
2
(
|t|2H + |s|2H − |t − s|2H

)
.

The strong local φ-nondeterminism of BH with φ(r) = r2H follows from
Lemma 7.1 of Pitt (1978), where the self-similarity of BH has played an
essential role. For a stationary Gaussian process X = {X(t), t ∈ R}, Cuzick
and DuPreez (1982) have given a sufficient condition for X to be strongly
locally φ-nondeterministic in terms of its spectral measure F . More precisely,
they have proved that if the absolutely continuous part of dF (λ) has the
property that

dF (λ/r)
φ(r)

� h(λ)dλ ∀ 0 < r � r0 (2.10)

and ∫ ∞

0

log h(λ)
1 + λ2

dλ > −∞, (2.11)

then X is SLφND. Their proof uses the ideas from Cuzick (1977) and relies
on the special properties of stationary Gaussian processes. Note that when
N = 1, the strong local r2H -nondeterminism of BH can also be derived
from the above result of Cuzick and DuPreez (1982) by using the Lamperti
transformation. This approach can be applied to study self-similar Gaussian
processes in general.

In Section 3 we will give a sufficient condition for Gaussian random fields
with stationary increments to be strongly locally nondeterministic.
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2.3. Sectorial local nondeterminism for anisotropic Gaussian
random fields

In Definition 2.2, (2.7) measures the prediction error in terms of the dis-
tance between t and the region where the information is known. This works
if the Gaussian random field X has certain approximately isotropic prop-
erty, but can not be expected to hold for general anisotropic random fields.
In fact, it has been well-known that the Brownian sheet does not have this
type of strong local nondeterminism. This accounts for the significant dif-
ference between the existing methods for studying the fractional Brownian
motion and the Brownian sheet.

Recently, Khoshnevisan and Xiao (2004b) have shown that the Brown-
ian sheet possesses the so-called sectorial local-nondeterminism. This prop-
erty leads to a unification of many of the methods developed for fractional
Brownian motion and those for the Brownian sheet and to solutions of sev-
eral problems on the image and multiple points of the Brownian sheet. See
Khoshnevisan and Xiao (2004b), Khoshnevisan, Wu and Xiao (2005) for
further information.

In the following, we will discuss sectorial local nondeterminism for frac-
tional Brownian sheets. Recall that, for a given vector 'H = (H1, . . . , HN ) ∈
(0, 1)N , a real-valued fractional Brownian sheet B

�H
0 = {B �H

0 (t), t ∈ RN
+}

with Hurst index 'H is a centered Gaussian random field with covariance
function given by

E

[
B

�H
0 (s)B �H

0 (t)
]

=
N∏

�=1

1
2

(
s2H�

� + t2H�

� − |s� − t�|2H�

)
, s, t ∈ RN

+ . (2.12)

It follows from (2.12) that B
�H
0 (t) = 0 a.s. for every t ∈ ∂RN

+ , where ∂RN
+

denotes the boundary of RN
+ .

Let B
�H
1 , . . . , B

�H
d be d independent copies of B

�H
0 . Then the Gaussian

random field B
�H = {B �H(t), t ∈ RN

+} with values in Rd defined by

B
�H(t) = (B �H

1 (t), . . . , B �H
d (t)), ∀ t ∈ RN

+ (2.13)

is called an (N, d)-fractional Brownian sheet with Hurst index 'H = (H1, . . . ,

HN ). It follows from (2.12) that B
�H has the following operator-self-similarity:

for any N×N diagonal matrix A = (aij) with aii = ai > 0 for all 1 � i � N
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and aij = 0 if i = j, we have

{
B

�H(At), t ∈ RN
} d=

{ N∏
j=1

a
Hj

j B
�H(t), t ∈ RN

}
, (2.14)

where X
d= Y means that the two processes have the same finite dimensional

distributions. Moreover, for every � = 1, . . . , N , B
�H is a fractional Brownian

motion in Rd of Hurst index H� along the direction of the �th axis.

If N > 1 and H1 = · · · = HN = 1/2, then BH is the (N, d)-Brownian
sheet. See Orey and Pruitt (1973) and Khoshnevisan (2002) for systematic
accounts on the Brownian sheets.

Fractional Brownian sheets arise naturally in many areas such as in
stochastic partial differential equations [cf. Øksendal and Zhang (2000),
Hu, Øksendal and Zhang (2000)] and in the studies of most visited sites of
symmetric Markov processes [cf. Eisenbaum and Khoshnevisan (2002)]. One
of the important features of B

�H is that, when H1, . . . , HN are different, it
has different probabilistic and analytic behaviors along different directions
and thus is highly anisotropic. Recently, there have been interest in using
anisotropic Gaussian random fields to model bone structure [Bonami and
Estrade (2003)] and aquifer structure in hydrology [Benson et al. (2004)].
We believe that the results and techniques for characterizing the anisotropic
properties of the fractional Brownian sheet in terms of 'H will also be helpful
for studying other types of anisotropic Gaussian random fields.

The main tools for analyzing the dependence structure of B
�H
0 are the fol-

lowing stochastic integral representations. They can be proved by verifying
the covariance functions.

• Moving average representation

B
�H
0 (t) = c−1

2,4

∫ t1

−∞
· · ·

∫ tN

−∞

N∏
�=1

g
H�

(t�, s�)W (ds), (2.15)

where W = {W (s), s ∈ RN} is a standard real-valued Brownian sheet and
for H ∈ (0, 1) and s, t ∈ R,

g
H

(t, s) =
(
(t − s)+

)H−1/2 −
(
(−s)+

)H−1/2
,

with s+ = max{s, 0}, and where c2,4 is the normalizing constant given by

c2
2,4

=
∫ 1

−∞
· · ·

∫ 1

−∞

[ N∏
�=1

g
H�

(1, s�)
]2

ds.
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• Harmonizable representation

B
�H
0 (t) = c−1

2,5

∫
RN

N∏
j=1

eitjλj − 1
|λj |Hj+

1
2

Ŵ (dλ), (2.16)

where Ŵ is the Fourier transform of white noise in RN and c2,5 > 0 is the
normalizing constant so that Var

(
B

�H
0 (〈1〉)

)
= 1. This representation for B

�H
0

is proved by Herbin (2004).

The following sectorial LND of fractional Brownian sheet is proved by
Wu and Xiao (2005), extending a results of Khoshnevisan and Xiao (2004b)
on the Brownian sheet.

Lemma 2.6. — Let B
�H
0 = {B �H

0 (t), t ∈ RN
+} be a fractional Brownian

sheet in R with Hurst index 'H = (H1, . . . , HN ) ∈ (0, 1)N . Then for any ε >
0, there is a constant c2,6 > 0 such that for all integers n � 2, t1, . . . , tn ∈
[ε,∞)N ,

Var
(
B

�H
0 (tn)

∣∣∣B �H
0 (tj), 1 � j � n− 1

)
� c2,6

N∑
�=1

min
0�j�n−1

|tn� − tj� |2H� , (2.17)

where t0� = 0 for every � = 1, . . . , N .

The proof of Lemma 2.6 makes use of the harmonizable representation of
B

�H
0 and a Fourier analytic argument. This lemma plays key roles in Ayache,

Wu and Xiao (2005) who verify a conjecture of Xiao and Zhang (2002) on
the joint continuity of local times of a fractional Brownian sheet B

�H , and
in Wu and Xiao (2005) who study the geometric properties of the sample
paths of B

�H .

2.4. Local nondeterminism for stable processes

In this subsection, we will discuss briefly the properties of local non-
determinism for stable random fields. First we mention the following pa-
pers which are closely related to the topics of this paper, but will not be
further addressed because all the random fields considered there possess
certain Markovian nature. Ehm (1981) has established many deep results
on the sample path properties of the stable sheet and his arguments rely
crucially on the property of independent increments of the stable sheet.
Khoshnevisan, Xiao and Zhong (2003a, b) have extended several of Ehm’s
results to additive Lévy processes and have also established some useful
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connections between hitting probabilities and a class of natural capacities.
Mountford and Nualart (2004) and Mountford (2004) determine the ex-
act Hausdorff measure functions for the level sets of an additive Brownian
motion and additive stable processes, respectively. The property of indepen-
dent increments of Lévy processes and a certain type of Markov property
have played crucial roles in the work of these authors. We refer to the sur-
vey papers of Khoshnevisan and Xiao (2004a) and Xiao (2004) for further
information along this line.

The class of symmetric α-stable (SαS) self-similar processes and ran-
dom fields is very large; see Samorodnitsky and Taqqu (1994) for a system-
atic account. Of special interest are the linear fractional stable motion and
harmonizable fractional stable motion introduced by Taqqu and Wolpert
(1983), Maejima (1983), Cambanis and Maejima (1989), respectively. They
are natural stable analogues of fractional Brownian motion.

Compared to Gaussian random fields, much less about the probabilis-
tic, analytic and statistical properties of such stable random fields has been
known. We believe that an appropriate notion of strong local nondetermin-
ism for stable random fields will be helpful to solve several open problems on
local times and self-intersection local times, as well as to investigate other
sample path properties.

The notion of local nondeterminism has been extended to SαS processes
and random fields by Nolan (1988, 1989), and has proven to be a useful
tool in studying the local times and self-intersection local times of certain
self-similar stable processes with stationary increments. See, for example,
Kôno and Shieh (1993), Shieh (1993) and Xiao (1995).

One of the difficulties of extending LND from Gaussian random fields to
α-stable random fields X = {X(t), t ∈ RN} is that, when 0 < α < 2, there is
no covariance to measure dependence of X(t1), . . . , X(tn). Nolan (1989) has
relied on the Lα-representations of symmetric α-stable random fields [see
Hardin (1982) or Samorodnitsky and Taqqu (1994)] and the approximation
properties of normed or quasi-normed linear spaces.

We first consider the case N = 1. Let T ⊂ R be a closed interval. The
following definition is due to Nolan (1989, Definition 3.1) which reduces to
(2.3) when α = 2.

Definition 2.7. — A real-valued SαS process X = {X(t), t ∈ R} is
called locally nondeterministic on T if for every integer n > 1, there exists
a constant cn � 1 depending on n only such that for all sufficiently close
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t1 < t2 < . . . < tn in T ,

∣∣∣E(
eicn u1X(t1)

) n∏
j=2

E

(
eicn uj(X(tj)−X(tj−1))

)∣∣∣
�

∣∣∣E exp
{

i
(
u1X(t1) +

n∑
j=2

uj(X(tj) − X(tj−1))
)}∣∣∣ (2.18)

�
∣∣∣E(

eic−1
n u1X(t1)

) n∏
j=2

E

(
eic−1

n uj(X(tj)−X(tj−1))
)∣∣∣

for all uj ∈ R (j = 1, . . . , n).

Hardin (1982) proved that for every real-valued, separable in probability,
SαS process X = {X(t), t ∈ R}, there exist a measure space (E,B, µ) and
a collection of real-valued functions {κ(t, ·), t ∈ R} ⊆ Lα(E,B, µ) such that
for all integers n � 1 the joint distribution of X(t1), . . . , X(tn) is determined
by

E exp
(
i

n∑
j=1

ujX(tj)
)

= exp
(
−

∥∥∥ n∑
j=1

ujκ(tj)
∥∥∥α

α

)
, (2.19)

where ‖·‖α is the quasi-norm in Lα(E,B, µ) and κ(tj)=̂κ(tj , ·). Based on this
fact, Nolan (1989) proves that (2.18) in Definition 2.7 is equivalent to the
following: for every integer n > 1, there exists a constant c2,7 = c2,7(n) � 1
depending on n only such that

c−1
2,7

(∥∥u1κ(t1)
∥∥

α
+

n∑
j=2

∥∥uj(κ(tj) − κ(tj−1))
∥∥

α

)

�
∥∥∥u1κ(t1) +

n∑
j=2

uj

(
κ(tj) − κ(tj−1)

)∥∥∥
α

(2.20)

� c2,7

(∥∥u1κ(t1)
∥∥

α
+

n∑
j=2

∥∥uj(κ(tj) − κ(tj−1))
∥∥

α

)

for all uj ∈ R and all t1 < t2 < . . . < tn in T such that tn − t1 is suffi-
ciently small. Nolan (1989, Theorem 3.2) also gives some other equivalent
definitions of LND for real-valued SαS processes.

An (N, d)-random field X = {X(t), t ∈ RN} is called an (N, d, α)-stable
field if for all integers n � 1, t1, . . . , tn ∈ RN and u1, . . . , un ∈ Rd, the ran-
dom variables

∑n
j=1 〈uj , X(tj)〉 are SαS random variables. For a given mea-

sure space (E,B, µ), let Lα(E,B, µ; Rd) denote the collections of Rd-valued
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functions κ(·) such that κ(·) = (κ1(·), . . . , κd(·)) and κj(·) ∈ Lα(E,B, µ) for
every j = 1, . . . , d. It is possible to represent an (N, d, α)-stable field X in
some Lα(E,B, µ; Rd). That is, there is a family of functions {κ(t, ·), t ∈ RN}
in the space Lα(E,B, µ; Rd) such that

E exp
(
i

n∑
j=1

〈uj , X(tj)〉
)

= exp
(
−

∥∥∥ n∑
j=1

〈uj , κ(tj)〉
∥∥∥α

α

)
. (2.21)

Nolan (1989, Definition 3.3) defines LND of an (N, d, α)-stable field X in
terms of the family {κ(t, ·), t ∈ RN}.

Definition 2.8. — An (N, d, α)-stable field X is called locally nondeter-
ministic on an interval T ∈ A if its representation {κ(t, ·), t ∈ RN} satisfies
the following conditions:

(a) ‖κj(t)‖α > 0 for all t ∈ T and j = 1, . . . , d.

(b) ‖κj(s) − κj(t)‖α > 0 for all s, t ∈ T with |s − t| sufficiently small
and j = 1, . . . , d.

(c) For all integers n � 1, arbitrary t1, . . . , tn ∈ T and all j = 1, . . . , d,
define Mn

j to be the subspace of Lα(E,B, µ) spanned by {κl(tk) : 1 �
l � d, 1 � k � n and (l, k) = (j, n)}. Then for all j = 1, . . . , d,

inf
t1∈T

‖κj(t1) − M1
j ‖α

‖κj(t1)‖α
> 0 (2.22)

and

lim inf
‖κj(tn) − Mn

j ‖α

‖κj(tn) − κj(tn−1)‖α
> 0, (2.23)

where the liminf is taken over all t1, . . . , tn ∈ T satisfying (2.5) with
|tn−t1| → 0, and ‖κj(tn)−Mn

j ‖α denotes the “Lα-distance” between
κj(tn) and Mn

j .

Nolan (1989) shows that Condition (c) in Definition 2.8 is equivalent to
the assumption that X has, in certain sense, approximately independent
components and approximately independent increments. This is useful for
establishing the joint continuity of local times of several classes of stable
processes or stable random fields; see Nolan (1989), Kôno and Shieh (1993),
Shieh (1993) and Xiao (1995). However, as in the Gaussian case, this LND
property is not useful for obtaining sharp uniform and/or local growth prop-
erties of the local times or self-intersection local times of SαS processes and
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(N, d, α)-stable fields; see Dozzi and Soltani (1999, section 4) for related
remarks. One needs to have a notion of strong local nondeterminism.

When N = 1, we recall Remark 2.4 and may define conveniently that
an SαS process X is strongly locally nondeterministic on T if there exists
a constant c2,8 > 0 such that the following hold: for all integers n � 2, we
can find a nonsingular n × n matrix A such that for all t1 < t2 < . . . < tn
in T sufficiently close and all uj ∈ R (j = 1, . . . , n),∣∣∣E exp

{
i
(
u1X(t1) +

n∑
j=2

uj(X(tj) − X(tj−1))
)}∣∣∣ (2.24)

�
∣∣∣E(

eic2,8 v1X(t1)
) n∏

j=2

E

(
eic2,8 vj(X(tj)−X(tj−1))

)∣∣∣,
where (v1, . . . , vn) = (u1, . . . , un)A.

Dozzi and Soltani (1999) have studied a class of moving average (MA)
SαS processes X of the form X = X1 + X2, where X1 and X2 are two
independent MA-stable processes, X1 is strongly locally nondeterministic
in the above sense and X2 is arbitrary. They showed that the arguments of
Berman (1973) and Ehm (1981) can be modified to prove uniform and local
Hölder conditions for the local times of X.

In light of the theory on Gaussian random fields, there should be several
different senses of strong local nondeterminism for (N, d, α)-stable fields.
For simplicity, we start by considering only isotropic (N, 1, α)-stable fields
with stationary increments. It seems natural to define the strong local φ-
nondeterminism for such SαS random fields as follows.

Definition 2.9. — Let X = {X(t), t ∈ RN} be an (N, 1, α)-stable field
with stationary increments and X(0) = 0. Let φ : R+ → R+ be a continuous,
non-decreasing function with φ(0) = 0 and let T ∈ A. Then X is said to
be strongly locally φ-nondeterministic (SLφND) on T if, in addition to (a)
and (b) in Definition 2.8, there exists a constant c2,9 > 0 such that for all
integers n � 1, all t, s1, . . . , sn ∈ T sufficiently close,

‖κ(t) − Mn‖α
α � c2,9 φ

(
min

0�j�n
|t − sj |

)
, (2.25)

where Mn denotes the subspace of Lα(E,B, µ) spanned by {κ(s1), . . . , κ(sn)}
and s0 = 0.

The usefulness and verification of this definition for self-similar stable
random fields with stationary increments remain to be exploited. We be-
lieve that the linear fractional stable motions (or fields) and harmonizable
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fractional stable motions (or fields) [cf. Samorodnitsky and Taqqu (1994),
Kokoszka and Taqqu (1994) and Nolan (1989)] are strongly locally nonde-
terministic in the above sense.

On the other hand, the (N, 1, α)-stable sheet Zα = {Z(t), t ∈ RN
+}

defined in Ehm (1981), which contains the Brownian sheet as a special case,
is not strongly locally φ-nondeterministic in the sense of Definition 2.9.
Moreover, similar to (2.15) and (2.16), we can define two classes of (real-
valued) anisotropic fractional stable sheets using stochastic integration with
respect to an (N, 1, α)-stable sheet Zα or a complex-valued SαS random
measure Z̃α. They are natural extensions of fractional Brownian sheets to
stable random fields.

• Moving average fractional stable sheets: for any given 0 < α < 2
and 'H = (H1, . . . , HN ) ∈ (0, 1)N , we define a stable random field Z

�H =
{Z �H(t), t ∈ RN

+} with values in R by

Z
�H(t) =

∫ t1

−∞
· · ·

∫ tN

−∞

N∏
�=1

h
H�

(t�, s�)Zα(ds), (2.26)

where Zα = {Zα(s), s ∈ RN} is a symmetric (N, 1, α)-stable sheet and for
H ∈ (0, 1) and s, t ∈ R,

h
H

(t, s) = a
{

(t − s)+
)H−1/α −

(
(−s)+

)H−1/α
}

(2.27)

+ b
{

(t − s)−
)H−1/α −

(
(−s)−

)H−1/α
}

,

where a, b ∈ R are constants and t− = max{−t, 0}. Using (2.26) and
the self-similarity of Zα, we can verify that the (N, 1, α)-stable field Z

�H

is operator self-similar in the sense of (2.14), and along each direction of
RN

+ , Z
�H becomes a real-valued linear fractional stable motion. We will call

Z
�H = {Z �H(t), t ∈ RN

+} an (N, 1, α)-moving average fractional stable sheet.

• Harmonizable fractional stable sheets: for any given 0 < α < 2
and 'H = (H1, . . . , HN ) ∈ (0, 1)N , we define the harmonizable fractional
stable sheet Z̃

�H = {Z̃ �H(t), t ∈ RN
+} with values in R by

Z̃
�H(t) = Re

∫
RN

N∏
j=1

eitjλj − 1
|λj |Hj+

1
α

Z̃α(dλ), (2.28)
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where Z̃α is a complex-valued SαS random measure. We refer to Samorod-
nitsky and Taqqu (1994, Chapter 6) for definition and basic properties of
complex-valued SαS random measure and the corresponding stochastic in-
tegrals.

Similar to the moving average fractional stable sheet, we can verify that
Z̃

�H is operator self-similar in the sense of (2.14). Along each direction of
RN

+ , Z̃
�H becomes a real-valued harmonizable fractional stable motion.

Note that, unlike the Gaussian case where both (2.15) and (2.16) de-
termine (up to a constant) the same fractional Brownian sheet, the moving
average and harmonizable fractional stable sheets with the same α ∈ (0, 2)
and Hurst index 'H are different random fields. This is true even for N = 1;
see Samorodnitsky and Taqqu (1994, page 358).

Based on the studies of fractional Brownian sheets, we believe that an ap-
propriate definition of sectorial local nondeterminism should be introduced
and it will be useful for studying various sample path properties of such
anisotropic stable random fields. This problem will be studied elsewhere,
and the rest of the paper deals with Gaussian random fields only.

3. Spectral conditions for strong local nondeter-minism of
Gaussian random fields

As pointed out by Cuzick and DuPreez (1982, p. 811), it appears to
be difficult to establish conditions under which general Gaussian processes
possess the various forms of strong local nondeterminism. In this section
we provide sufficient conditions for a real-valued Gaussian random field
X = {X(t), t ∈ RN} with stationary increments to be strongly locally φ-
nondeterministic. In particular, we show that a spectral condition similar
to that of Berman (1988) for ordinary LND of Gaussian processes actually
implies that X is strongly locally φ-nondeterministic and, importantly, φ(r)
is comparable to the variance function σ2(h) with |h| = r.

Similar methods, combined with the arguments in Wu and Xiao (2005),
can be modified to study the sectorial local nondeterminism of anisotropic
Gaussian random fields with stationary increments or Gaussian random
fields of fractional Brownian sheet type. By the latter, I mean their co-
variance functions are defined as tensor products of covariance functions of
Gaussian processes with stationary increments. There are many interesting
questions on such anisotropic Gaussian random fields due to their various
applications; see Bonami and Estrade (2003), Cheridito (2004), Mannersalo
and Norros (2002), Mueller and Tribe (2002) and the references therein.
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Let X = {X(t), t ∈ RN} be a real-valued, centered Gaussian random
field with X(0) = 0. We assume that X has stationary increments and con-
tinuous covariance function R(s, t) = E

[
X(s)X(t)

]
. According to Yaglom

(1957), R(s, t) can be represented as

R(s, t) =
∫

RN

(ei〈s,λ〉 − 1)(e−i〈t,λ〉 − 1)∆(dλ) + 〈s, Qt〉, (3.1)

where Q is an N × N non-negative definite matrix and ∆(dλ) is a nonneg-
ative symmetric measure on RN\{0} satisfying∫

RN

|λ|2
1 + |λ|2 ∆(dλ) < ∞. (3.2)

The measure ∆ is called the spectral measure of X.

It follows from (3.1) that X has the following stochastic integral repre-
sentation:

X(t) =
∫

RN

(ei〈t,λ〉 − 1)W (dλ) + 〈Y, t〉, (3.3)

where Y is an N -dimensional Gaussian random vector with mean 0 and
W (dλ) is a centered complex-valued Gaussian random measure which is
independent of Y and satisfies

E

(
W (A)W (B)

)
= ∆(A ∩ B) and W (−A) = W (A)

for all Borel sets A, B ⊆ RN . From now on, we will assume Y = 0. Conse-
quently, we have

σ2(h) = E
[(

X(t + h) − X(t)
)2] = 2

∫
RN

(
1 − cos 〈h, λ〉

)
∆(dλ). (3.4)

If the function σ2(h) only depends on |h|, then X is called an isotropic ran-
dom field. It is important to note that σ2(h) is a negative definite function
and can be viewed as the characteristic exponent of a symmetric infinitely
divisible distribution; see Berg and Forst (1975) for more information on
negative definite functions.

The main results of this section are Theorems 3.1 and 3.4. They give
verifiable conditions for a Gaussian random field to be strongly locally non-
deterministic in terms of its spectral measure.

Theorem 3.1. — Let X = {X(t), t ∈ RN} be a mean zero, real-valued
Gaussian random field with stationary increments and X(0) = 0, and let
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f be the density function of the absolutely continuous part of the spectral
measure ∆ of X. Assume that there exist two non-decreasing functions φ(r)
and q(r) : R+ → R+ satisfying the following conditions:

f(λ/r)
φ(r)

� rN

q(|λ|) , ∀ r ∈ (0, 1] and λ ∈ RN (3.5)

and there exists a positive and finite constant η such that

q(r) � rη for all r > 0 large enough. (3.6)

Then for every interval T ∈ A, there exists a constant 0 < c3,1 < ∞ such
that for all t ∈ T\{0} and all 0 < r � min{1, |t|},

Var
(
X(t)|X(s) : s ∈ T, |s − t| � r

)
� c3,1 φ(r). (3.7)

In particular, X is strongly locally φ-nondeterministic on T .

To prove Theorem 3.1, we note that, in the Hilbert space setting, the
conditional variance in (3.7) is the square of the L2(P)-distance of X(t) from
the subspace generated by {X(s) : s ∈ T, |s− t| � r}. Hence it is sufficient
to show that there exists a positive constant c3,2 such that for all integers
n � 1, ak ∈ R and sk ∈ T satisfying |sk − t| � r, (k = 1, 2, . . . , n),

E

(
X(t) −

n∑
k=1

akX(sk)
)2

� c3,2 φ(r). (3.8)

It follows from (3.1) or (3.3) that

E

(
X(t) −

n∑
k=1

akX(sk)
)2

=
∫

RN

∣∣∣ei〈t,λ〉 − 1 −
n∑

k=1

ak

(
ei〈sk,λ〉 − 1

)∣∣∣2 ∆(dλ)

�
∫

RN

∣∣∣ei〈t,λ〉 −
n∑

k=0

ak ei〈sk,λ〉
∣∣∣2 f(λ)dλ, (3.9)

where a0 = 1 −
n∑

k=1

ak and s0 = 0. This part of the proof goes back to

Kahane (1985). The last integral can be estimated using the ideas in Pitt
(1975, 1978) and Kahane (1985); see Xiao (2005) for a complete proof.

In order to apply Theorem 3.1 to investigate the sample path properties
of the Gaussian random field X, we need to study the relationship between
φ(|h|) and the function σ2(h). In the following, we assume that the spectral
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measure ∆ is absolutely continuous and its density function f(λ) satisfies
the following condition [when N = 1, this is due to Berman (1988)]:

0 < α =
1
2

lim inf
λ→∞

βN |λ|Nf(λ)
∆{ξ : |ξ| � |λ|} � 1

2
lim sup

λ→∞

βN |λ|Nf(λ)
∆{ξ : |ξ| � |λ|} = α < 1,

(3.10)
where β1 = 2 and for N � 2, βN = µ(SN−1) is the surface area [i.e., the
(N −1)-dimensional Lebesgue measure) of SN−1. At the end of this section,
we will give some examples of Gaussian random fields satisfying (3.10).

In the rest of this section, we define φ(r) = ∆{ξ : |ξ| � r−1} and
φ(0) = 0. Then the function φ is non-decreasing and left continuous on
[0,∞). The following lemma lists some useful properties of φ.

Lemma 3.2. — Assume the condition (3.10) holds. Then for every
0 < ε < 2 min{α, 1 − α}), there exists a constant r0 > 0 such that for
all 0 < x � y � r0, (x

y

)2α+ε

� φ(x)
φ(y)

�
(x

y

)2α−ε

. (3.11)

Consequently, we have

(i) limr→0φ(r)/r2 = ∞.

(ii) The function φ has the following doubling property: there exists a
constant c3,3 > 0 such that φ(2r) � c3,3 φ(r) for all 0 < r < r0/2.

Remark 3.3. — Under the assumption that ∆ is absolutely continuous
with density f(λ), Condition (3.10) is more general than assuming φ is
regularly varying at 0. Using the terminology of Bingham et al. (1987, pp.65-
67), (3.11) implies that φ is extended regularly varying at 0 with upper and
lower Karamata indices 2α and 2α, respectively. A necessary and sufficient
condition for φ(r) to be regularly varying at 0 of index 2α is that the limit

α =
1
2

lim
r→∞

rN
∫

SN−1 f(rθ)µ(dθ)
∆{ξ : |ξ| � r}

exists; see Xiao (2005) for details.

The following theorem shows that the assumption (3.10) implies that X
is SLφND and φ(r) is comparable with σ2(h) with |h| = r near 0. In Section
4, we will show that it is often more convenient to use the function φ to
characterize the properties of X.
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Theorem 3.4. — Let X = {X(t), t ∈ RN} be a mean zero, real-valued
Gaussian random field with stationary increments and X(0) = 0. Assume
that the spectral measure ∆ of X has a density function f that satisfies
(3.10). Then

0 < lim inf
h→0

σ2(h)
φ(|h|) � lim sup

h→0

σ2(h)
φ(|h|) < ∞. (3.12)

Moreover, for every interval T ∈ A, X is strongly locally φ-nondeterministic
on T .

The first part of Theorem 3.4 is proved using the ideas of Berman (1988,
1991) and the second part follows from (3.12) and Theorem 3.1; see Xiao
(2005) for details.

Applying Theorems 3.1 and 3.4 to stationary Gaussian random fields,
we have the following partial extension of the result of Cuzick and DuPreez
(1982) mentioned in section 2.2. It is not known to me whether (3.6) can
be replaced by the weaker condition (2.11).

Corollary 3.5. — Let X = {X(t), t ∈ RN} be a stationary Gaussian
random field with mean 0 and variance 1.

(i) If the spectral measure ∆ of X has an absolutely continuous part with
density f satisfying (3.5) and (3.6), then for every interval T ∈ A,
X is strongly locally φ-nondeterministic on T .

(ii) If the spectral density of X satisfies (3.10), then (3.12) holds and X
is SLφND on T .

We end this section with some more examples of Gaussian random fields
whose SLND can be determined.

Example 3.6. — Consider the mean zero Gaussian random field
X = {X(t), t ∈ RN} with stationary increments and spectral density

fγ,β(λ) =
c(γ, β, N)

|λ|2γ(1 + |λ|2)β
,

where γ and β are constants satisfying β + γ > N
2 , 0 < γ < 1 + N

2 and
c(γ, β, N) > 0 is a normalizing constant. Since the spectral density fγ,β

involves both the Fourier transforms of the Riesz kernel and the Bessel
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kernel, Anh et al. (1999) call the corresponding Gaussian random field the
fractional Riesz-Bessel motion with indices β and γ; and they have shown
that these Gaussian random fields can be used for modelling simultaneously
long range dependence and intermittency.

It is easy to check that Condition (3.10) is satisfied with α = α =
γ + β − N

2 . Moreover, since the spectral density fγ,β(x) is regularly varying
at infinity of order 2(β+γ) > N , by a result of Pitman (1968) we know that,
if γ + β − N

2 < 1, then σ(h) is regularly varying at 0 of order γ + β − N/2
and

σ(h) ∼ |h|γ+β−N/2 as h → 0.

Theorem 3.4 implies that X is SLND with respect to σ2(h). Hence, many
sample path properties of the d-dimensional fractional Riesz-Bessel motion
X with indices β and γ can be derived from the results in Section 4.

Example 3.7. — Let 0 < α < 1, 0 < c1 < c2 be constants such that
(αc2)/c1 < 1. For any increasing sequence {bn, n � 0} of real numbers such
that b0 = 0 and bn → ∞, define the function f on RN by

f(λ) =
{

c1 |λ|−(2α+N) if |λ| ∈ (b2k, b2k+1],
c2 |λ|−(2α+N) if |λ| ∈ (b2k+1, b2k+2].

(3.13)

Some elementary calculation shows that, when limn→∞ bn+1/bn = ∞, Con-
dition (3.10) is satisfied with α = (αc1)/c2 < α = (αc2)/c1. Note that in
this case, c1 |h|2α � σ2(h) � c2 |h|2α and c1 r2α � φ(r) � c2 r2α for all
h ∈ RN and r > 0, but both functions are not regularly varying at the
origin.

The following is a class of Gaussian random fields for which (3.10) does
not hold, but Theorem 3.1 is still applicable.

Example 3.8. — For any given constants 0 < α1 < α2 < 1 and any
increasing sequence {bn, n � 0} of real numbers such that b0 = 0 and
bn → ∞, define the function f on RN by

f(λ) =
{

|λ|−(2α1+N) if |λ| ∈ (b2k, b2k+1],
|λ|−(2α2+N) if |λ| ∈ (b2k+1, b2k+2].

(3.14)

Using such functions f as spectral densities, we obtain a quite large class
of Gaussian random fields with stationary increments that are significantly
different from the fractional Brownian motion. If X is such a random field,
then there exist positive and finite constants c3,4 , c3,5 � 1 such that

c−1
3,4

|h|2α2 � σ2(h) � c3,4 |h|2α1 , ∀ |h| � 1 (3.15)
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and
c−1
3,5

r2α2 � φ(r) � c3,5 r2α1 , ∀ 0 < r � 1. (3.16)

Xiao (2005) shows that we can choose the sequence {bn} appropriately so
that the following hold:

(i) φ(r) � r2α2 for r ∈ (0, 1).

(ii) σ2(h) � |h|2α2 for |h| � 1.

(iii) Condition (3.10) is not satisfied, but the corresponding Gaussian
random field X still has the property of SLφND.

So far, we have not considered Gaussian random fields with stationary
increments and discrete spectral measures. A systematic treatment for such
Gaussian random fields will be done elsewhere. In the following, we only
give an example of stationary Gaussian processes with discrete spectrum
that is strongly locally nondeterministic.

Example 3.9. — Let {Xn, Yn, n � 0} be a sequence of independent stan-
dard normal random variables. Then for each t ∈ R, the random Fourier
series

Y (t) =
√

8
π

∞∑
n=0

1
2n − 1

{
Xn cos

(
(2n − 1)t

)
+ Yn sin

(
(2n − 1)t

)}
(3.17)

converges almost surely [see, e.g., Kahane (1985)], and Y = {Y (t), t ∈ R}
is a centered, periodic and stationary Gaussian process with mean 0 and
covariance function

R(s, t) = 1 − 2
π
|s − t| for − π � s − t � π. (3.18)

It is easy to see that the spectral measure ∆ of Y is discrete with
∆({2n− 1}) = (2n− 1)−2 for all n ∈ N. Using a result in Berman (1978), it
can be shown that for any interval T ⊂ [−π, π] with length |T | � π/2
there exists a constant 0 < c3,6 < ∞ such that for all t ∈ T and all
0 < r � min{|t|, π/2},

Var
(
Y (t)

∣∣ Y (s) : s ∈ T, |s − t| � r
)

� c3,6 r. (3.19)

That is, Y is SLφND on T with φ(r) = r and σ2(h) � φ(|h|); see Shieh and
Xiao (2004) for a proof.
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4. Applications of strong local nondeterminism

Many authors have applied LND or SLφND to study various properties
of Gaussian and stable random fields. We refer to Geman and Horowitz
(1980), Geman et al. (1984), Berman (1991), Dozzi (2002), and the refer-
ences therein for more information.

In the studies of Gaussian random fields with stationary increments, the
variance function σ2(h) has played a significant role and it is typically as-
sumed to be regularly varying at 0 and/or monotone increasing. See Marcus
(1968b), Kôno (1970, 1996), Cuzick (1982b), Csörgő et al. (1995), Kasahara
et al. (1999), Monrad and Rootzén (1995), Talagrand (1995, 1998), Xiao
(1996, 1997a, b, 2003), and so on. Using the results in Section 3, we can
prove that, in almost all cases, the regularly varying assumption on σ2(h)
can be significantly weakened and the monotonicity assumption can be re-
moved.

In the rest of this section, we show that SLφND can be applied to ex-
tend the small ball probability estimates of Monrad and Rootzén (1995),
Shao and Wang (1995) and Stoltz (1996), the results on the exact Haus-
dorff measure functions of Talagrand (1995) and Xiao (1996, 1997a, b), the
Hölder conditions and tail probability of the local times of Xiao (1997a) and
Kasahara et al. (1999), to more general Gaussian random fields. For proofs
of these results, see Xiao (2005).

We will consider a Gaussian random field X = {X(t), t ∈ RN} in Rd

defined by
X(t) =

(
X1(t), . . . , Xd(t)

)
, ∀t ∈ RN , (4.1)

where X1, . . . , Xd are independent copies of a real-valued, centered Gaussian
random field Y = {Y (t), t ∈ RN}, which satisfies the following Condition
(C):

(C1) there exist positive constants δ0, c4,1 , c4,2 and a non-decreasing, right
continuous function φ : [0, δ0) → [0,∞) such that

φ(2r)
φ(r)

� c4,1 , ∀ r ∈ [0, δ0/2) (4.2)

and for all t ∈ RN and h ∈ RN with |h| � δ0,

c−1
4,2

φ(|h|) � E
[(

Y (t + h) − Y (t)
)2] � c4,2φ(|h|). (4.3)

(C2) Y is strongly locally φ-nondeterministic on an interval T ∈ A, say,
T = [0, 1]N .
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4.1. Small ball probability and Chung’s law of the iterated loga-
rithm

In recent years, there has been much interest in studying the small ball
probability of Gaussian processes. We refer to Li and Shao (2001) and Lif-
shits (1999) for extensive surveys on small ball probabilities, their applica-
tions and open problems.

The next theorem gives estimates on the small ball probability of Gaus-
sian random fields satisfying the condition (C). In particular, the upper
bound in (4.4) confirms a conjecture of Shao and Wang (1995), under a
much weaker condition.

Theorem 4.1. — Let X = {X(t), t ∈ RN} be a Gaussian random field
in R satisfying the condition (C). Then there exist positive constants c4,3

and c4,4 such that for all x ∈ (0, 1),

exp
(
− c4,3

[φ−1(x2)]N
)

� P

{
max

t∈[0,1]N
|X(t)| � x

}
� exp

(
− c4,4

[φ−1(x2)]N
)
,

(4.4)
where φ−1(x) = inf{y : φ(y) > x} is the right-continuous inverse function
of φ.

The lower bound in (4.4) follows from a general result of Talagrand
(1993) and the upper bound is proved in a way similar to that of Monrad
and Rootzén (1995). This is where SLφND of X is applied.

The probability estimate in Theorem 4.1 has many applications. We
mention the following Chung’s law of the iterated logarithm. When φ is
assumed to be regularly varying at 0, this is also obtained in Xiao (1997a).

Corollary 4.2. — If, in addition to the conditions of Theorem 4.1, we
assume that X has stationary increments and the spectral measure ∆ of
X satisfies lim infλ→∞ |λ|N+2∆

(
B(λ, r)

)
> 0, where B(λ, r) = {x ∈ RN :

|x − λ| � r}. Then there exists a positive and finite constant c4,5 such that

lim inf
h→0

supt∈[0,h]N |X(t)|
φ1/2

(
h/(log log(1/h))1/N

) = c4,5 a.s. (4.5)

The proof of Corollary 4.2 contains two steps: first we apply Theorem 4.1
and slightly modify the proof of Theorem 7.1 in Li and Shao (2001) to show
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the above liminf is bounded from below and above by positive constants,
then we apply the zero-one law of Pitt and Tran (1979) to derive (4.5).

We can also consider the small ball probability of Gaussian random fields
under the Hölder-type norm. Let κ be a continuous and non-decreasing
function such that κ(r) > 0 for all r > 0. For any function y ∈ C0([0, 1]N ),
we consider the functional

‖y‖κ = sup
s,t∈[0,1]N ,s 	=t

|y(s) − y(t)|
κ(|s − t|) . (4.6)

When κ(r) = rα, ‖ · ‖κ is the α-Hölder norm on C0([0, 1]N ) and is denoted
by ‖ · ‖α.

The following theorem uses SLφND to improve the results of Stolz
(1996). We mention that the conditions of Theorem 2.1 of Kuelbs, Li and
Shao (1995) can be weakened in a similar way.

Theorem 4.3. — Let X = {X(t), t ∈ RN} be a Gaussian random field
in R satisfying the condition (C). If for some constant β > 0,

φ1/2(r)
κ(r)

� rβ , ∀r ∈ (0, 1). (4.7)

Then there exist positive constants c4,6 and c4,7 such that for all ε ∈ (0, 1),

exp
(
− c4,6 ε−N/β

)
� P

{
‖X‖κ � ε

}
� exp

(
− c4,7 ε−N/β

)
. (4.8)

4.2. Hausdorff dimension and Hausdorff measure of the sample
paths

In this section we consider the fractal properties of the range and graph
of the Gaussian random field in Rd defined by (4.1) and fractional Brownian
sheets.

When X = {X(t), t ∈ RN} is a fractional Brownian motion in Rd,
the exact Hausdorff measure functions for the image X([0, 1]N ) and graph
GrX([0, 1]N ) = {(t, X(t)) : t ∈ [0, 1]N} were determined by Talagrand
(1995) and Xiao (1997c). Their results were extended by Xiao (1996, 1997a)
to strongly locally nondeterministic Gaussian random fields with stationary
increments and regularly varying variance function σ2(h). Using the results
in Section 3 we can prove the following more general result.
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Theorem 4.4. — Let X = {X(t), t ∈ RN} be a Gaussian random field
defined in (4.1). We assume that Condition (C) is satisfied and, in addition,
there exists a constant c4,8 > 0 such that∫ ∞

1

( φ(a)
φ(ax)

)d/2

xN−1dx � c4,8 for all a ∈ (0, 1), (4.9)

then
0 < ϕ1-m

(
X([0, 1]N )

)
< ∞ a.s., (4.10)

where ϕ1(r) =
[
φ−1(r2)

]N log log 1/r.

Remark 4.5. — Note that condition (4.9) suggests that X is transient
and does not hit points. When X hits points, the Hausdorff dimension of
GrX([0, 1]N ) may be bigger. The results on the exact Hausdorff measure of
the graph set GrX([0, 1]N ) in Xiao (1997a, c) can be extended to Gaussian
random fields satisfying Condition (C) in a similar way.

Remark 4.6. — More generally, Kahane (1985) has studied geometric
and arithmetic properties of the image X(E) for an arbitrary Borel set
E ⊂ RN when X is an (N, d)-fractional Brownian motion. His results have
recently be extended and improved by Shieh and Xiao (2004).

Now we give a brief discussion of the relevance of sectorial LND to the
study of fractal properties of fractional Brownian sheets. Further informa-
tion can be found in Ayache, Wu and Xiao (2005), Khoshnevisan, Wu and
Xiao (2005), Wu and Xiao (2005).

Recently, Ayache and Xiao (2004) have obtained the Hausdorff and pack-
ing dimensions of the range B

�H([0, 1]N ), graph GrB �H([0, 1]N ) and the level
set for a general (N, d)-fractional Brownian sheet B

�H . It would be inter-
esting to find the exact Hausdorff and packing measure functions for these
random sets (if they exist). The existing methods for the Brownian sheet
[cf. Ehm (1981)] or fractional Brownian motion [cf. Talagrand (1995), Xiao
(1997c)] can not be applied directly. I believe that the sectorial local non-
determinism of B

�H will be useful in solving these problems.

Wu and Xiao (2005) have applied the sectorial local nondeterminism
of B

�H to study geometric properties of the image set B
�H(E), where E ⊂

(0,∞)N is an arbitrary Borel set, of fractional Brownian sheets. In par-
ticular, they have proved the following “uniform” Hausdorff and packing
dimension result.
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Theorem 4.7. — Let H ∈ (0, 1) be a constant and let B
�H = {B �H(t),

t ∈ RN
+} be an (N, d)-fractional Brownian sheet with index 'H = 〈H〉. If

N � Hd, then almost surely

dimHBH(E) =
1
H

dimHE for all Borel sets E ⊂ (0,∞)N . (4.11)

and

dimPBH(E) =
1
H

dimPE for all Borel sets E ⊂ (0,∞)N . (4.12)

Note that when 'H = 〈 1
2 〉, (4.11) of Theorem 4.7 recovers the result

for the (N, d)-Brownian sheet W = {W (t), t ∈ RN
+} proved by Mountford

(1989) and Lin (1999); see also Khoshnevisan, Wu and Xiao (2005) for a
different, relatively more elementary proof. Both the proofs of Mountford
(1989) and Lin (1999) are quite involved and their arguments rely on the
special properties of the Brownian sheet such as the independence of the
increments, which can not be applied to fractional Brownian sheets. Our
proof of Theorem 4.7 is, similar to that in Khoshnevisan, Wu and Xiao
(2005), based on the sectorial local nondeterminism of fractional Brownian
sheets.

Finally we mention that when 'H = (H1, . . . , HN ) ∈ (0, 1)N and
H1, . . . , HN are different, the Hausdorff and packing dimension of E alone is
not enough for determining dimHB

�H(E) or dimPB
�H(E). Explicit formulas

for dimHB
�H(E) and dimPB

�H(E) are not known.

4.3. Local times and level sets of Gaussian random fields

Let X = {X(t), t ∈ RN} be a Gaussian random field with stationary
increments in Rd defined by (4.1). If the real-valued random field Y satisfies
Condition (C) and for some ε > 0,∫

[0,1]N

dh

σd+ε(h)
< ∞, (4.13)

then it follows from Theorem 26.1 in Geman and Horowitz (1980) [see also
Berman (1973) and Pitt (1978)] that X has a jointly continuous local time
L(x, t) for (x, t) ∈ Rd × T which satisfies certain Hölder conditions in the
time and space variables, respectively.

When X is strongly locally nondeterministic and satisfies certain reg-
ularity assumptions, Xiao (1997a) has established sharp local and uniform
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Hölder conditions for the local time L(x, t) in the time variable t. Besides
of their own interest, these Hölder conditions are also useful in studying
the fractal properties of the sample paths of X. In the following, we show
that the results in Xiao (1997a) and Kasahara et al. (1999) still hold under
Condition (C). For simplicity, we will only consider the case N = 1.

Theorem 4.8. — Let X = {X(t), t ∈ R} be a centered Gaussian process
in Rd defined by (4.1). We assume that the associated Gaussian process Y
satisfies Condition (C) and there exist constants 0 < γ0 < 1 and c4,9 > 0
such that ∫ 1

0

( φ(a)
φ(as)

) d
2 +γ0

ds � c4,9 for all a ∈ (0, δ0). (4.14)

For any B ∈ B(R) define L∗(B) = supx∈Rd L(x, B). Then there exists a
positive and finite constant c4,10 such that for all t ∈ R,

lim sup
r→0

L∗(B(t, r))
ϕ2(r)

� c4,10 a.s. (4.15)

and for all intervals T ⊆ R, there exists a positive and finite constant c4,11

such that

lim sup
r→0

sup
t∈T

L∗(B(t, r))
ϕ3(r)

� c4,11 a.s., (4.16)

where B(t, r) = (t − r, t + r),

ϕ2(r) =
r

φ(r(log log 1/r)−1)d/2
and ϕ3(r) =

r

φ(r(log 1/r)−1)d/2
.

Remark 4.9. — If X has stationary increments and its spectral measure
satisfies (3.10) and 1 > α d. Then Lemma 3.2 implies that (4.14) is satisfied
for any γ0 ∈ (0, (1 − αd)/(2α)).

Similar to Xiao (1997a), the proof of Theorem 4.8 is based on the moment
estimates for L(x, B) and L(x+y, B)−L(x, B) and a chaining argument. The
following lemma provides the key estimates, whose proofs rely on SLφND
of X.

Lemma 4.10. — Under the conditions of Theorem 4.8, there exist posi-
tive and finite constants c4,12 and c4,13 such that for all integers n � 1, r > 0
small, x ∈ Rd and 0 < γ < γ0 , we have

E
[
L(x, r)n

]
�

cn
4,12

rn

φ(r/n)nd/2
(4.17)
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and

E
[
L(x + y, r) − L(x, r)

]n �
cn
4,13

|y|nγ rn[
σ(r/n)

](d+2γ)n/2
(n!)γ . (4.18)

Theorem 4.8 can be applied to determine the Hausdorff dimension and
exact Hausdorff measure of the level set X−1(x) = {t ∈ R : X(t) = x},
where x ∈ Rd. For example, the Hausdorff dimension of X−1(x) has been
studied by Berman (1970, 1972), Adler (1981), Monrad and Pitt (1987) for
index α-Gaussian processes; and the exact Hausdorff measure of X−1(x) has
been studied by Xiao (1997a) for a class of strongly locally nondeterministic
Gaussian random fields with stationary increments.

By applying (4.16) of Theorem 4.8, Xiao (2005) has proved the follow-
ing uniform Hausdorff dimension result for the level sets of the Gaussian
process X, extending the previous results of Berman (1972), Monrad and
Pitt (1987).

Theorem 4.11. — Let X = {X(t), t ∈ R} be a Gaussian process in
Rd with stationary increments defined by (4.1). We further assume that Y
satisfies the assumptions of Theorem 3.4. Then with probability one,

dimHX−1(x) = 1 − α∗d for all x ∈ O, (4.19)

where α∗ is the upper index of σ defined by

α∗ = inf
{

γ � 0 : lim
h→0

σ(h)
|h|γ = ∞

}
with the convention inf ∅ = ∞, and where O is the (random) open set defined
by

O =
⋃

s,t∈Q; s<t

{
x ∈ Rd : L(x, [s, t]) > 0

}
.

Remark 4.12. — It is an interesting question to characterize the ran-
dom open set O. Monrad and Pitt (1987) have given a real-valued periodic
stationary Gaussian process X for which O is a proper subset of R [because
the range of X is a.s. bounded]. They have shown a sufficient condition in
terms of the spectral measure of a stationary (N, d)-Gaussian random field
X so that O = Rd holds. Monrad and Pitt (1987) also point out that the
self-similarity of an (N, d)-fractional Brownian motion Bα implies that if
N > αd then O = Rd almost surely. However, we do not know whether
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O = Rd is true for the (N, d)-Gaussian random fields satisfying the condi-
tions of Theorem 3.4.

The local time L(0, 1) [i.e., L(x, 1) at x = 0] of a Gaussian process
X sometimes appears as limit in some limit theorems on the occupation
measure of X; see, for example, Kôno (1996) and Kasahara and Ogawa
(1999). Since there is little knowledge on the explicit distribution of L(0, 1),
it is of interest in estimating the tail probability P{L(0, 1) > x} as x → ∞.
This problem has been considered by Kasahara et al. (1999) under some
quite restrictive conditions on the Gaussian process X. The next theorem
is an extension of the main result in Kasahara et al. (1999).

Theorem 4.13. — Let X = {X(t), t ∈ R} be a centered Gaussian pro-
cess in Rd defined by (4.1). We assume that the associated process Y satisfies
Condition (C) and the condition (4.14) with γ0 = 0. Then

− log P
{
L(0, 1) > x

}
� 1

φ−1(1/x2)
, (4.20)

where φ−1 is the inverse function of φ as defined in Theorem 4.1.

Theorem 4.13 follows from the moment estimates for L(0, 1) in Lemma
4.15 and the following lemma on the tail probability of nonnegative ran-
dom variables. When ψ is a power function or a regularly varying function,
Lemma 4.14 is well known.

Lemma 4.14. — Let ξ be a non-negative random variable and let
ψ : R+ → R+ be a non-decreasing function having the doubling property. If
there exist positive constants c4,14 and c4,15 such that

cn
4,14

ψ(n)n � E(ξn) � cn
4,15

ψ(n)n

for all n large enough, then there exist positive constants c4,16 > c4,15 , c4,17

and c4,18 such that for all x > 0 large enough,

e−c4,17x � P
{
ξ � c4,16 ψ(x)

}
� e−c4,18x. (4.21)

Lemma 4.15. — Under the assumptions of Theorem 4.13, there exist
positive and finite constants c4,19 and c4,20 such that for all integers n � 1,

cn
4,19

φ(1/n)nd/2
� E

[
L(0, 1)n

]
�

cn
4,20

φ(1/n)nd/2
. (4.22)
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One may also consider the existence and continuity of the local times
L(x, E) of an (N, d)-Gaussian random field on any Borel set E ⊂ RN . These
problems are closely related to the questions whether the image X(E) has
positive Lebesgue measure and/or interior points; see Pitt (1978), Kahane
(1985), Shieh and Xiao (2004), Khoshnevisan and Xiao (2004b). Strong local
nondeterminism and sectorial local nondeterminism have proven to be very
useful for solving these problems. On the other hand, similar to Theorem
4.13, the distribution of L(0, E) can be studied for a large class of fractal
sets, say d-sets.

We end this section with the following remarks and open questions.

Remark 4.16. — The problem of establishing sharp uniform and local
Hölder conditions for the self-intersections local times of Gaussian random
fields satisfying Condition (C) remains to be open. For background and
some related results, see Berman (1991).

Remark 4.17. — Using sectorial local nondeterminism, Ayache, Wu and
Xiao (2005) have established joint continuity and sharp Hölder conditions
for the local times of a fractional Brownian sheet B

�H . Their results suggest
some interesting questions for general anisotropic Gaussian random fields
that may be further investigated.

Question 4.18. — We know that (4.13) is sufficient for the existence of
a jointly continuous local time of locally nondeterministic Gaussian random
field X. However, this condition is not necessary. When X is an (N, d)-
Gaussian random field with stationary increments, is it possible to provide
a necessary and sufficient condition for the joint continuity of L(x, t) in
terms of φ?
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