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Wavelet techniques for pointwise regularity(∗)

Stéphane Jaffard (1)

... she rocks herself to sleep on wavelets
of sensation rippling out from the secret
grotto at the center of her body.

David Lodge, Souls and Bodies, Chap. 1.

ABSTRACT. — Let E be a Banach (or quasi-Banach) space which is shift
and scaling invariant (typically a homogeneous Besov or Sobolev space).
We introduce a general definition of pointwise regularity associated with
E, and denoted by Cα

E(x0). We show how properties of E are transferred
into properties of Cα

E(x0). Applications are given in multifractal analysis.

RÉSUMÉ. — Soit E un espace de Banach (ou un quasi-Banach) in-
variant par translation et dilatation (typiquement un espace de Besov
ou de Sobolev homogène). Nous introduisons une définition générale de
régularité ponctuelle associée à E, et notée Cα

E(x0). Nous montrons com-
ment les propriétés de E se traduisent en propriétés de Cα

E(x0). Nous
donnons également des application en analyse multifractale.

1. Introduction

How can be formalized the idea that a function (deterministic or stochas-
tic) satisfies some scaling property in the neighbourhood of a given point
x0? This problem quickly splits in several directions depending whether the
setting is deterministic or stochastic (in the latter case, the scaling is re-
quired to hold in law rather than sample path by sample path), whether
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Stéphane Jaffard

the scaling is exact or approximate (i.e. up to higher order correction terms)
and, finally, one might not require precise scalings, but only expect bounds
which are scaling invariant. Let us mention a few definitions and examples
in order to be more specific.

In the stochastic case, the Fractional Brownian Motion of order H
(0 < H < 1) satisfies the following exact scaling relation which holds in
law at x0 = 0:

∀λ > 0, BH(λt) L= λHBH(t).

A stochastic process is Locally Asymptotically Selfsimilar of order H ∈ (0, 1)
at x0 if λ−H(X(t0 +λt)−X(t0)) converges in law towards a non-degenerate
process when λ → 0 (see [4, 5]).

In the deterministic case, a simple example of scaling invariant function
is supplied by the devil’s staircase; in order to define it, we start by recalling
the triadic Cantor set: Let x ∈ [0, 1]; x can be written (in base 3) as x =∑∞

j=1 aj3−j with aj ∈ {0, 1, 2}. The triadic Cantor set K is the set of x
such that aj ∈ {0, 2} for all j. The devil’s staircase is defined as follows: If
x /∈ K, at least one of the aj is equal to 1. Let l = inf{j : aj = 1}; then

D(x) =
l−1∑
j=1

aj

2j+1
+

al

2l
.

The function D(x) is thus defined almost everywhere on [0, 1]. It is then ex-
tended by continuity on [0, 1]. An easy computation show that it satisfies the
exact scaling relation D(x

3 ) = 1
2D(x). Finally, a function f is approximately

selfsimilar of order H at x0 if there exists a λ < 1 such that

f(x0 + t) − f(x0) = λ−H(f(x0 + λt) − f(x0)) + o(|t|)H ,

see [18] where a wavelet characterization of this property is given. A partial
relationship between the deterministic setting and the stochastic one is given
for Gaussian processes through their spectral density: If the spectral den-
sity is approximately selfsimilar, then the process is Locally Asymptotically
Selfsimilar (see [12] for precise statements).

If the function is only required to satisfy upper bounds estimates which
are scaling invariant in the neighbourhood of x0, then the corresponding
property is rather reffered to as a pointwise regularity property. We will
investigate such properties in this paper. The one most widely used is the
Hölder regularity, which is defined as follows.
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Wavelet techniques for pointwise regularity

Definition 1.1. — Let f : IRd → IR, be a locally bounded function,
x0 ∈ IRd and α � 0; f ∈ Cα(x0) if there exist R > 0, C > 0, and a
polynomial P of degree less than α such that

if |x − x0| � R, then |f(x) − P (x − x0)| � C|x − x0|α. (1.1)

There are two ways to interpret this definition. The classical one, which is
induced by the notation Cα(x0) itself, consists in interpreting this condition
as the usual uniform homogeneous Hölder condition which would just hold
at one point rather than uniformly; indeed, recall that, if 0 < s < 1 then
f ∈ Ċα(IRd) if

∃C > 0 such that ∀x, y ∈ IRd, |f(x) − f(y)| � C|x − y|α.

However, though it is very natural, this point of view has two drawbacks;
it does not extend to other settings (for instance, how could one define
the Sobolev regularity at one point directly from either the double integral
definition or the Fourier definition of Sobolev spaces?) and it does not allow
to understand why some stability properties of the global space Ċα(IRd) no
more hold in the pointwise setting. This second drawback will be explained
and dealt with in Section 2.

The other interpretation consists in noticing that (1.1) can actually be
rewritten as follows. Let B(x0, r) denote the open ball centered at x0 and
of radius r; then (1.1) is clearly equivalent to the following condition: There
exists a polynomial P and constants C, R > 0 such that

∀r � R ‖ (f − P ) ‖L∞(B(x0,r))� Crα. (1.2)

In other words, the Cα(x0) condition describes how the L∞ norm of f
(properly “renormalized” by substracting a polynomial) behaves in small
neighbourhoods of x0. This point of view has two advantages: We will see
that it explains why the Cα(x0) does not have the stability properties of the
space Ċα(IRd) (it will just be a consequence of the fact that L∞ does not
possess these properties); furthermore, (1.2) can be immediately generalized
by replacing the local L∞ norm by another norm. For instance, using the
Lp norm (for 1 � p < ∞) one obtains the following definition introduced
by Calderón and Zygmund in 1961, see [9].

Definition 1.2. — Let p ∈ [1,+∞); a function f : IRd −→ IR in Lp
loc

belongs to T p
α(x0) if ∃R, C > 0 and a polynomial P of degree less than α

such that

∀r � R,

(
1
rd

∫
|f(x) − P (x − x0)|pdx

)1/p

� Crα, (1.3)
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Note that this condition is of the same kind as (1.2) since it can be
rewritten

∀r � R ‖ (f − P ) ‖Lp(B(x0,r))� Crα+d/p. (1.4)

The notion of pointwise regularity can be extended further: It is natural
to replace in (1.2) the space L∞ by an arbitrary function space E; in the
following we will work in the setting of Banach or quasi-Banach spaces.
Recall that a quasi-norm satisfies the requirements of a norm except for the
triangular inequality which is replaced by the weaker condition

∃C > 0, ∀x, y ∈ E, ‖ x + y ‖� C(‖ x ‖ + ‖ y ‖).

A quasi-Banach space is a complete topological vector space endowed with
a quasi-norm. The examples we have in mind are the real Hardy spaces Hp,
and the Besov spaces Bs,p

p with 0 < p < 1; in these cases ‖ x − y ‖p defines
a distance on E. In the following, if E is a quasi-Banach space, then we
will always assume that there exists a p > 0 such that this property holds;
we will call a space with this property a quasi-Banach space of type p. The
space E we will work with will be a space of distributions (perhaps defined
modulo PN , the vector space of polynomials of degree at most N) satisfying
S0 ↪→ E ↪→ S ′

0 (S0 denotes the Schwartz class of C∞ functions f such that
f and all its partial derivatives have fast decay, and all the moments of f
vanish).

If B is a ball of IRd, then let

‖ f ‖E,B= inf
f=g on B

‖ g ‖E . (1.5)

Definition 1.3. — Let E be a space of distributions which is either a
Banach space or a quasi-Banach space defined modulo PN and satisfying
S0 ↪→ E ↪→ S ′

0. The two-microlocal space of order α associated with E is
the space Cα

E(x0) defined by

∃P polynomial, ∃R, C > 0, ∀r � R ‖ f − P ‖E,B(x0,r)� Crα. (1.6)

Remarks. — The two-microlocal space associated with L∞ is precisely
Cα(x0); if E = Lp, then we obtain the space T p

α+d/p(x0); in these examples
a maximal degree can be imposed on P which implies its uniqueness. We
will see that it is also possible to impose a maximal degree on P if E satisfies
homogeneity requirements (see Definition 3.6 where these requirements are
listed and Theorem 4.1 for the corresponding result).
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The way we introduce pointwise regularity in a general context differs
from Y. Meyer’s (Definition 1.1 of [31]). The arbitrary space E introduced in
[31] corresponds to our space Cα

E(x0). Our motivation here is to emphasize
the duality between the “global” space E (which will be assumed to be
shift invariant, such as Lp for instance) and the corresponding pointwise
regularity space Cα

E(x0), in order to show how properties of the second can
be derived from properties of the first.

Pointwise regularity differs from the notion of local regularity at x0

which, for Hölder spaces is defined as follows: f belongs to Cs
loc(x0) if there

exists ϕ in D(IRd) such that ϕ(x0) = 1 and fφ ∈ Cs(IRd). This notion can
be extended to scales of spaces other than Cs. For instance, the case of the
spaces Bs,p

p is considered in [33, 36].

In order to explain where the terminology of two-microlocalization comes
from, we first need to recall the definition of the homogeneous Hölder spaces
Ċs(IRd).

If 0 < s < 1 then f ∈ Ċs(IRd) if

∃C > 0 such that ∀x, y ∈ IRd, |f(x) − f(y)| � C|x − y|s.

If s = 1, Ċs(IRd) is the Zygmund class of continuous functions satisfying

∃C > 0 such that ∀x, y ∈ IRd, |f(x + y) + f(x − y) − 2f(x)| � C|y|.

If s > 1, then f ∈ Ċs(IRd) if ∀α such that |α| = [s], ∂αf ∈ Ċs−[s](IRd).
Finally, if s < 0 then the spaces Ċs(IRd) are defined by recursion on [s] by

f ∈ Ċs(IRd) iff = ∂1f1 + · · · + ∂dfd with fj ∈ Ċs+1(IRd).

The two-microlocal spaces Cs,s′
x0

had been introduced by J.-M. Bony in
order to study the propagation of singularities of the solutions of nonlinear
evolution equations, see [6]. Yves Meyer showed that these spaces are exactly
of the form defined above: If s′ > 0 then a distribution f belongs to Cs,−s′

x0

if and only if, using notation (1.5),

∃R, C > 0, ∀r � R ‖ f ‖Cs−s′ ,B(x0,r)� Crs′
,

see [25, 30], and also [24, 32] where two-microlocal conditions are associated
with Besov spaces. In the limit case s′ = s, then the two-microlocal space
associated with the space B0,∞

∞ is the space Cs,−s(x0), see [16].

In Section 2, we will explore the different stability requirements which
can naturally be imposed on a function space, and see which implications
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hold between them. In Section 3, we will investigate the properties of func-
tion spaces which satisfy these stability requirements, especially in terms of
wavelet characterizations. In Section 4, we will draw the bridge between the
properties of E and those of Cα

E . Finally, in Section 5, we will investigate
implications of these results in multifractal analysis.

2. Stability conditions

The motivation of Calderón and Zygmund for introducing the T p
α(x0)

spaces was to understand how pointwise regularity conditions are trans-
formed in the resolution of elliptic PDEs; the standard way to prove such
results is to write differential operators as the product of a fractional dif-
ferentiation and a singular integral transform. Therefore, one has to use
pointwise regularity criteria which are preserved under such singular inte-
grals. Calderón and Zygmund introduced the T p

α(x) spaces because the stan-
dard pseudodifferential operators of order 0 are not continuous on Cα(x0),
whereas they are continuous on T p

α(x0) if 1 < p < ∞, see Theorem 6 of [9].

Let us recall how this deficiency of the Cα(x0) condition can be shown.
Consider the simplest possible singular integral operator namely, in dimen-
sion 1, the Hilbert transform; it is the convolution with the principal value
of 1/x, i.e. it is defined by

Hf(x) = lim
ε→0

∫
Iε(x)

f(y)
x − y

dy,

where Iε(x) = IR − [x − ε, x + ε]. An immediate computation shows that

H(1[a,b])(x) = log
∣∣∣∣ x − b

x − a

∣∣∣∣ . (2.1)

Let now xn be a strictly decreasing sequence such that limn→∞ xn = 0. We
can pick a positive, strictly decreasing sequence an such that
f =

∑
an1[xn+1,xn] is arbitrarily smooth at x0. Nonetheless, (2.1) implies

that

Hf(x) =
∞∑

n=1

an log
∣∣∣∣ x − xn

x − xn+1

∣∣∣∣ = a1 log |x−x0|+
∞∑

n=1

(an−an+1) log |x − xn| ,

which is not locally bounded near the origin, and therefore cannot have any
Hölder regularity there. Note that what we really used here is the fact that
the Hilbert transform is not continuous on L∞; the “bad behavior” of the
pointwise regularity criterium based on L∞ follows from the corresponding
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“bad behavior” of L∞. On the opposite side, we will see that the continuity
of the Hilbert transform on Lp implies its continuity on the T p

u (x) spaces (as
a consequence of Theorem 4.2). This feature also explains why it is better
to interpret the Cα(x0) condition as a local L∞ condition rather than as a
local Cα(IRd) condition. The fact that properties of the “global space” L∞

(resp. Lp) are transferred to the “pointwise space” Cα(x0) (resp. T p
α(x0)) is

an important idea that we will develop (see Theorem 4.1 which shows that
one can perform such transfers in a general setting).

Besides the study of PDEs, another motivation recently appeared in
completely different areas and led to similar concerns. Many signals or im-
ages are now stored, denoised or transmitted via their wavelet coefficients,
see [27]. Therefore, if one wants to obtain information on the pointwise reg-
ularity of signals, one needs to be able to characterize it in a robust way by
conditions bearing on their wavelet coefficients. Recall that, in dimension 1,
a wavelet basis is of the form 2j/2ψ(2jx − k), j, k ∈ ZZ, where ψ has fast
decay and belongs to Cr (one speaks of r-smooth wavelets), for an r picked
large enough; the wavelet coefficients are

cj,k = 2j

∫
f(x)ψ(2jx − k)dx.

What can be meant by a characterization “in a robust way”? It is natural to
suppose that the criterium used is not too much perturbed if the size of each
wavelet coefficient is slightly altered. The following definition encapsulates
these features.

Definition 2.1. — A norm (or a quasi-norm) on sequences (cn)n∈IN is
robust if it depends only on the moduli |cn| and if it is an increasing function
in each variable |cn|.

Note that this definition implies the following (more classical) notion: A
sequence of vectors (xn)n∈IN is said to be monotone if

p � q =⇒
∣∣∣∣∣
∣∣∣∣∣

p∑
n=0

cnxn

∣∣∣∣∣
∣∣∣∣∣ �

∣∣∣∣∣
∣∣∣∣∣

q∑
n=0

cnxn

∣∣∣∣∣
∣∣∣∣∣ ,

see [3]; clearly, if a sequence norm is robust, then the canonical basis is
monotone.

Another natural requirement is that the smoothness criterium used does
not depend on the particular (smooth enough) wavelet basis which is picked.
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This implies that the infinite matrices which map a wavelet basis on another
one should act in a continuous way on the spaces of sequences thus de-
fined. Since these infinite matrices are matrices of operators which are very
closely related to the pseudo-differential operators of order 0 considered by
Calderón and Zygmund, see Chapter 7 of [29], we are essentially led back
to our previous requirement.

Let us now be more specific about these different stability requirements.
We keep the discussion in dimension 1 for the sake of simplicity. We have
met three different continuity requirements

• under the action of the Hilbert transform,

• under changes of wavelet bases,

• under the action of pseudodifferential operators of order 0.

How can such conditions be checked, and what is their hierarchy? It is clear
that the first criterium is weaker than the third one. It is also weaker than
the second one for the following reason: If the 2j/2ψ(2jx − k), j, k ∈ ZZ
form an orthonormal basis of L2(IR), and if ψ̃ denotes the Hilbert transform
of ψ, then the 2j/2ψ̃(2jx − k), j, k ∈ ZZ also form an orthonormal basis
of L2(IR), simply because the Hilbert transform is an isometry on L2(IR),
and it commutes with translations and dilations (all these properties follow
from the fact that, in the Fourier domain, the Hilbert transform is simply
a multiplication by ξ/|ξ|, which is of modulus one and is homogeneous of
degree 0). The second and the third conditions do not really compare, but
are both implied by a fourth requirement (as a consequence of Theorem 2.3
below), which is simpler to check in practice, and which we now describe.

We will state precise definitions in the d-dimensional setting. Let r ∈ IN;
an r-smooth wavelet basis of IRd is composed of 2d − 1 wavelets ψ(i) which
belong to Cr and satisfy the following properties:

• ∀i, ∀α such that |α| � r, ∂αψ(i) has fast decay,

• The set of functions 2dj/2ψ(i)(2jx−k), j∈ZZ, k∈ZZd, i ∈ {1, ..., 2d−1}
is an orthonormal basis of L2(IR)d.

Thus any function f in L2(IRd) can be written

f =
∑

c
(i)
j,kψ(i)(2jx − k) (2.2)

– 10 –
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where
c
(i)
j,k = 2dj

∫
f(x)ψ(i)(2jx − k)dx.

(Note that, in (2.2), wavelets are not normalized for the L2 norm but for
the L∞ norm, which will simplify some notations.)

Wavelets will be indexed by dyadic cubes as follows: We can consider that
i takes values among all dyadic subcubes λi of [0, 1)d of width 1/2 except
for [0, 1/2)d; thus, the set of indices (i, j, k) can be relabelled using dyadic
cubes: λ denotes the cube {x : 2jx−k ∈ λi}; we note ψλ(x) = ψ(i)(2jx−k)
(an L∞ normalization is used), and cλ = 2dj

∫
ψλ(x)f(x)dx. We will use

the notations c
(i)
j,k or cλ indifferently for wavelet coefficients. Note that the

index λ indicates where the wavelet is localized; for instance, if the wavelets
ψ(i) are compactly supported then ∃C : supp(ψλ) ⊂ Cλ where Cλ denotes
the cube of same center as λ and C times larger; thus the indexation by the
dyadic cubes is more than a simple notation: The wavelet ψλ is “essentially”
localized around the cube λ.

The following classes of infinite matrices acting on sequences indexed by
Λ were introduced by Y. Meyer.

Definition 2.2. — Let γ > 0. An infinite matrix M(λ, λ′) indexed by
the dyadic cubes belongs to Mγ if

|M(λ, λ′)| � C 2−( d
2 +γ)|j−j′|

(1 + (j − j′)2)(1 + 2inf(j,j′)dist(λ, λ′))d+γ
.

The following result was proved by Y. Meyer, see Chapter 8 of [29].

Theorem 2.3. — If γ > 0, then Mγ is an algebra. Furthermore, if
(ψλ) and (ψ̃λ) are two r-smooth wavelet bases, then the matrix M(λ, λ′) =
〈ψλ|ψ̃λ′〉 belongs to Mγ as soon as γ < r.

We denote by Op(Mγ) the space of operators whose matrix on a r-
smooth wavelet basis (for a r > γ) belongs to Mγ . This definition makes
sense precisely because Theorem 2.3 implies that this notion does not de-
pend on the (smooth enough) wavelet basis which is used. Pseudodifferential
operators of order 0, such as the Hilbert transform in dimension 1, or the
Riesz transforms in higher dimensions, belong to the algebras Op(Mγ) for
any γ, see Chap. 7 of [29]. In practice, in order to check that a criterium
based on wavelet coefficients does not depend on the particular wavelet ba-
sis which is chosen, one checks the stronger requirement that it is invariant
under the action of Mγ for a γ large enough.
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Definition 2.4. — Let E be a Banach space (or a quasi-Banach space);
E is γ-stable if the operators of Op(Mγ) are continuous on E.

3. The space E

The first problem we will consider is to find natural conditions on the
space E, which are not too restrictive, and imply that the pointwise regu-
larity condition supplied by Definition 1.3 can be characterized by a robust
condition on the wavelet coefficients (in the sense of Definition 2.1). We
start with a few simple considerations concerning the relationships between
a robust characterization and the existence of bases. Let us recall the two
standard definitions of bases, depending whether E is separable or not.

Definition 3.1. — Let E be a Banach, or a quasi-Banach space. A
sequence en is a basis of E if the following condition holds: For any ele-
ment f in E, there exists a unique sequence cn such that the partial sums∑

n�N cnen converge to f in E. It is an unconditional basis if furthermore

∃C > 0, ∀εn such that |εn| � 1, ∀cn, ‖
∑

cnεnen ‖E� C ‖
∑

cnen ‖E .

(3.1)

Remark. — The definition of a basis is usually given in the context of
Banach spaces, see [3, 35, 38]. However it extends to the non-locally convex
case of quasi-Banach spaces, which will be useful in the following.

If the space E is not separable then, of course, it cannot have a basis in
the previous sense. In this case, the following weaker notion often applies.

Definition 3.2. — Assume that E is the dual of a separable space F ;
then a sequence en is a weak∗ basis of E if, ∀f ∈ E, there exists a unique
sequence cn such that the partial sums

∑
n�N cnen converge to f in the

weak∗ topology. It is unconditional if furthermore (3.1) holds.

In all cases, we will always assume in the following that,

if f =
∑

cnen, then cn = 〈f |gn〉 with gn ∈ F, (3.2)

where F is either the dual of E (in the basis setting of Definition 3.1) or a
predual of E (in the weak∗ basis setting). The gn are called the biorthogonal
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system of the en. Note that if E is a Banach space, if F = E∗ and if the
en form a basis according to Definition 3.1, then (3.2) is automatically
verified, see [3, 35]; it is also verified if the en are a wavelet basis, in which
case gn = en for L2 orthonomal wavelet bases, (or gn is another wavelet
basis in the wavelet biorthogonal case). Note that, for wavelets, the L2

biorthogonal system is also the biorthogonal system for the (E, F ) duality;
indeed, by uniqueness if S0 is dense in either E or F , then the (S0, S ′

0)
duality, the (L2, L2) duality and the (E , F ) duality coincide for finite
linear combinations of wavelets; therefore (3.2) holds for all functions of E
by density, and the duality product 〈f |gn〉 in (3.2) can be understood in
any of the three settings.

Examples of non-separable spaces for which wavelets are weak∗ bases
include the Hölder spaces Ċs(IRd), and, more generally, the Besov spaces
Ḃs,q

p with p = +∞ or q = +∞. Properties of weak∗ bases have been studied
by I. Singer and J. R. Retherford, see [35] and references therein. In the
settings supplied by Definition 3.1 and Definition 3.2, if en is unconditional,
then the norm (resp. quasi-norm) on E induces a norm (resp. quasi-norm)
on a sequence space S(E), which can be defined as follows.

Definition 3.3. — Let E be a Banach space (resp. a quasi-Banach space)
and let (en)n∈IN be an unconditional basis or an unconditional weak∗ basis of
E. Then the sequence space S(E) is the Banach space (resp. quasi-Banach
space) of sequences endowed with the norm (resp. quasi-norm)

‖ (cn)n∈IN ‖S(E)= sup
|εn|�1

∣∣∣∣∣∣∑ εncnen

∣∣∣∣∣∣
E

, (3.3)

where the supremum is taken on all sequences (εn) satisfying |εn| � 1.

The sequence norm thus defined clearly is a robust norm and satisfies:
There exist C1, C2 > 0 such that

∀(cn)n∈IN, C1 ‖ (cn)n∈IN ‖S(E)�
∣∣∣∣∣∣∑ cnen

∣∣∣∣∣∣
E

� C2 ‖ (cn)n∈IN ‖S(E) .

(3.4)
Note that the sequence space norm associated with a basis en is usually
defined by

‖ (cn)n∈IN ‖= sup
N∈IN

∣∣∣∣∣
∣∣∣∣∣

N∑
n=1

cnen

∣∣∣∣∣
∣∣∣∣∣
E

,

see [3, 35, 38]; in the unconditional case, the norm we defined is clearly
equivalent to this one; we prefer it because it satisfies obviously the robust-
ness property given by Definition 2.1 and, because of its symmetry, it does
not require a particular ordering of the basis.
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Consider the particular case of a wavelet basis. The family of matrices
indexed by Λ, which are diagonals of ελ with |ελ| � 1, are obviously elements
of Mγ ; thus, if E is γ-stable, then each of these matrices is bounded on E.
The Banach-Steinhaus theorem implies that they form an equi-continuous
family of bounded operators, which is precisely what (3.1) means. The fact
that, for wavelet bases, γ-stability implies the unconditionality property
(3.1) has a direct practical consequence in the definition of new function
spaces through wavelet conditions. Initially, the fact that Sobolev spaces
have a robust characterization played an important role in PDEs (see [11, 17]
for instance). It was later the case for Besov spaces in statistics, see [13].
But afterwards, there came situations where traditional spaces which had
been introduced before wavelet bases appeared (i.e. before the mid 80s)
did not supply the right framework. New spaces, defined directly through
their wavelet characterization, had to be introduced. Let us mention the
weak Besov spaces, which come up naturally in sharp embeddings problems,
see [10], or the oscillation spaces, which allow to determine the upper box
dimension of the graph of a function, see [19, 20], give the correct “function-
space formulation ” of the multifractal formalism, see [21], and also found
a recent use in statistics, see [2] (we will consider extensions of these spaces
in Section 5); other examples will probably pop up in the short future.
Of course, if one wants the definition of such a space to be consistent, it
should not depend on the particular wavelet basis which is chosen. As we
saw before, in practice, the only way to ensure this property is to check
that the space is γ-stable, which implies (3.1); therefore one falls in one of
the two situations described in Proposition 3.4 below. (This does not mean
that wavelets are never conditional bases, as shown by L1(IR) if one uses
the functions ϕ(x − k) and the wavelets for j � 0 as basis.)

Since wavelets have vanishing moments, it is natural to assume that the
space E satisfies

S0 ↪→ E ↪→ S ′
0. (3.5)

These embeddings also are the right requirement attached to the homogene-
ity hypothesis stated in Definition 3.5. The following proposition yields a
simple criterium in order to check that a family of vectors is a basis.

Proposition 3.4. — Let E be a Banach or a quasi-Banach space sat-
isfying (3.5), and let en be a sequence in S0 satisfying (3.1) and such that
Span{(en)n∈IN} is dense in S0.

• If S0 is dense in E, then (en) is an unconditional basis of E.

• If S0 is dense in F , and F ∗ = E, then (en) is an unconditional weak∗

basis of E.
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Note that, in the case of a wavelet basis in the Schwartz class, the den-
sity requirement in S0 is satisfied and the hypothesis (3.1) can be replaced
by the stronger requirement that E is γ-stable. The first part of the propo-
sition is standard, see Chap. 2 of [3] for instance, and we prove it only for
the sake of completeness.

Proof. — If f =
l∑

n=1

anen, let PN (f) =
inf(l,N)∑

n=1

anen. Then, using (3.4)

and the robustness of the norm in S(E),

‖ PN (f) ‖E� C2 ‖ (an)n�inf(l,N) ‖S(E)� C2 ‖ (an)n�l ‖S(E)�
C2

C1
‖ f ‖E ;

thus PN extends into a linear continuous operator of norm less than C2/C1.

If Span{(en)n∈IN} is dense in S0, hence in E, then ∀ε, ∃g =
K∑

n=1

anen

such that ‖ f − g ‖� ε. If N > K then PN (g) = g so that

‖ PNf − f ‖�‖ PNf − PNg ‖ + ‖ PNg − g ‖ + ‖ g − f ‖�
(

1 +
C2

C1

)
ε

for N large enough; hence the first point of Proposition 3.4.

In order to prove the second point, we have to check that

∀g ∈ F, 〈g|PNf〉 −→ 〈g|f〉.

Since the PN are uniformly bounded, it is enough to check it for g in a dense
subspace of F ; but it is obviously true if g is a finite linear combination of
the gn (the biorthogonal system of the en).

Let τa denote the shift operator (τa(f))(x) = f(x − a), and σλ the
dilation operator (σλ(f))(x) = f(λx).

Definition 3.5. — A Banach (or quasi-Banach) space of distributions
(perhaps defined modulo polynomials up to degree N) is homogeneous of
order H if it satisfies

∃C ∀a ∈ IRd, ‖ τa(f) ‖� C ‖ f ‖, (3.6)

and
∃C ∀λ > 0, ‖ σλ(f) ‖� CλH ‖ f ‖ . (3.7)
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Examples of homogeneous spaces are supplied by the spaces Lp, where
H = −d/p, the homogeneous Besov spaces Ḃs,q

p , and the homogeneous
Sobolev spaces L̇p,s where H = s − d/p.

Requiring the space E to be homogeneous is a very natural requirement;
indeed, the shift invariance implies that the definition of pointwise regular-
ity is the same at every point, and the dilation invariance is an implicit
requirement in the motivation we gave of pointwise regularity through scal-
ing invariance. Furthermore, in practice, norms which are not homogeneous
usually are the sum of several terms: A main part, which describes the “high
frequency” behavior and is homogeneous, and a “low frequency” part which
usually can be written under several alternative forms, and ensures that the
space is not a quotient space; locally, the norm on E is equivalent to the
homogeneous high frequency part, so that using the non-homogeneous norm
would lead to the same definition of pointwise regularity. A typical example
is supplied by the Sobolev spaces Hs for s > 0, whose norm is the sum of
the “low frequency” L2 norm and the “high frequency” part supplied by
the homogeneous Ḣs semi-norm. We will come back to the problems which
may appear when E is a quotient space at the end of this section.

The several requirements that were derived are now collected into the
following definition.

Definition 3.6. — A function space E is a gentle space of order H if

• E is a Banach or quasi-Banach space defined modulo polynomials of
degree N ,

• S0 ↪→ E ↪→ S ′
0,

• if E is separable, then S0 is dense in E, and if E is the dual of a
separable space F , then S0 is dense in F ,

• E is homogeneous of order H,

• ∃γ > 0 such that E is γ-stable.

It follows from Proposition 3.4 that, if E is gentle, then wavelets are
either unconditional bases or unconditional weak∗ bases of E, depending
whether E is separable or not. Note that, a priori, wavelets are required to
belong to S0, but the γ-stability implies that, once wavelets in S0 have been
shown to be bases of E, then any r-smooth wavelet basis (for r > γ) is also
a basis of E. In particular, we can use compactly supported wavelet bases,
which will be useful in the following.
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Recall that a function f belongs to the homogeneous Besov space Ḃs,q
p

if ∑
j∈ZZ


 ∑

λ∈Λj

[
2(s−d/p)j |cλ|

]p




q/p

� C,

where Λj denote the set of dyadic cubes of width 2−j .

Proposition 3.7. — If E is a gentle Banach space of order H, then

ḂH+d,1
1 ↪→ E ↪→ ĊH .

If E is a gentle quasi-Banach space of order H and of type p, then

ḂH+d/p,p
p ↪→ E ↪→ ĊH .

Proof. — Let f =
∑

cλψλ; in both settings, using the fact that the
sequence space norm (or quasi-norm) is robust (so that it gets smaller if we
set to 0 all wavelet coefficients except one) we get

‖ f ‖E� C1

C2
sup

λ
‖ cλψλ ‖E� C ′ sup

λ
(2Hj |cλ|),

which implies that E ↪→ ĊH .

Conversely, if E is a Banach space, then

‖
∑

cλψλ ‖E�
∑

λ

|cλ| ‖ ψλ ‖E� C ′
∑

λ

2Hj |cλ|;

it follows that, if f ∈ ḂH+d,1
1 , then f ∈ E.

If E is a quasi-Banach space of type p, then

‖
∑

cλψλ ‖p
E�

∑
λ

|cλ|p ‖ ψλ ‖p
E� C ′

∑
λ

2Hpj |cλ|p,

hence the last statement of Proposition 3.7 follows.

Remark. — If E is a Banach space and H = −d, then we obtain the
embedding Ḃ0,1

1 ↪→ E, which is a consequence of the famous minimality
property of the Bloch space Ḃ0,1

1 (see for example [28] and Chap. 6 of [29]);
this minimality property states that any Banach space homogeneous of de-
gree H = −d and satisfying S0 ↪→ E ↪→ S ′

0 necessarily contains Ḃ0,1
1 (see

also Chap. 3 of [15] and, for general considerations on minimal spaces, [14]).
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Before studying the pointwise regularity spaces Cα
E(x0), let us come back

to the requirement that E is homogeneous, which may be felt as a problem
since it often implies that E is a quotient space defined modulo polynomials.
One possible way to turn this difficulty is to replace E by another space
obtained through a realization of E at x0. A realization of E is a continuous
embedding σ: E → S ′ such that ∀u ∈ E, the equivalence class of σ(u) in
E is u. This means that the “floating” polynomial in the definition of E is
fixed in a way which is continuous and compatible with the vector space
structure. Of course, one does not want to lose the scaling invariance in
this procedure, so that one also requires that the norm on E restricted to
its image by σ still satisfies ‖ (f(λ · ) ‖= λH ‖ (f(λ · ) ‖. On the other
hand, we do not need to keep the translation invariance. In the Sobolev and
Besov cases, if s − d/p ∈ IR+ − IN, such a realization can be obtained by
substracting the Taylor expansion of f of degree [s − d/p] at x0, see [7].
This provides a coherent definition of pointwise smoothness and allows to
obtain the uniqueness of the polynomial of degree less than α + H in (1.6).
It would be interesting to determine if, in the general setting supplied by
gentle spaces of positive order H, realizations can always be obtained by
substracting the Taylor expansion of f of degree [H] at x0. However, even if
it were the case, we wouldn’t follow this path because wavelets are usually
not bases of realizations of homogeneous spaces (simply because they don’t
all vanish at x0). Bases of these spaces can be obtained by some simple
modifications of wavelet bases, see [31, 37]; however, such bases depend on
the point x0, which is an inacceptable drawback if one wants to analyze
pointwise regularity simultaneously at several points, such as in Section 5.

Another possibility is to use instead of E another space Ẽ which is a
non-homogeneous version of E. Let us be more specific. Recall that there
are two possible ways to write the wavelet expansion of a function of L2,
see [29]: Either

f(x) =
∑
j∈ZZ

∑
k∈ZZd

∑
i

ci
j,kψ(i)(2jx − k),

or

f(x) =
∑

k∈ZZd

Ckϕ(x − k) +
∞∑

j=0

∑
k∈ZZd

∑
i

ci
j,kψ(i)(2jx − k); (3.8)

where ϕ is the function associated with the multiresolution analysis con-
struction, see [27, 29] and

Ck =
∫

IRd

f(x)ϕ(x − k)dx;

ϕ has the same smoothness and localization properties as the ψ(i), but∫
ϕ(x)dx = 1. Following the examples supplied by Sobolev or Besov spaces,
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we assume that a non-homogeneous space Ẽ is associated with E and is
characterized by the condition

(Ck)k∈ZZd ∈ lp, and
∑
j�0

∑
k∈ZZd

∑
i

ci
j,kψ(i) ∈ E,

for a p > 0. One easily checks that the proof of Proposition 3.7 yields that,
if Ẽ is a gentle Banach space, then

BH+d,1
1 ↪→ Ẽ ↪→ CH ,

and, if E is a gentle quasi-Banach space of order H and of type p, then

BH+d/p,p
p ↪→ Ẽ ↪→ CH .

Since all results that will be obtained below deal with wavelet coefficients
of f for j � 0, it follows that all results proved in the following sections are
valid in this setting.

4. The Cα
E(x0) spaces

If A is a subset of Λ, then, by definition

‖ {cλ}λ∈A ‖S(E) denotes ‖ {dλ}λ∈Λ ‖S(E) where
{

dλ = cλ if λ ∈ A
= 0 else.

If x0 ∈ IRd, then λj(x0) denotes the unique dyadic cube of width 2−j which
contains x0 and

Aj(x0) =‖ {cλ}λ⊂3λj(x0) ‖S(E),

where 3λj(x0) denotes the cube of same center as λj(x0) and three times
wider.

Note that, if E is γ-stable, any wavelet basis which is r-smooth for an
r > γ can be used to characterize the norm in E, and we can use in particular
a compactly supported wavelet basis.

Theorem 4.1. — Let E be a gentle space of order H, let f ∈ E and
α > 0. We assume that the wavelet basis is r-smooth with r > |H|+2d+2α.

If f ∈ Cα
E(x0), then ∃C � 0 such that ∀j � 0,

Aj(x0) � C2−αj . (4.1)

Conversely, if (4.1) holds and if α + H /∈ IN, then f ∈ Cα
E(x0) and the

polynomial in (1.6) can be chosen of degree less than α + H.

– 19 –
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Remarks. — Since E may be a space defined modulo polynomials, we
cannot expect uniqueness of the polynomial P . However the degree [α + H]
is optimal in the cases which have been worked out before (Lp or Cs).

Y. Meyer proved the characterization supplied by Theorem 4.1 if
E = Ċs(IRd), see [25, 30], and if E = L2 (personal communication); the
cases where E is either Lp (for 1 < p < ∞), the real Hardy spaces Hp or
BMO are treated in [22].

Theorem 4.1 will be proved in two steps. Recall that, since E is γ-stable,
we can use compactly supported wavelets as a basis of E. Thus, we will first
show that Theorem 4.1 holds if the wavelets used are compactly supported,
and afterwards, we will show that the elements of Mγ are continuous on
the space defined by (4.1); using Theorem 2.3, this will imply that the
characterization actually holds for any (smooth enough) wavelet basis.

If the wavelets are compactly supported, then the direct part of the
theorem is straightforward: Let D be a large enough constant and g be a
distribution which coincides with f(x) − P (x − x0) on B(x0, D2−j) and is
such that the norm in S(E) of its wavelet coefficients is bounded by C2−αj

(by hypothesis, such a g exists). Since this norm is robust, its restriction to
the indices λ satisfying λ ⊂ 3λj(x0) is also bounded by C2−αj ; but, if D is
large enough and λ ⊂ 3λj(x0), then the corresponding wavelet coefficients
of f and g coincide so that (4.1) holds.

Let us now prove the converse part, still in the case of compactly sup-
ported wavelets. We can forget the “low frequency component” of f corre-
sponding to j < 0 in its wavelet decomposition for the following reason: It
belongs locally to Cr(IRd) (for r-smooth wavelets); therefore it belongs to
Cα

F (x0) with F = Ċr−α(IRd); but

Ċr−α(IRd) ↪→ Ḃr−α,1
1 ↪→ E if r − α � H;

therefore f belongs to Cα
E(x0) if r − α � H.

Let ∆jf =
∑

λ∈Λj
cλψλ, and let Pj(x−x0) denote the Taylor polynomial

of ∆jf of degree [α+H] at x0. If α+H < 0, we pick PJ = 0 (so that, there
are no more Taylor expansions in the following, in which case the reader
should read the proof which follows using the convention [α + H] = −1).

Proposition 3.7 and (4.1) imply that,

if dist(λ, x0) � D2−j , then |cλ| � C2−(α+H)j . (4.2)

Let ρ > 0 be fixed and let J be defined by 2−J � ρ < 2 · 2−J and L be
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a constant which will be fixed later, but depends only on the size of the
support of the wavelets. If j � J + L, then at most C of the (ψλ)λ∈Λj

have a support intersecting B = B(x0, ρ) and each of them satisfies (4.2).
It follows from Taylor’s formula that, if x ∈ B and j � J + L, then

|∆jf(x) − Pj(x − x0)| � Cρ[α+H]+12j([α+H]+1−α−H);

each function ∆jf(x) − Pj(x − x0) can be extended outside B and written
under the form

ρ[α+H]+12j([α+H]+1−α−H)ψ̃j(x) = ω(ρ, j)ψ̃j(x)

where ψ̃j(x) is a compactly supported “vaguelette” of scale ρ in the termi-
nology introduced by Y. Meyer, i.e. has all its moments of order less than
r + 2 vanishing and is supported by B(x0, Cρ). Therefore∣∣∣∣∣∣

∣∣∣∣∣∣
J+L∑
j=0

∆jf(x) − Pj(x − x0)

∣∣∣∣∣∣
∣∣∣∣∣∣
E,B(x0,ρ)

=

∣∣∣∣∣∣
∣∣∣∣∣∣
J+L∑
j=0

ω(ρ, j)ψ̃j(x)

∣∣∣∣∣∣
∣∣∣∣∣∣
E,B(x0,ρ)

�
∑

ω(ρ, j)ρ−H

(because the ψ̃j(x) are vaguelettes of scale ρ, and E is γ-stable). Therefore∣∣∣∣∣∣
∣∣∣∣∣∣
J+L∑
j=0

∆jf(x) − Pj(x − x0)

∣∣∣∣∣∣
∣∣∣∣∣∣
E,B(x0,ρ)

�
J+L∑
j=0

ρ[α+H]+1−H2j([α+H]+1−α−H)

� Cρα. (4.3)

It follows also from (4.2) that,

if |k| � [α + H] + 1, then ∀j � 0, |(∆jf)(k)(x0)| � C.2(|k|−α−H)j ;
(4.4)

therefore the series

P (x − x0) :=
∞∑

j=0

Pj(x − x0) =
∞∑

j=0

∑
|k|<α+H

(∆jf)(k)(x0)
k!

(x − x0)k

converges; (4.4) implies that

RJ(x − x0) =
∞∑

j=J+L

Pj(x − x0)
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is a polynomial of the form∑
|k|<α+H

ωk(J, x0)(x − x0)k where |ωk(J, x0)| � C2(|k|−α−H)j ,

therefore
∀β, |∂βRj(x − x0)| � Cρα+H−|β|

it follows that Rj can be extended outside B(x0, ρ) as a function of the
form ρα+HΨJ(x) where ΨJ is a vaguelette at scale 2−J and supported by
B(x0, Dρ). Using the same γ-stability argumant as above, it follows that
‖ ΨJ ‖E� C2−HJ .

Let now gJ(x) =
∑∞

j=J+L ∆jf(x); gJ and

∞∑
j=J+L

∑
λ⊂B(x0,2ρ)

cλψλ

coincide on B if L has been picked large enough; furthermore, ‖ gJ ‖E�
AJ+L(x0), which, by hypothesis, is bounded by C2−α(J+L) � Cρα. Adding
up the estimates we obtained, it follows that ‖ f − P ‖E,B(x0,ρ)� Cρα.

Remark. — Assume now that α + H ∈ IN. We can come back to the
previous proof and substract only Taylor’s expansions of degree α+H−1 (i.e.
reproduce exactly the same proof with the convention [α+H] = α+H−1).
Then all points of the proof run the same except for the derivation of (4.3);
indeed, each term of the sum is now bounded by a constant. It follows that
the bound obtained there is Cρα log(1/ρ). Thus, if α + H ∈ IN and if (4.1)
holds then f satisfies

∃P polynomial, C > 0, ∀r � 1/2 ‖ f − P ‖E,B(x0,r)� Crα log(1/r).

In order to end the proof of the theorem, we still have to prove the
following theorem, which has its own interest, as will be shown below.

Theorem 4.2. — Let E be a gentle space of order H; if γ > |H|+2d+
2α and α > 0 then Cα

E(x0) is γ-stable.

Proof of Theorem 4.2. — We have to prove that, if M is a matrix in Mγ

and if a sequence C = (cλ) satisfies

∀j � 0, Aj(x0) � C2−αj , (4.5)
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then MC satisfies the same estimate. If µj denotes the set of indices

µj = 3λj(x0) − 3λj+1(x0),

then, the µj form a partition of Λ. Let{
dj

λ = cλ if λ ⊂ 3λj(x0)
= 0 else,

and
{

ej
λ = cλ if λ ∈ µj

= 0 else;

we denote by capital letters the corresponding vectors

C = (cλ)λ∈Λ, Dj = (dj
λ)λ∈Λ, Ej = (ej

λ)λ∈Λ.

Then (4.5) can be rewritten ||Dj ||S(E) � C2−αj .

Lemma 4.3. — Let (cλ)λ∈Λ be a vector; then, (4.5) is equivalent to

∀j � 0, ||Ej ||S(E) � C2−αj . (4.6)

Indeed, (4.6) is weaker than (4.5) since the sum in (4.6) bears on less
terms. Assume now that (4.6) holds; note that Dj =

∑
j′�j Ej . If E is a

Banach space, then

‖ Dj ‖�
∑
j′�j

‖ Ej ‖� C
∑
j′�j

2−αj′ � C2−αj .

If E is a quasi-Banach space of type p, then, one applies the same argument
to ‖ Dj ‖p, which satisfies the triangular inequality.

Let us come back to the proof of Theorem 4.2. Let Mλ,λ′ be an infinite
matrix in Mγ . We note

c̃λ =
∑
λ′∈Λ

Mλ,λ′cλ′ =
∑
j′

c̃j′

λ where c̃j′

λ =
∑

λ′∈µj′

Mλ,λ′cλ′ .

Because of Lemma 4.3, we only have to estimate the norm of C̃ = (c̃λ)
restricted to µj ; for that, we will estimate the norm of each C̃j′,j = (c̃j′

λ )λ∈µj .
Let j and j′ be fixed; if |j − j′| � 3 then, by assumption,

‖ (cλ′)λ′∈µj′ ‖� C2−αj′
.

By continuity of the matrices of Mγ on S(E), it follows that

‖ C̃j′,j ‖� C2−αj′ � C2−αj .

In order to deal with the case |j−j′| > 3, we first prove the following lemma.

– 23 –
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Lemma 4.4. — Let Mλ,λ′ be an infinite matrix in Mγ . If |j − j′| > 3,
λ ∈ µj and λ′ ∈ µj′ then

Mλ,λ′ = 2−
γ
4 |j−j′|Nλ,λ′ ,

where N ∈ Mγ/2, and the norm of N in Mγ/2 is bounded independently of
j and j′.

Proof of Lemma 4.4. — Since the estimates required are symmetric, we
can assume that j � j′ (and therefore that j � j′ − 4). Denote by 2−l the
width of λ and by 2−l′ the width of λ′. Since λ ∈ µj and λ′ ∈ µj′ it follows
that l � j − 1 and l′ � j′ − 1.

Assume first that l = j−1 or l = j; then l′− l � j′− j−2 and therefore

2−( d
2 +γ)|j−j′| � 2−( d

2 + γ
2 )|j−j′|2−( γ

2 +γ)|l−l′|,

Hence Lemma 4.4 in this case.

If l � j+1, since λ /∈ 3λj+1(x0), it follows that dist(λ, x0) � 2−j−1; since
λ′ ∈ 3λj+3(x0), it follows that dist(λ, λ′) � 2−j−2; but inf(l, l′) − (j + 2) �
j′−j

2 − 2 (consider separately the cases l � (j + j′)/2 and l > (j + j′)/2).
Therefore

2inf(l,l′)dist(λ, λ′) � 2−
j′−j

2 −2

and Lemma 4.4 follows in this case.

We come back to the proof of Theorem 4.2. Let us show that ‖ C̃j′,j ‖�
C2−αj . Since ‖ Ej′ ‖� C2−αj′

, by continuity of N on S(E), it follows that
‖ N(Ej′) ‖p� C2−αj′

. But if λ′ belongs to µj′ and λ belongs to µj , then
Lemma 4.4 implies that

‖ MC̃j′,j ‖� C2−
γ
2 |j−j′|2−αj′

,

and therefore, in the Banach case,

‖ (MC)λ∈µj ‖�
∑
j′

C2−
γ
2 |j−j′|2−αj′

,

which is bounded by C2−αj as soon as γ/2 > α. The proof in the quasi-
Banach case is similar: One considers ‖ . ‖p

S(E) to which the triangular
inequality applies.
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Note that wavelets are not bases of the space Cα
E(x0) in the sense of

Definition 3.1, even if E has an inconditional basis. The reason is that the
characterization given by (4.1) is an l∞-type condition in j and therefore
S0 is not dense in E; a counterexample is given by the following function f
constructed through its wavelet coefficients (we use a wavelet basis in S0):
All wavelet coefficients of f vanish except one for each scale j � 0, the
coefficient indexed by λj(x0), in which case

cλj(x0) = 2−(α+H)j .

The function f clearly satisfies (4.1) because (in the Banach case),

∣∣∣∣{cλ}λ⊂3λj(x0)

∣∣∣∣ �
∞∑

j′=j

C2−αj−1 � C2−αj .

Let g =
∑

cλψλ be a finite linear combination of wavelets; if j is picked
large enough, then

||f − g||Cα
E

(x0)
� 2αj

∣∣∣∣{cλ}λ⊂3λj(x0)

∣∣∣∣ � 2αj
∣∣∣∣cλj(x0)

∣∣∣∣ = 1,

because of the robustness of the sequence norm. The proof in the quasi-
Banach case is similar.

It would be interesting to identify a predual of Cα
E(x0), in order to de-

termine if wavelets are weak∗ bases of Cα
E(x0). This would probably involve

the construction of pointwise regularity spaces associated with a negative
α, which, in particular cases, has been performed by Y. Meyer in [31].

The following result states that local regularity is a stronger requirement
that pointwise regularity.

Corollary 4.5. — Let E be a gentle space and f ∈ E be such that
(−∆)αf ∈ E; then ∀x0 ∈ IRd, f ∈ Cα

E(x0).

Proof. — The matrix in a wavelet basis of the operator (−∆)α can be
written as the product of a diagonal matrix of 2−αj by a matrix in Mγ , see
Chap. 8 of [29]. Therefore, the condition (−∆)αf ∈ E can be rewritten

(2αjcλ)λ∈Λ ∈ S(E).

But, since the norm of S(E) is robust, this implies that

∀j � 0, ‖ (2αj′
cλ′)λ′⊂3λj(x0) ‖� C,
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so that, since j′ � j − 1,

∀j � 0, ‖ (2αjcλ′)λ′⊂3λj(x0) ‖� C,

which means that f ∈ Cα
E(x0).

The following result is more surprising: In contradistinction with Hölder
regularity, the fact that f ∈ Cα

E(x0) uniformly in x0 does not necessarily
imply that (−∆)αf ∈ E, even locally, as shown by the following counterex-
ample: We pick E = Ḃ1,1

1 (IR), so that ‖ f ‖E=
∑

|cλ|. The function f is
defined by its wavelet coefficients:

cλ = j−22−j if λ ⊂ [0, 1], and j > 0
= 0 else.

Clearly, ∑
λ′⊂λ

|cλ′ | � j−12−j

so that f ∈ C1
E(x0) uniformly in x0, but ∀α > 0, (−∆)αf /∈ Ḃ1,1

1 (IR).

5. Implications in multifractal analysis

Multifractal analysis in concerned with the determination of the dimen-
sions of the sets of points where a function has a given pointwise regularity.
The dimension mostly used in multifractal analysis is the Hausdorff dimen-
sion. Let us recall its definition. Let A be a subset of IRd. For each ε > 0,
let

Md
ε = inf

R

∑
i

εd
i ,

where R denotes a generic covering of A by balls Bi of diameter εi � ε;
then

dim(A) = sup{d : lim
ε→0

Md
ε = +∞} = inf{d : lim

ε→0
Md

ε = 0}.

Definition 5.1. — Let f be a distribution which belongs to E. The
E-exponent of f at x0 is hE

f (x0) = sup{α : f ∈ Cα
E(x0)}.

The E-spectrum of singularities of f is

dE
f (H) = dim({x : hE

f (x) = H}). (5.1)
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If E = L∞, then dE
f (H) is simply called the spectrum of singularities

of f and is denoted by df (H); If E = Lp, it is called the p-spectrum of
singularities of f and is denoted by dp

f (H). Properties of the p-spectrum are
investigated in [22, 24].

One cannot expect to compute the spectrum of singularities of an ex-
perimental signal by following the algorithm implicit in Definition 5.1 step
by step. Indeed, the computation of a regularity exponent leads to numer-
ical instabilities if it jumps from point to point; the determination of the
level sets of a complicated function is also a problem; finally, computing
one Hausdorff dimension involves considering all possible coverings of the
corresponding set, which is not numerically feasible...and in the case of a
multifractal function, we expect to deal with an infinite number of such
sets! The purpose of the multifractal formalism is to derive the spectrum of
singularities from quantities effectively computable on experimental signals.
First, we will show that the multifractal formalism can be heuristically de-
rived using a remarkable idea which G. Parisi and U. Frisch introduced in
the setting of Hölder regularity, see [34]; it was later adapted using wavelets
(see [1, 21, 26] and references therein), and we present it in the Cα

E regularity
setting: We consider global quantities obtained by averaging the quantity

Af (λ) =‖ {cλ′}λ′⊂λ ‖S(E) .

In order to keep as much information as possible, one actually computes
averages of Af (λ)p for all (positive and negative) values of the parameter
p; one obtains the structure functions

Σj
f (p) = 2−dj

∑
λ∈Λj

(Af (λ))p.

The behavior of these quantities when j → +∞ is described by the scaling
function of f

ηE
f (p) = lim inf

j→+∞

log(Σj
f (p))

log(2−j)
.

Thus Σj
f is of the order of magnitude of 2−ηE

f (p)j in the limit of small
scales. The fundamental idea of the multifractal formalism is to estimate
the contribution to Σj

f (p) of the points x0 where the E-exponent takes the
value h. Indeed, if the cube λ contains such a point, then Theorem 4.1
asserts that Af (λ) is of the order of magnitude of 2−hj . Coming back to the
definition of the dimension, we need about 2dE

f (h)j such cubes to cover the
set {x0 : hE

f (x0) = h} by cubes of size 2−j ; thus the contribution we look
for is, for each value of j,

2−dj2dE
f (h)j2−hpj = 2−(d−dE

f (h)+hp)j .
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When j → +∞, the contribution given by the smallest possible exponent
d − dE

f (h) + hp becomes preponderent; thus, we expect that

ηE
f (p) = inf

h
(d − dE

f (h) + hp).

If d − dE
f (h) is a convex function, then −ηE

f (p) is the Legendre transform
of d− dE

f (h) (in the sense of convex functions duality, see Chap. 1.3 of [8]).
The inversion formula allows to recover dE

f (h):

dE
f (h) = inf

p
(hp − ηE

f (p) + d). (5.2)

When (5.2) holds, one says that f satisfies the multifractal formalism. The
heuristic argument we described cannot be turned into a mathematical
proof; the following result shows that, however, the right hand side of (5.2)
always yields an upper bound for the spectrum.

Theorem 5.2. — Let E be a gentle space, let f ∈ E and assume that
the wavelet basis which is used belongs to the Schwartz class; then

dE
f (h) � inf

p�=0
(d − ηE

f (p) + hp). (5.3)

When p is positive, the scaling function can be given a functional in-
terpretation. For that, we introduce the oscillation spaces associated with
E which are defined by the following condition on the wavelet expansion
(using the expansion on the ψ(i)(2jx − k) for j � 0 and the ϕ(x − k) as in
(3.8)).

Definition 5.3. — Let s ∈ IR and p > 0; a distribution f belongs to
Os,p

E (IRd) if it satisfies ∑
k

|Ck|p � C

and
∃C > 0 ∀j � 0 2(sp−d)j

∑
k

Af (λ)p � C. (5.4)

Remarks. — Particular examples of oscillation spaces were already intro-
duced, for E = B0,∞

∞ , see [20, 21], for E = Cs, see [20, 23] and for E = Lp,
see [22].
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It follows immediately from Definition 5.3 that

ηE
f (p) = sup{s : f ∈ Os/p,p

E },

therefore, when p > 0, the function ηE
f (p) indicates which spaces Os,p

E con-
tain the function f .

It would be interesting to determine if oscillation spaces are gentle.

Proof of Theorem 5.2. — First, we consider the case where p is positive.
We will estimate the dimensions of the sets Gh, which are defined by

Gh = {x0 ∈ IRd : f /∈ Ch
E(x0)}. (5.5)

Proposition 5.4. — Let p > 0; if f ∈ Os,p
E , then

∀h � s − d

p
, dim(Gh) � d + hp − sp. (5.6)

Furthermore, if s − d
p > 0, then Gh = ∅ for any h < s − d

p .

Proof. — If h < s− d
p and f ∈ Os,p

E then, for any λ of width less than 1,

Af (λ) � C2−(s− d
p )j

so that ∀x0, hE
f (x0) � s − d/p.

Let us now prove the first assertion of the proposition. Let

Gj,h =
{
λ : |Af (λ)| � 2−hj

}
,

and denote by Nj,h the cardinality of Gj,h. By hypothesis, f ∈ Os,p
E so that

2(sp−d)j
∑

|Af (λ)|p � C;

therefore
2(sp−d)jNj,h2−hpj � C,

so that
Nj,h � C2(d−sp+hp)j .

Two dyadic cubes λ1 and λ2 are called adjacent if they are at the same
scale and if dist(λ1, λ2) = 0. Denote by Fj,h the set of cubes λ of scale j
such that either λ ∈ Gj,h, or λ is adjacent to a cube of Gj,h. Clearly,

Card(Fj,h) � 3dCard(Gj,h) � 3dC2(d−sp+hp)j .
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Denote by Fh = lim sup
j→+∞

Fj,h the set of points that belong to an infinite

number of Fj,h. If x0 /∈ Fh, then there exists j0 (= j0(x)) such that, for any
j � j0, Aj(x0) � 2−hj ; thus we can choose C ( = C(x)) large enough so
that

∀j � 0, Aj(x0) � C2−hj .

Theorem 4.1 implies that f ∈ CE
α (x0); so that Gh ⊂ Fh.

It remains to bound the dimension of Fh. Let ε > 0, and

j0 = inf{j :
√

d2−j � ε}.

We choose for ε-covering of Fh all the cubes λ such that j � j0 and λ ∈ Fj,h.
Clearly,

∑
Diam(Bλ)δ � C

∞∑
j=j0

Card(Fj,h)
(√

d2−j
)δ

� C

∞∑
j=j0

2(d−sp+hp−δ)j ,

which is finite if δ > d+hp−sp; hence the first part of the proposition holds.

Let us now check that the upper bound in Theorem 5.2 holds for p > 0.
If x0 ∈ Eh, then hf (x0) = h, and ∀h′ > h, x0 ∈ Gh′ ; so that Eh ⊂ Gh′ . Let

p > 0; by definition of ηE
f (p) we have ∀ε > 0, f ∈ O(ηE

f (p)−ε)/p,p

E , so that

∀h′ > h, ∀ε > 0 dE
f (h) = dim(Eh) � dim(Gh′) � d + h′p − ηE

f (p) + ε,

and thus
dE

f (h) � d + hp − ηE
f (p).

Since this upper bound is valid for all p > 0, (5.3) follows (with the infimum
taken on IR+).

We consider now the case where p is negative. In this case, we will obtain
a result which is stronger than Theorem 5.2 since it yields a bound for the
packing dimension of the Hölder singularities. Let us recall its definition.

Definition 5.5. — Let A ⊂ IRd; if ε > 0, let Nε(A) be the smallest
number of sets of radius ε required to cover A. The upper box dimension of
A is

dimB(A) = lim sup
ε→0

log Nε(A)
− log ε

.
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The packing dimension of A is

dimp(A) = inf

{
sup

i

(
dimBAi : A ⊂

∞⋃
i=1

Ai

)}

(the infimum is taken over all possible partitions of A into a countable col-
lection Ai).

The packing dimension of a set is always larger than its Hausdorff di-
mension. Denote by Bh the set of points x0 such that f ∈ Ch

E(x0).

Proposition 5.6. — Let p < 0; if f satisfies

∃C > 0 ∀j � 0 2(sp−d)j
∑

k

Af (λ)p � C, (5.7)

then the packing dimension of Bh is bounded by d − sp + hp.

Proof. — Let δ > 0 and J such that 2−J � δ. If f ∈ CE
h (x0), then there

exists A > 0 such that

∀j � J, Af (λ) � A2−hj ;

so that, since p < 0,
(Af (λ))p � Ap2−hpj . (5.8)

Denote by ΩA the set of points x where (5.8) holds for any j � J . Clearly,

Bh ⊂
⋃

A>0

ΩA,

where the union can be written as a countable union. Since f satisfies (5.7),
there are at most CAp2(d−sp+hp+ε)j cubes λ satisfying (5.8), so that the up-
per box dimension of each set ΩA is bounded by d−sp+hp. The proposition
follows by countable union, and the upper bound (5.3) for p < 0 also follows
by the same argument as for p > 0. Therefore Theorem 5.2 is completely
proved.
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