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Prékopa–Leindler type inequalities on Riemannian
manifolds, Jacobi fields, and optimal transport(∗)

Dario Cordero -Erausquin (1), Robert J. McCann(2),
Michael Schmuckenschläger (3)

ABSTRACT. — We investigate Prékopa-Leindler type inequalities on a
Riemannian manifold M equipped with a measure with density e−V where
the potential V and the Ricci curvature satisfy Hessx V + Ricx � λ I for
all x ∈ M , with some λ ∈ R. As in our earlier work [14], the argument uses
optimal mass transport on M , but here, with a special emphasis on its
connection with Jacobi fields. A key role will be played by the differential
equation satisfied by the determinant of a matrix of Jacobi fields. We also
present applications of the method to logarithmic Sobolev inequalities (the
Bakry-Emery criterion will be recovered) and to transport inequalities. A
study of the displacement convexity of the entropy functional completes
the exposition.

RÉSUMÉ. — Nous étudions l’extension d’inégalités de type Prékopa-
Leindler au cas d’une variété riemannienne M équipée d’une mesure ayant
une densité e−V où le potentiel V et la courbure de Ricci vérifient Hessx V +
Ricx � λ I (∀x ∈ M), pour un certain λ ∈ R. Nous ferons appel, comme
dans notre travail précédent [14], au transport optimal de mesure. Mais
nous exploiterons plus encore son lien avec les champs de Jacobi, ce qui
permettra de ramener la discussion à l’étude du déterminant d’une matrice
de champs de Jacobi. Nous présentons également d’autres applications
de la méthode, en particulier aux inégalités de Sobolev logarithmiques
(critère de Bakry-Emery) et à l’étude de la convexité de déplacement de
la fonctionnelle entropie.
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1. Introduction

The Brunn-Minkowski inequality plays a central role in geometric convex
analysis. It can be stated as follows: for A,B ⊂ R

n,

vol(A + B)1/n � vol(A)1/n + vol(B)1/n,

where vol denotes the Lebesgue measure. By applying this inequality when
B is an Euclidean ball of radius ε and by letting ε → 0, one easily re-
covers the isoperimetric inequality in Euclidean space. Using homogeneity,
the Brunn-Minkowski inequality can be restated in the following equivalent
form: for A,B ⊂ R

n and s ∈ [0, 1],

vol((1 − s)A + sB) � vol(A)1−s vol(B)s. (1.1)

From the beginning of the nineteen-seventies there has been a significant and
systematic effort to obtain functional versions of geometric inequalities (see
for instance [8, 9, 36] and the surveys [16, 18] for different points of view. . . ).
These functional versions are not only more powerful (they can be applied in
different settings) but they also shed new light on the geometric inequalities
themselves. An inequality which has proved to be extremely useful is the
so-called Prékopa-Leindler inequality [36, 24, 37].

Theorem 1.1 (Prékopa-Leindler inequality). — Let s ∈ (0, 1) and
u, v, w : R

n −→ R+ be such that, for all x, y ∈ R
n,

w((1 − s)x + sy) � u1−s(x)vs(y). (1.2)

Then, ‖w‖L1 � ‖u‖1−s
L1 ‖v‖s

L1 .

An equivalent and shorter way of stating this result is to say that for
every u, v : R

n −→ R+ one has
∫

Rn

sup
{(x,y)∈R2n|z=(1−s)x+sy}

{
u1−s(x)vs(y)

}
dz �

(∫
Rn

u

)1−s (∫
Rn

v

)s

.

(1.3)
If we apply this inequality for u = 1A and v = 1B , the indicator functions of
sets A,B ⊂ R

n, then we recover the Brunn-Minkowski inequality (1.1). For
more information on Brunn-Minkowski and Prékopa-Leindler inequalities
and their interplay with geometry and probability, we refer to [18, 28, 39,
23, 4].

We now want to take as reference measure a measure µ with density
e−V . The function V : R

n → R is called the potential and we are going to
assume that

Hessx V � λ Id ∀x ∈ R
n, (1.4)
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for some λ ∈ R, where Id denotes the identity matrix. It is clear after the
work of Bakry and Emery, that this amounts to a “curvature” condition on
the “space” (Rn, µ). A typical case is the Gauss space obtained when µ is
the standard Gaussian measure γn given by V (x) = |x|2/2+n log(2π)/2 and
for which (1.4) holds with λ = 1. If λ � 0, the density e−V is log-concave
and the we immediately have that the Prékopa-Leindler inequality (1.3)
extends to integration with respect to µ. However, if λ > 0, one can expect
a stronger inequality to hold. This is indeed the case, as suggested by the
remarkable paper by Maurey [27]. For f, g, h : R

n → R+, we apply the
Prékopa-Leindler inequality to

u(x) = f(x)e−V (x), v(y) = g(y)e−V (y), w(z) = h(z)e−V (z).

We want to find under which conditions on f, g and h the assumption (1.2) is
satisfied. The terms in V can be simplified. Indeed, we notice that using an
integral Taylor expansion (on [0, s] and on [s, 1]) we have for every smooth
function α : [0, 1] −→ R, k ∈ R, s ∈ [0, 1], that
(
∀t ∈ [0, 1], α′′(t) � k

)
=⇒ (1−s)α(0)+sα(1)−α(s) � k s(1−s)/2. (1.5)

Thus, by applying (1.5) for α(t) := V
(
(1 − t)x + ty

)
we see that con-

dition (1.4) implies that (1 − s)V (x) + sV (y) − V ((1 − s)x + sy) � λ s
(1 − s)|x − y|2/2 for every x, y ∈ R

n. We shall use this simple and well
known observation several times in this paper. As a consequence we obtain
the following reformulation the Prékopa-Leindler inequality.

Theorem 1.2 (Weighted Prékopa-Leindler inequality). — Let
µ be a measure of the form dµ = e−V dx where V verifies (1.4). Let s ∈ [0, 1]
and f, g, h : R

n −→ R+ be such that, ∀x, y ∈ R
n

h((1 − s)x + sy) � e−λ s(1−s) |x−y|2/2 f1−s(x)gs(y). (1.6)

Then,
∫

Rn

h dµ �
(∫

Rn

f dµ

)1−s (∫
Rn

g dµ

)s

.

This result (one should rather say “observation”) is of course not new. The
fact that the Prékopa-Leindler inequality contains this relative form was
used, after Maurey’s work [27], by several authors; note that the Prékopa-
Leindler inequality corresponds to the special case V = 0 and λ = 0. One
can derive from this form concentration and log-Sobolev inequalities for the
measure µ, as in [27, 38, 6].

The Prékopa-Leindler inequality was extended by the authors [14] to
Riemannian manifolds. In this paper, M will denote a smooth, complete n-
dimensional Riemannian manifold with geodesic distance d. We will denote
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by dvol the Riemannian element of volume and (TxM, · , | · |) will be the
Euclidean structure on the tangent space TxM at x ∈ M . For x, y ∈ M and
t ∈ [0, 1], let Zt(x, y) be the barycenter between x and y given by

Zt(x, y) = {z ∈ M ; d(x, z) = td(x, y) and d(z, y) = (1 − t)d(x, y)}.

Except maybe when x belongs to the cut locus cut(y) of y, the set Zt(x, y)
reduces to a single point. In fact, when x /∈ cut(y), the curve t −→ Zt(x, y)
describes exactly the minimal geodesic joining x to y. The Riemannian
Prékopa-Leindler inequality obtained in [14] takes the following form: for
u, v : M −→ R+ and s ∈ [0, 1] one has
∫

M

sup
z∈Zs(x,y)

{
Ds(x, y)u1−s(x)vs(y)

}
dvol(z) �

(∫
M

u

)1−s (∫
M

v

)s

,

where Ds(x, y) � 0 is a distortion factor due to curvature depending on x, y
and s only. We have Ds(x, y) � 1 if the curvature is non-negative, while
the opposite inequality holds in spaces of non-positive curvature. Of course,
Ds(x, y) ≡ 1 in Euclidean space (the Prékopa-Leindler inequality (1.3) is
then recovered). When the Ricci curvature is bounded from below, Ricx �
k(n − 1) Id for all x ∈ M and some k ∈ R, then it is possible to bound
from above the distortion factor Ds(x, y) by a factor depending only on the
distance d(x, y) between x and y. The Ricci curvature Ricx at point x ∈ M
will be seen either as a self-adjoint operator or as a bilinear form on TxM .
Introduce for k ∈ R,

Sk(d) :=
sin(

√
k d)√

k d
=




(sin d)/d for k = 1 (spherical case)
1 for k = 0 (Rn)

(sinh d)/d for k = −1 (hyperbolic case)
.

(1.7)
If M satisfies Ric � k(n− 1) then, as proved in [14], one has for the volume
distortion along any geodesic of length d := d(x, y):

Ds(x, y) �
(

Sk(d)
S1−s

k ((1 − s)d)Ss
k(sd)

)n−1

, (1.8)

with equality if M is of constant sectional curvature equal to k. It is a
computational exercise to check that for s ∈ [0, 1], k ∈ R and d � 0
(d < π/k1/2 when k > 0),(

Sk(d)
S1−s

k ((1 − s)d)Ss
k(sd)

)
� e−s(1−s) k d2/2 (1.9)

(setting t =
√
|k|d reduces to the cases k = 1 and k = −1). After taking

the (n − 1) power in (1.9), we obtain an upper bound for Ds(x, y) which
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depends on λ := k(n− 1). As a consequence, we obtain the following result
which was therefore implicitly already contained in [14].

Theorem 1.3 (Riemannian inequality). — Assume that, for some
λ ∈ R, the Ricci curvature on M verifies:

Ricx � λ Id ∀x ∈ M. (1.10)

If u, v, w : M → R+ and s ∈ [0, 1] are such that, for every x, y ∈ M and
z ∈ Zs(x, y),

w(z) � e−λ s(1−s) d2(x,y)/2 u1−s(x)vs(y), (1.11)

then,
∫

M

w �
(∫

M

u

)1−s (∫
M

v

)s

.

By comparing (1.4) and (1.6) with (1.10) and (1.11), we see once again the
analogy between the curvature of the potential V and the curvature of the
manifold. However, we would like to push forward our investigation and
consider, on our Riemannian manifold M , a measure dµ = e−V dvol with
a potential V : M −→ R. What weighted form of the Prékopa-Leindler
inequality can we expect? Of course, following the Euclidean method, we
may combine (1.4) with (1.10) to obtain an inequality, but that is not what
we have in mind. We seek instead an inequality which allows the curvature
of the manifold to be compensated by the curvature of the potential, and
vice versa. Following the work of Bakry and Emery, we are willing to assume

Hessx V + Ricx � λ Id ∀x ∈ M (1.12)

for some λ ∈ R. It is not clear whether such an assumption can be handled
with our Riemannian versions [14] of the Prékopa-Leindler inequality. But in
any case, one of the aims of this paper is to present an alternative approach
to such inequalities. We will of course use, as before, optimal mass transport
on M . But we will make a more direct use of its connection with Jacobi fields
along geodesics, and of the related ODE’s. The main result is, as expected,
a weighted version of the Prékopa-Leindler inequality on manifolds.

Theorem 1.4 (Weighted version). — Let µ be a measure on M of
the form dµ = e−V dvol where V and the Ricci curvature verify (1.12) for
some λ ∈ R. Let s ∈ [0, 1] and f, g, h : M −→ R+ be such that, ∀x, y ∈ M
and z ∈ Zs(x, y),

h(z) � e−λ s(1−s) d2(x,y)/2 f1−s(x) gs(y). (1.13)

Then,
∫

M

h dµ �
(∫

M

f dµ

)1−s (∫
M

g dµ

)s

.
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Concentration of measure inequalities can be recovered following the
ideas of Maurey’s (τ)-property. Let us assume that µ is a probability measure
on M of the form dµ = e−V dvol verifying (1.12). Then, by applying the
previous result for s = 1/2 and h ≡ 1, we obtain that for every ϕ : M −→ R,∫

M

e−ϕdµ

∫
M

eQλ(−ϕ) dµ � 1, where Qλϕ(y) := inf
x∈M

(
λ d2(x, y)/4− ϕ(x)

)
.

(1.14)
Given a set A ⊂ M , we can apply this inequality with ϕ(y) = 0 on A and
+∞ outside A. Setting d(·, A) := infx∈A d(·, x), one gets∫

M

eλ d2(·,A)/4 dµ � µ(A)−1,

and therefore µ
(
{x ∈ M ; d(x,A) � ε}

)
� µ(A)−1 e−λ ε2/4. This type of

concentration of measure inequality was first proved on compact Rieman-
nian manifolds with positive Ricci curvature (V = 0 and dµ = dvol/vol(M))
by Gromov and Milman [19]. The reader can consult Ledoux [23] for refer-
ences and backgroud.

Theorem 1.4 is the main new result of the paper. It clearly extends
the weighted Prékopa-Leindler inequality from Euclidean space stated in
Theorem 1.2. Our other results consist mainly of proofs which give new
insights into known results — as in the case of the Bakry-Emery criterion
(Theorem 4.1) — or else lend rigour to heuristic arguments — as in the
case of Otto and Villani’s [35] displacement semiconvexity of Riemannian
entropy (Theorem 5.1).

The organization of the paper is as follows. The next section §2 recalls
some relevant facts about mass transport and about its link to Jacobi fields.
Then, in section §3 we recall a useful Lemma on the determinant of a matrix
of Jacobi fields and use it to prove Theorem 1.4. Section §4 is devoted to
logarithmic Sobolev and transport inequalities for a measure µ with density
e−V under the assumption (1.12). We shall give a mass transportation proof
of a criterion of Bakry and Emery. A unified point of view on log-Sobolev and
transport inequalities is given in section §5 with study of the displacement
convexity of the entropy functional

E(u) :=
∫

M

u log u +
∫

M

uV (1.15)

2. Mass transport and Jacobi fields

We will recall several results taken from our earlier works [32] and
[14] concerning optimal transport on Riemannian manifolds. All the results
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Prékopa–Leindler type inequalities

needed for the proof of Theorem 1.4 are collected in Proposition 2.1. The
reader is free to take this proposition for granted and to jump to the next
section. However, without the explanations we collect below, it appears as
a rather mysterious black box.

Let us start from the classical Euclidean theory of mass transport.

The interplay between mass transport and geometric functional analy-
sis (and Brunn-Minkowski theory) has a long history and we would like to
mention a few steps relevant for the present work. In 1957, Knothe [20] gave
a proof of the Brunn-Minkowski inequality using mass transport. The map
constructed by Knothe, sometimes referred to as the Knothe map, was later
used by Gromov [33] to give a direct proof of the Euclidean isoperimetric
inequality in its functional form. In the mid nineteen-eighties, a completely
different mathematical landscape led Brenier to discover a new mass trans-
portation map by solving a variational problem [10]. Connections between
the resulting optimal map and the isoperimetric [42], Brunn-Minkowski [31],
and Prékopa-Leindler [29] inequalities were discovered independently by
Trudinger [42] and McCann [29, 31] (whose displacement convexity inequal-
ities are based on this map). Shortly afterward, Barthe [5] used the same
map to prove deep convolution inequalities. Since then, the Brenier map
has found many interesting geometric applications. For instance, it has been
used to derive Aleksandrov-Fenchel inequalities by Alesker, Dar, and Mil-
man [1], and to derive sharp Sobolev and related inequalities on R

n [15] and
on bounded domains [26] by Cordero-Nazaret-Villani [15] and Maggi-Villani
[26]. One can consult Villani’s book [43] for more details and background
on optimal mass transportation theory.

The result of Brenier [10], as improved by McCann [30], is as follows. Let
µ and ν be two probability measures on R

n and assume that µ is absolutely
continuous with respect to Lebesgue measure. Then, there exists a convex
function ϕ such that ν is the image measure of µ under the map T = ∇ϕ (we
say that ∇ϕ pushes-forward or transports µ onto ν). Let us recall that given
two (Borel) measures µ and ν on some measurable (topological) space, one
says that ν is the image measure (or push-forward) of µ under the (Borel)
map T if, ∫

b ◦ T dµ =
∫

b dν, (2.1)

for every nonnegative Borel function b. Equivalently, ν(B) = µ(T−1(B)) for
every Borel set B. In this case we may write either ν = T (µ) or ν = T#µ.

The map T = ∇ϕ between µ and ν is uniquely determined and is some-
times called the Brenier map or Brenier-McCann map. It is known to solve
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Monge’s optimization problem: among all maps transporting µ onto ν, find
T as close to the identity map as possible in the least-square sense, i.e. in
L2((Rn, µ); Rn). An important feature of this map is that its Jacobian ma-
trix Hessϕ � 0 is symmetric and non-negative definite, which makes various
matrix inequalities available.

It is a priori not obvious how the map T = ∇ϕ should generalize to Rie-
mannian manifolds. In order to focus on the displacement, it is convenient to
introduce θ(x) := ϕ(x)−|x|2/2 so that T takes the form T (x) := x+∇θ(x).
Of course, the inequality Hess θ � −I satisfied by θ (distributionally) is less
familiar to interpret than convexity of ϕ: the directional derivatives ∂2

nnθ(x)
can take either sign, depending on whether T (x) expands or contracts lo-
cally, but they are bounded below since the contraction is not so severe as
to become orientation reversing.

Brenier’s result was extended to Riemannian manifolds by McCann [32].
Let µ and ν be two probability measures on M and suppose µ is absolutely
continuous with respect to dvol. For technical reasons, it is simplest to
assume that the probability measures µ and ν are compactly supported.
Then, there exists a function θ : M −→ R such that −θ is d2/2-concave and
such that ν is the image measure of µ under the map F (x) = expx(∇θ(x)).
This map is uniquely defined and will be called the optimal map pushing
µ forward to ν, because it again minimizes the mean-square Riemannian
distance to the identity map, the mean being computed with respect to
µ. Of course, it remains to clarify what d2/2-concavity of ϕ means. One
precise definition is that ϕ = Q2

2(ϕ) with Q2 from (1.14); see also [32, 14].
We only summarize the properties which are needed for our work. Again,
the explanations below are given solely as a motivation for Proposition 2.1.

First, θ is locally Lipschitz and therefore the map F is well defined
almost everywhere. In fact, it was proved in [14] that θ has almost ev-
erywhere a second order derivative (in a suitable sense) and that almost
everywhere F (x) /∈ cut(x). To be more specific, θ is locally semi-convex
in the sense that for every x0, there exists C � 0 such that the function
x −→ θ(x) + Cd2(x, x0) is locally geodesically convex around x0. As a con-
sequence, its distributional second derivative is a measure given by the sum
of an absolutely continuous part and a nonnegative singular part. In [14]
we used the notion of Hessian in the sense of Aleksandrov, which means we
say Hessx θ exists at x ∈ M if ∇θ(x) exists and if there exists a symmetric
matrix Hx such that, for every direction u ∈ TxM ,

θ(expx(tu)) = θ(x) + t∇θ(x) · u +
t2

2
Hx(u) · u + o(t2).

We then write Hessx θ := Hx. For a locally semi-convex function, the Hes-
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sian in the sense of Aleksandrov exists almost everywhere and coincides
almost everywhere with the absolutely continuous part of the distributional
second derivative.

The d2/2-concavity of −θ implies
[
Hessx d2

F (x0)
/2 + Hessx θ

]
x=x0

� 0 (2.2)

for almost every x0 in the support of µ, where dy(·) := d(·, y) for y ∈ M .
Note that the function d2

F (x0)
is smooth around x when x /∈ cut(F (x0)).

In the Euclidean case, F (x) = expx ∇θ(x) with (2.2) reduces to T (x) =
x + ∇θ(x) with Hess θ � −I, and we therefore see that the map F encodes
part of the geodesic structure of M .

Let us assume that µ and ν have densities u0 and u1, respectively. It is
natural to expect from (2.1) that u0(x) = u1(F (x))|det dFx|. This is true
in some weak sense. Let us define dF almost everywhere by dFx0 := Y (H +
Hessx0 θ), where the matrices Y and H are defined, when F (x0) /∈ cut(x0),
by

Y := d[expx0
]∇θ(x0) and H = [Hessx d2

F (x0)
/2]x=x0 .

Then u0(x) = u1(F (x)) det dFx holds dµ-almost everywhere. We now inter-
polate between the identity and the optimal map: Given F and t ∈ [0, 1],
we introduce

Ft(x) := expx(t∇θ(x)).

Observe that if F (x) /∈ cut(x), then t −→ Ft(x) = Zt(x, F (x)) is the min-
imal geodesic joining x = F0(x) to F (x) = F1(x). Note also that for every
y (close to x) the curve t −→ Ft(y) is a again a geodesic. Therefore, it is
natural to expect that t −→ d(Ft)x defines a matrix of Jacobi fields (in an
orthonormal moving frame) along the geodesic t −→ Ft(x).

A Jacobi field is obtained by considering any perturbation of a geodesic
by geodesics (see for instance [17] for a more detailed presentation). Let
γ : [0, 1] → M be a geodesic. Consider a perturbation γs of γ by a geodesic
[0, 1] � t −→ γs(t) for each s ∈ (−ε, ε), with γ0 = γ. Introduce, for a fixed
t ∈ [0, 1],

J(t) :=
d

ds

∣∣∣
s=0

γs(t).

Since γ0 = γ, we have J(t) ∈ Tγ(t)M . The vector field t −→ J(t) along γ is
called a Jacobi field. It satisfies the following linear differential equation

∇2
γ̇(t)J(t) + Rγ(t)(γ̇(t), J(t))γ̇(t) = 0.
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where γ̇(t) :=
dγ

dt
(t), ∇2

γ̇(t) denotes the second covariant derivative along γ,
and Rx : TxM × TxM × TxM −→ TxM is the Riemann curvature tensor at
x ∈ M . Since Jacobi’s equation is second order, a Jacobi field is uniquely de-
termined by J(0) and ∇γ̇(t)J(0). It is very convenient to introduce a moving
frame and to work with the coordinates of Jacobi fields. Let e1(0), . . . , en(0)
be an orthonormal basis of Tγ(0)M and consider the parallel transport of
this basis along γ. We obtain an orthonormal basis of Tγ(t)M denoted by
e1(t), . . . , en(t). As usual, we will impose that e1(t) = γ̇(t)/|γ̇(t)| for all
t ∈ [0, 1]. Let Y (t) ∈ R

n be the coordinates of a Jacobi field J(t) in the
basis e1(t), . . . , en(t). Then t −→ Y (t) satisfies a second order linear ODE:

Y ′′(t) + R(t)Y (t) = 0 (2.3)

for some symmetric matrix R(t). The matrix R(t) is the matrix of the
operator

Tγ(t)M −→ Tγ(t)M

v −→ R(γ̇(t), v)γ̇(t) (2.4)

When M = R
n, we have R ≡ 0. More generally, R is of the form

R = R∗ =
(

0 0
0 D

)
,

and the trace of R(t) gives the Ricci curvature in the direction γ̇(t):

trR(t) = Ricγ(t)

(
γ̇(t), γ̇(t)

)
.

For example, D = In−1 and trR = n− 1 in the case of the sphere M = Sn.

Let us come back to our optimal transport map Ft(x) = expx(t∇θ(x)).
As before, it is possible to compute in some weak sense the differential of
Ft:

d(Ft)x0 := Y (t)(H(t) + tHessx0 θ)

where the matrices Y (t) and H(t) are defined, when F (x0) /∈ cut(x0) (and
therefore Ft(x0) /∈ cut(x0)), by

Y (t) := d[expx0
]t∇θ(x0) and H(t) = [Hessx d2

Ft(x0)
/2]x=x0 .

It is easy to see that A(t) := d(Ft)x defines a matrix of Jacobi fields along the
geodesic t −→ Ft(x) with the properties A(0) = I and A′(t) = Hessx θ. One
can prove that the image of u0(x) dx under the map Ft defines a probability
measure which has a density. If we denote by ut this density, then we have
again, u0(x) dx-almost everywhere,

u0(x) = ut(Ft(x)) det d(Ft)x. (2.5)
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One can also check that for every Borel set K ⊂ M ,
∫

Fs(K)

us =
∫

K

u0.

We can now summarize all these properties in the following proposition. In
fact, for the proof of Theorem 1.4, we shall not need any other property of
the optimal map F besides those stated below: the reader can as well take
this as a “definition” of the map F . . . .

Proposition 2.1 ([14]). — Let u0 and u1 be two compactly supported
probability densities on the manifold M and let F (x) := expx(∇θ(x)) be
the optimal map pushing u0(x)dvol(x) forward to u1(y)dvol(y). Let us fix
s ∈ [0, 1] and set Ft(x) := expx(t∇θ(x)) for every t ∈ (0, 1). Then there
exists a σ-compact set K ⊂ M and a probability density us such that∫

Ft(K)

ut dvol = 1 for t ∈ {0, s, 1},

and F (x) /∈ cut(x) and Hessx θ exist for every x ∈ K.

Furthermore, if we introduce, for a fixed x ∈ K, the minimal geodesic
γx(t) := Ft(x), (joining x = γ(0) to F (x) = γ(1)) we have

u0(x) = ut(γx(t)) detAx(t) > 0 for t ∈ {0, s, 1}, (2.6)

where t −→ Ax(t) is the unique matrix of Jacobi fields along the geodesic
γx verifying Ax(0) = I and A′

x(0) = Hessx θ.

The need to specify s ∈ [0, 1] in the previous Proposition is technical,
not essential. We were not able to ensure the existence of a common K
suitable for all t ∈ [0, 1]. Of course, one can find a set of full µ-measure K
suitable for any countable family of t’s.

3. Proof of Theorem 1.4

It is clear from the preceding discussion that for geometrical applications
of optimal transportation, it is essential to understand the behavior of the
determinant of an invertible (detAx(t) > 0) matrix of Jacobi fields. We
emphasize the next Lemma which is a well known comparison result in
Riemannian geometry (see e.g. Chavel[12]). A (standard) proof is included
for completeness.

Lemma 3.1. — Let γ : [0, 1] −→ M be a geodesic and t −→ A(t) an
invertible matrix of Jacobi fields along γ such that A(0) = I and A′(0) is
symmetric. If ϕ(t) := − log detA(t) and r(t) = Ricγ(t)

(
γ̇(t), γ̇(t)

)
, then for

each t ∈ [0, 1],

ϕ′′(t) − 1
n
ϕ′(t)2 − r(t) � 0.
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Proof. — Once the problem is expressed by using a moving frame along
γ, it becomes rather elementary linear algebra. Recall that r(t) is exactly
the trace of R(t) the matrix of the operator defined in (2.4). By definition
of Jacobi fields (2.3), we have, for every t ∈ [0, 1],

A′′(t) + R(t)A(t) = 0.

Besides the symmetry of R(t) and the invertibility of A(t), we shall use that
A(0) = I and that A′(0) is symmetric. Introduce B(t) := A′(t)A(t)−1. We
have ϕ′(t) = − trB and ϕ′′(t) = − trB′. The important point is to check
that B is symmetric. Note that

B∗ −B = A∗−1(A′∗A−A∗A′)A−1.

The term A′∗A − A∗A′ is constant since, using R = R∗, we see that its
derivative vanishes. Using that A′∗A − A∗A′ is 0 at t = 0 and therefore at
every t, we conclude that B = B∗. Since A′A−1 + A(A−1)′ = 0, we find
B′ = A′′A−1 −B2 = −R−B2 and so, after taking traces,

ϕ′′ = − trB′ = tr(B2) + trR.

To conclude, use Hölder’s inequality tr(B2) = tr(BB∗) � 1
n (trB)2. Since

trB = −ϕ′, we indeed find that ϕ′′ � 1
nϕ′2 + trR. �

We can now prove the weighted version of the Riemannian inequality,
Theorem 1.4. Let f, g, h be as in the Theorem. Without loss of general-
ity we can assume that these functions are compactly supported and that∫

M
f dµ =

∫
M

g dµ = 1. Our goal is to prove that
∫

M
h dµ � 1.

The idea of the proof is to introduce the optimal map F (x) = expx(∇θ(x))
pushing f dµ forward to g dµ and to compute the integral

∫
h(z) dµ(z)

using the change of variables z = Fs(x) := expx(s∇θ(x)). Then, the re-
lation between the three functions f, g, h and the properties of ϕ(t) :=
− log det d(Ft)x combine nicely to give the result. However, the lack of reg-
ularity of F prevents us from doing this directly. As a substitute we will use
Proposition 2.1 and the density us of Fs#(f dµ) which satisfies the “change
of variable” formula (2.6). We will then prove that h e−V � us which implies∫

M
h dµ � 1. Although we will no longer speak of optimal transport or of

changing variables, for intuition it is important to bear in mind where the
following computations came from.

For u0(x) := f(x)e−V (x) and u1(y) := g(y)e−V (y), let us and K be as in
the Proposition 2.1. Using the notation of that proposition, we see that it
is enough to prove for every x ∈ K that

h(γx(s))e−V (γx(s)) � us(γx(s)). (3.1)
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Indeed, since
∫
{γx(s) ; x∈K}

us(z) dz = 1, the previous inequality will give∫
h dµ � 1.

Fix x ∈ K and denote by γ := γx : [0, 1] −→ M the geodesic joining
γ(0) = x to γ(1) = F (x). Let A(t) := Ax(t) be the invertible matrix of
Jacobi fields given by Proposition 2.1. The geodesic γ has constant speed
equal to

d := d(γ(0), γ(1)) = |γ̇(t)| ∀t ∈ [0, 1].

If we set ϕ(t) := − log detA(t) for every t ∈ [0, 1], we have in particular:

f(γ(0)) e−V (γ(0)) = g(γ(1)) e−V (γ(1))−ϕ(1)

and
f(γ(0)) e−V (γ(0)) = us(γ(s)) e−ϕ(s).

We have, using the assumption (1.13) of Theorem 1.4 with x = γ(0) and
y = γ(1), and the previous equations:

h(γ(s))e−V (γ(s))

us(γ(s))
� f1−s(γ(0)) gs(γ(1)) e−V (γ(s))−λ s(1−s) d2/2

us(γ(s))
= exp

{
(1 − s)V (γ(0)) + sV (γ(1)) − V (γ(s)) + sϕ(1) − ϕ(s)

−λ s(1 − s) d2/2
}
.

Thus, in order to get (3.1), it is enough to prove that

(1−s)V (γ(0))+sV (γ(1))−V (γ(s)) + sϕ(1)−ϕ(s) � λ s(1−s) d2/2. (3.2)

Noticing that ϕ(0) = 0, we see that (3.2) is equivalent to

(1 − s)α(0) + sα(1) − α(s) � λ s(1 − s) d2/2. (3.3)

where,
α(t) := V (γ(t)) + ϕ(t) , ∀t ∈ [0, 1].

We note that, for every t ∈ [0, 1], we have, using Lemma 3.1 and the as-
sumption (1.12)

α′′(t) = Hessγ(t) V (γ̇(t), γ̇(t)) + ϕ′′(t)

� Hessγ(t) V (γ̇(t), γ̇(t)) +
1
n
ϕ′(t)2 + Ricγ(t)(γ̇(t), γ̇(t))

�
(
Hessγ(t) V + Ricγ(t)

)
(γ̇(t), γ̇(t))

� λ |γ̇(t)|2

Thus we have α′′ � λ d2 on [0, 1]. In view of (1.5), we get (3.3) and there-
fore (3.1). This ends the proof of Theorem 1.4. �
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4. On logarithmic Sobolev and transport inequalities

For background and applications of logarithmic Sobolev inequalities we
refer to the excellent surveys and book by Ledoux [21, 22, 23].

Given a probability measure µ on M , the entropy w.r.t. µ of a nonneg-
ative function f : M −→ R+ is defined by

Entµ(f) :=
∫

M

f log f dµ−
(∫

M

f dµ

)
log

∫
M

f dµ

=
∫

M

f log f dµ if
∫

M

f dµ = 1. (4.1)

The logarithmic Sobolev inequality we want to reproduce was proved by
Bakry and Emery using semigroup tools.

Theorem 4.1 (Bakry and Emery [3]). — Let µ be a probability mea-
sure on M of the form dµ = e−V dvol, where V and the Ricci curvature
verify Hessx V + Ricx � λ Id for all x ∈ M and some positive λ > 0. Then
for every smooth function f : M → R+ we have:

Entµ(f) � 1
2λ

∫
M

|∇f |2
f

dµ.

Following the argument of Bobkov and Ledoux [6] inspired by [27], it
is possible to derive by elementary but clever computations the previous
inequality from Theorem 1.4. It is however instructive to give a direct proof
using mass transport. A source of inspiration for us was the work of Otto and
Villani [35] (after Otto’s pioneering work [34]) on the relation between op-
timal transportation and log-Sobolev inequalities. In their paper, Otto and
Villani gave a formal proof of Theorem 4.1 using optimal transport. How-
ever the arguments of their paper are quite different from those displayed
in the present paper since they rely on the displacement interpolation and
more precisely on the coupled Hamilton-Jacobi / transport system satisfied
by the interpolated densities. The technicalities involved in this approach
prevented them from giving a rigorous proof in the Riemannian case. We
would like on the contrary to give a simple and direct proof along the lines
of [13] and using the same techniques as above. In fact, as in [13], we will
prove the following result from which log-Sobolev and transport inequalities
can be recovered. As explained in the section to follow, (4.2) can be viewed
as what Villani [43] has called the above-tangent formulation of displacement
convexity for the entropy.
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Theorem 4.2. — Let µ be a probability measure on M of the form dµ =
e−V dvol where V and the Ricci curvature verify Hessx V + Ricx � λ Id
for all x ∈ M and some λ ∈ R. Let f and g be two smooth compactly

supported nonnegative functions such that
∫

M

f dµ =
∫

M

g dµ = 1 and let

F (x) := expx(∇θ(x)) be the optimal map pushing f dµ forward to g dµ.
Then one has

Entµ(g) − Entµ(f) �
∫

∇f · ∇θ dµ +
λ

2

∫
|∇θ|2f dµ. (4.2)

Let us explain how the logarithmic Sobolev inequality of Theorem 4.1
follows from Theorem 4.2. Without loss of generality we can assume that
f is compactly supported and that

∫
f dµ = 1. We now apply Theorem 4.2

with an arbitrary g. We use a2/2 + b2/2 � −ab in (4.2) in order to get

Entµ(g) − Entµ(f) � − 1
2λ

∫
M

|∇f |2
f

dµ.

Letting g −→ 1 (or equivalently, taking the infimum over all g’s) we find
the desired inequality

1
2λ

∫
M

|∇f |2
f

dµ � Entµ(f).

Proof of Theorem 4.2. — We will use the result and the notation of
Proposition 2.1 relating the probability densities u0(x) := f(x)e−V (x) and
u1(y) := g(y)e−V (y) with the optimal map F (x) = expx(∇θ(x)) pushing
forward u0(x) dx to u1(y) dy. By definition of the image measure we have

Entµ(g) − Entµ(f) =
∫

(log g ◦ F − log f) f dµ.

We fix x ∈ K, γ = γx and A = Ax as in Proposition 2.1 (we shall not
use the information about s ∈ [0, 1]). We have, using F (x) = γ(1) and
f(x)e−V (x) = g(γ(1))e−V (γ(1)) detA(1),

(log g ◦ F − log f) (x) = log g(γ(1)) − log f(γ(0))
= V (γ(1)) − V (γ(0)) − log

(
detA(1)

)
= α(1) − α(0)

where α(t) := V (γ(t)) − log detA(t) for every t ∈ [0, 1]. Setting ϕ(t) =
− log detA(t) and combining (as in the proof of Theorem 1.4) Lemma 3.1
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with the assumption on the curvature, we see that

α′′(t) = Hessγ(t) V (γ̇(t), γ̇(t)) + ϕ′′(t)

� Hessγ(t) V (γ̇(t), γ̇(t)) +
1
n
ϕ′(t)2 + Ricγ(t)(γ̇(t), γ̇(t))

�
(
Hessγ(t) V + Ricγ(t)

)
(γ̇(t), γ̇(t))

� λ |γ̇(t)|2

= λ d2(x, F (x)).

Using (1.5), this implies that α(1)−α(0) � α′(0)+λd2(x, F (x))/2. Back to
the original notations and remembering that γ(t) = Ft(x) := expx(t∇θ(x))
we have

(log g ◦ F − log f) (x) � ∇V (x) · ∇θ − ∆θ + λ|∇θ(x)|2/2. (4.3)

Here we used that the derivative of the determinant at the identity is the
trace in order to write ϕ′(0) = −∆θ. Because Hess θ was defined in a weak
form, the function ∆θ is only the absolutely continuous part of the distri-
butional Laplacian. But since θ is locally semi-convex, it is easy to see that
one has ∆θ � ∆D′θ in the sense of distributions, where ∆D′θ is the distri-
butional Laplacian. Thus we can integrate by parts, using that θ is locally
Lipschitz and the definition of ∆D′ to get∫

M

(∇V (x) · ∇θ − ∆θ) f(x) e−V (x) dx �
∫

M

∇f · ∇θ e−V .

Integration of (4.3) with respect to f dµ therefore gives∫
M

(log g ◦ F − log f) f dµ �
∫

M

∇f · ∇θ dµ +
λ

2

∫
M

|∇θ|2 f dµ. �

Let us also comment here and in the next section on transport in-
equalities. As was already mentioned (but not explicitly used), the map
F (x) := expx(∇θ(x)) exhibited by McCann [32] is optimal in some sense.
Let Pac(M) be the space of probability densities, compactly supported for
convenience:

Pac(M) :=
{
u ∈ L1(M) ; u � 0 compactly supported with

∫
M

u = 1
}

.

(4.4)
We shall identify without further comment a density u ∈ Pac(M) and the
probability measure u with that density. One can define on Pac(M) the so-
called Wasserstein distance d2(u0, u1) between two elements of Pac(M) as
follows:

d2
2(u0, u1) := inf

π∈Γ(u0,u1)

∫
M×M

d2(x, y) dπ(x, y) . (4.5)
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Here the unsubscripted d(x, y) denotes the Riemannian geodesic distance,
while Γ(u0, u1) denotes the set of Borel probability measures on M×M with
marginals u0 and u1, respectively. In particular, if a Borel map G : M −→ M
pushes u0 forward to u1, we see by taking π := (I ×G)(u0) that

d2
2(u0, u1) �

∫
M

d2(x,G(x))u0(x) dx.

The map F (x) = expx(∇θ(x)) given in [32] with a d2/2-concave −θ is
precisely characterized among all Borel maps pushing u0 forward to u1 by
the property that

d2
2(u0, u1) =

∫
M

d2(x, F (x))u0(x) dx =
∫

M

|∇θ|2 u0. (4.6)

Now, let us fix as before a reference measure µ of the form dµ = e−V dvol.
For simplicity we will assume that µ is compactly supported, meaning V =
+∞ a.e. outside a compact set. Let g � 0 be such that

∫
M

g dµ = 1 (in other
words, g e−V ∈ Pac(M)). We apply Theorem 4.2 with f ≡ 1. Then (4.2)
becomes

Entµ(g) � λ

2

∫
|∇θ|2 dµ,

where F (x) = expx(∇θ(x)) pushes µ forward to g dµ. Thus we have proved
the following result.

Theorem 4.3 (Riemannian transportation inequality). — Let µ
be a (compactly supported) probability measure on M of the form dµ =
e−V dvol where V and the Ricci curvature verify Hessx V + Ricx � λ Id for

all x ∈ M and some positive λ > 0. Then, for every g � 0 with
∫

M

g dµ = 1

one has:
d2
2(g dµ, µ) � 2

λ
Entµ(g).

This result easily extends to non-compactly supported probabilities µ. This
kind of inequality is called a transportation inequality. We refer to [22, 23]
for background and references. We mention however that Bobkov, Gentil
and Ledoux [7] showed that there exist many connections between trans-
portation inequalities, Prékopa-Leindler inequalities and hypercontractivity
of Hamilton-Jacobi equations. Also, it is easy to deduce Otto and Villani’s
“HWI”-type inequalities [35] from Theorem 4.2 as in [13].

Finally, we would like to comment on the sharpness of the results. In gen-
eral, the result of Theorem 4.1 is optimal (think of the Gaussian measure

– 629 –



Dario Cordero -Erausquin, Robert J. McCann, Michael Schmuckenschläger

on R
n). However, when one works on a compact n-dimensional manifold

with µ := σ = 1/vol(M), the (normalized) uniform Riemannian probability
measure on M (which means that V is constant), the result can be signifi-
cantly improved (see [3, 21]). Indeed, if Ricx � λ Id for all x ∈ M and some
λ > 0, then for every smooth f : M −→ R+ one has

Entσ(f) � n− 1
2nλ

∫
M

|∇f |2
f

dσ.

On the sphere Sn of constant Ricci curvature equal to (n−1)I, the inequality
takes the form

Entσ(f) � 1
2n

∫
Sn

|∇f |2
f

dσ.

This is a sharp inequality since after a Taylor expansion around the constant
function, we recover that the spherical Laplacian has a spectral gap of size n.
A direct application of Theorem 4.1 would instead give gap n−1. We do not
presently see how to reach such sharp constants using a mass transportation
approach. Perhaps a more clever variant or application of Lemma 3.1 is
needed.

5. The displacement convexity point of view

This section illuminates some of the connections between the inequalities
we have discussed and the notion of displacement convexity [31]. For some
recent developments concerning displacement convexity, see [11] and the
references there.

The space Pac(M) of compactly supported probability measures on M
forms a metric space when endowed with the Wasserstein distance (4.5) of
the preceding section. Moreover, to each pair of measures u0, u1 ∈ Pac(M)
corresponds a unique path s ∈ [0, 1] −→ us ∈ Pac(M) which interpolates
between them and forms a geodesic in the sense that

d2(u0, us)=sd2(u0, u1) and d2(us, u1)=(1−s)d2(u0, u1) when s ∈ [0, 1].
(5.1)

In fact, us = Fs(u0) is nothing but the image measure of u0 under the
map Fs of Proposition 2.1 [14]. Thus the path is constructed by gradually
displacing the mass of u0 at x along the geodesic on M which leads to F (x),
where it eventually forms u1 = F (u0). The metric space Pac(M) forms a
length space, and the path us is called either the Wasserstein geodesic or
displacement interpolation between u0 and u1.

A functional E : Pac(M) −→ R∪{+∞} is said to be displacement convex
if E(us) is a convex function of s ∈ [0, 1] along each Wasserstein geodesic; in
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other words, if (5.1) implies E(us) � (1− s)E(u0)+ sE(u1). The functional
E(u) is said to be displacement semiconvex with constant λ ∈ R if for every
u0, u1 and s ∈ [0, 1], (5.1) implies

(1 − s)E(u0) + sE(u1) − E(us) � λ s(1 − s)d2
2(u0, u1)/2, (5.2)

or equivalently, if d2E(us)/ds2 � λd2
2(u0, u1) in the distributional sense.

Note that with this terminology, displacement semiconvexity implies dis-
placement convexity when λ � 0; moreover, this convexity is uniform when
λ > 0.

We now rigorously prove the displacement semiconvexity of the Boltz-
mann type entropy in a Riemannian setting — another result derived for-
mally by Otto and Villani [35]. The case V = 0 has been treated by Sturm
and von Renesse [41] also, exploiting [14]. We recently learned that the next
result was independently proved by Sturm [40] and by Lott and Villani [25]
along their investigation of curvature in abstract length spaces. Interestingly
enough, they also proved a converse statement, namely that a lower bound
on the displacement convexity constant of the entropy in turn gives a lower
bound for the curvature tensor.

Theorem 5.1 (Entropy is displacement semiconvex in a
Riemannian setting) . — Assume there exists λ ∈ R such that V : M −→
R satisfies Hessx V + Ricx � λI for all x ∈ M . Then the functional E(u)
defined on Pac(M) by (1.15) is displacement semiconvex with constant λ.

Proof. — The proof is similar to that of Theorem 4.2. Fix u0, u1 ∈
Pac(M) and s ∈ [0, 1]. Let F (x) = expx(∇θ(x)) be the optimal map pushing
u0 forward to u1 and set Fs(x) := expx(s∇θ(x)). We will use the notation
and results of Proposition 2.1. We have, using the definition of the image
measure and taking the log of the equations u0(x) = ut(Ft(x)) detAx(t) for
t ∈ {0, s, 1},

(1 − s)E(u0) + sE(u1) − E(us)

=
∫

M

[
(1 − s) log u0(x) + s log u1(F (x)) − log us(Fs(x))

+ (1 − s)V (x) + sV (F (x)) − V (Fs(x))
]
u0(x) dx

=
∫

K

[
(1 − s)αx(0) + sαx(1) − αx(s)

]
u0(x) dx

where αx(t) := − log det(Ax(t)) + V (γx(t)) for x ∈ K and t ∈ [0, 1]. As in
the previous proofs, we can use Lemma 3.1 to see that α′′

x � λd2(x, F (x))
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on [0, 1]. Indeed, for a fixed x ∈ K, we have, suppressing the dependence on
x and setting ϕ(t) := − log detA(t),

α′′(t) = Hessγ(t) V (γ̇(t), γ̇(t)) + ϕ′′(t)

� Hessγ(t) V (γ̇(t), γ̇(t)) +
1
n
ϕ′(t)2 + Ricγ(t)(γ̇(t), γ̇(t))

�
(
Hessγ(t) V + Ricγ(t)

)
(γ̇(t), γ̇(t))

� λ |γ̇(t)|2

= λ d2(x, F (x)).

This gives, by integral Taylor expansion,

(1 − s)αx(0) + sαx(1) − αx(s) � λ s(1 − s) d2(x, F (x))/2.

Integrating this inequality with respect to u0 on K gives the desired result
(5.2). �

To elucidate the connection of displacement semiconvexity with loga-
rithmic Sobolev and transportation inequalities, let us rewrite the absolute
entropy (1.15) in the form

E(u) =
∫

M

u[log u− logµ] dx

=
∫

M

u

µ

[
log

u

µ

]
µ(x) dx

where µ := e−V (x). If µ is a probability measure, then E(u) = Entµ(f) is
nothing but the relative entropy (4.1), with f = u/µ the Radon-Nikodym
derivative of u with respect to the reference measure µ. If µ is not a probabil-
ity measure but has finite total mass, it can always be normalized by adding
a constant to V (x) without affecting the displacement (semi-)convexity of
E(u).

By Taylor’s theorem, any semiconvex function h : R −→ R with constant
λ ∈ R satisfies for all t ∈ R

h(t1) � h(t0) + h′(t0)(t1 − t0) + λ(t1 − t0)2/2.

The second order correction bounds how low h(t1) can be relative to the
tangent estimate of h(t) from t0. The same inequality extends to semicon-
vex functions which are not C2-smooth by an approximation argument,
with h′(t0) intrepreted as a directional derivative from the left or the right.
Applied to the semiconvex function s �→ E(us) of Theorem 5.1, this yields

E(u1) � E(u0) +
dE(us)

ds

∣∣∣∣
s=0+

+ λd2
2(u0, u1)/2
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for every Wasserstein geodesic {us}s∈[0,1] in Pac(M). Since the endpoints
of fs = us/µ can be arbitrary probability densities, the identities E(us) =
Entµ(fs) and (4.6) yield

Entµ(f1) − Entµ(f0) � dEntµ(fs)
ds

∣∣∣∣
s=0+

+
λ

2

∫
M

|∇θ|2f0dµ.

The form of this inequality already suggests the fundamental result (4.2)
of [13] and the preceding section. To complete the identification, it remains
only to find the directional derivative of E(us), or at least show

dE(us)
ds

∣∣∣∣
s=0+

�
∫

∇f0 · ∇θ dµ. (5.3)

This can be accomplished using the transport equation

∂us

∂s

∣∣∣∣
s=0

+ ∇ · [u0∇θ] = 0 (5.4)

which arises as the linearization of (2.5), and is satisfied distributionally.
Indeed,

dE(us)
ds

∣∣∣∣
s=0+

=
∫

∂us

∂s

∣∣∣∣
s=0+

δE

δu

=
∫

u0∇θ · ∇(log u0 + V + 1)

=
∫

f0µ∇θ · ∇(log(f0µ) − logµ)

=
∫

µ∇θ · ∇f0

formally. However, a rigorous justification of these identities to obtain (5.3)
requires appropriate hypotheses and care [34, 2, 11].
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Prékopa–Leindler type inequalities

[21] M. Ledoux. — The geometry of Markov diffusion generators, Ann. Fac. Sci.
Toulouse Math. (6) 9, no. 2, p. 305–366 (2000).

[22] M. Ledoux. — Measure concentration, transportation cost, and functional in-
equalities, Summer School on Singular Phenomena and Scaling in Mathematical
Models, Bonn, 10-13 June 2003 (http://www.lsp.ups-tlse.fr/Ledoux).

[23] M. Ledoux. — The concentration of measure phenomenon, American Mathemat-
ical Society, Providence, RI, 2001.

[24] L. Leindler. — On a certain converse of Hölder’s inequality, Acta Sci. Math. 33,
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