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Asymptotics for Bergman-Hodge kernels for high
powers of complex line bundles(∗)

Robert Berman (1), Johannes Sjöstrand (2)

ABSTRACT. — In this paper we obtain the full asymptotic expansion of
the Bergman-Hodge kernel associated to a high power of a holomorphic
line bundle with non-degenerate curvature. We also explore some relations
with asymptotic holomorphic sections on symplectic manifolds.

RÉSUMÉ. — Dans ce travail nous obtenons un développement asympto-
tique complet du noyau de Bergman-Hodge d’une puissance élevée d’un
fibré en droites holomorphe à courbure non-dégénerée. Nous explorons
aussi quelques relations avec des sections asymptotiquement holomorphes
sur une variété symplectique.
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1. Introduction

Let L be a Hermitian holomorphic line bundle over a compact complex
Hermitian manifoldX. Denote by Θ the curvature two-form of the canonical
connection ∇ on L. By the Hodge theorem, the Dolbeault cohomology group
H0,q(X,L) is isomorphic to the space H0,q(X,L) of harmonic (0, q)−forms
with values in L, i.e the null space of the Hodge Laplacian ∆q. Denote
by Πq the corresponding Hodge projection, i.e. the orthogonal projection
from L2(X,L) onto H0,q(X,L). We will assume that Θ is non-degenerate
of constant signature (n−, n+), i.e. the number of negative eigenvalues of Θ
is n− (the index of Θ). Then it is well-known, by the theorems of Kodaira
and Hörmander, that H0,q(X,Lk) is trivial when q �= n−, for a sufficiently
high tensor power Lk. (See also [18].) We will study the asymptotics with
respect to k of the corresponding Hodge projections Πq,k in the non-trivial
case when q = n−. The case when n− = 0, i.e. when L is a positive line
bundle and Πq,k is the Bergman projection on the space of holomorphic
sections with values in Lk, has been studied extensively before (compare
the historical remarks below).

Let π1 and π2 be the projections on the first and the second factor of
X ×X. Denote by Kk the Schwartz kernel of Πq,k (the subscripts k will be
omitted in the sequel) with respect to the volume form ωn on X induced
by the Hermitian metric on X, so that K is a section of L(π∗2(Λ0,q(T ∗X)⊗
Lk), π∗1(Λ0,q(T ∗X)⊗ Lk)).

Let t, s be local unitary sections of L over X̃, Ỹ respectively, where
X̃, Ỹ ⊆ X. Then on X̃ × Ỹ we can write

K(x, y) = Kt,s(x, y;
1
k

)t(x)ks(y)∗k,

where Kt,s is a local section of L(π∗2(Λ0,q(T ∗X)), π∗1(Λ0,q(T ∗X))) so that
for x ∈ X̃, u ∈ C∞

0 (Ỹ ; Λ0,q(T ∗X ⊗ Lk)),

u(x) = t(x)k
∫
X

Kt,s(x, y;
1
k

)
〈
u(y), s(y)∗k

〉
ωn(dy),

We say that a kernel

R(x, y) = Rt,s(x, y;
1
k

)t(x)ks(y)∗k,

is negligible if

∂αx ∂
β
yRt,s(x, y;

1
k

) = Oα,β,N (k−N ),
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locally uniformly on every compact set in X̃ × Ỹ , for all multiindices α, β
and all N in N. Notice that this statement does not depend on the choice
of t, s and on the local coordinates x, y.

Our main result tells us that K is negligible near every point (x0, y0)
with x0 �= y0 and that for (x, y) near a diagonal point (x0, x0)

Kt,s(x, y) = b(x, y;
1
k

)ekψ(x,y) +Rt,s(x, y), Rt,s negligible, (1.1)

where ψ is smooth function with ψ(x, x) = 0, Reψ(x, y) � − |x− y|2 and

b(x, y;
1
k

) ∼ kn(b0(x, y) + b1(x, y)
1
k

+ ...)

in C∞(neigh(x0, x0);L(π∗2(Λ0,q(T ∗X)), π∗1(Λ0,q(T ∗X))). Moreover, let C̃ be
the graph of 1

i dψ in T ∗X̃×T ∗X̃ over the diagonal. Then C̃ locally represents
the graph of the canonical connection ∇ of L⊗L∗ over the diagonal inX×X
and the semiclassical wave front of K. See Theorem 5.1 and the preceding
explanations in Section 5 for a more precise local statement.

We will also explore some relations to the work [44] of B.Shiffman and
S.Zelditch, where so called asymptotic holomorphic sections on symplectic
manifolds are studied.

1.1. Overview

After locally fixing a unitary frame for L, we identify the Hodge Lapla-
cian ∆q acting on (0, q)−forms with values in Lk, with a local semiclassical
differential operator (setting h = 1/k). Since the curvature form of L is
assumed to be non-degenerate the characteristic variety Σ of ∆q is sym-
plectic. Modifying the approach in [40] we then construct associated local
asymptotic heat kernels in Section 3 and investigate the limit when the time
variable tends to infinity. In Section 4 it is shown that the limit operator is
an asymptotic local projection operator. The complex canonical relation of
the local projection operators is expressed in terms of the stable outgoing
and incoming manifolds associated to Σ in Section 3. Assuming, in Section
5, that the number of negative eigenvalues of the curvature of L is equal to
q everywhere on X we get a complete asymptotic expansion of the global
projection operator Πq. In Section 6 we investigate some relations to [44],
where so called asymptotic holomorphic sections on symplectic manifolds
are studied. We introduce a certain almost complex structure, closely re-
lated to the stable manifolds introduced in Section 3, making the curvature
form of L positive. It is shown that for k sufficiently large the dimension of
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the null space of ∆q coincides with the dimension of the corresponding space
of asymptotically holomorphic sections (after a suitable twisting of L). In
Section 7 the interplay between different complex structures is illustrated
by homogeneous line bundles over flag manifolds.

1.2. Historical remarks

Most of the earlier results concern the positively curved case n− = 0.
G. Tian [49], followed by W. Ruan [43] and Z. Lu [32], computed increas-
ingly many terms of the asymptotic expansion on the diagonal, using Tian’s
method of peak solutions. T. Bouche [11] also got the leading term using
heat kernels.

S. Zelditch [51], D. Catlin [14] established the complete asymptotic ex-
pansion at x = y by using a result of L. Boutet de Monvel, J. Sjöstrand [13]
for the asymptotics of the Szegö kernel on a strictly pseudoconvex bound-
ary (after the pioneering work of C. Fefferman [21]), here on the bound-
ary of the unit disc bundle, and a reduction idea of L. Boutet de Monvel,
V. Guillemin [13]. Scaling asymptotics away from the diagonal (roughly with
a second order polynomial instead of ψ in (1.1) and corresponding more gen-
eral amplitudes) was obtained by P. Bleher, B. Shiffman, S. Zelditch [6] and
the asymptotics as in (1.1) by L. Charles [15], using again the reduction
method. In the recent work [4] B. Berndtsson and the authors have worked
out a short and direct proof for the asymptotics as in (1.1).

In more general situations, asymptotic expansions on the diagonal and
in the scaling sense away from the diagonal were obtained by B. Shiffman,
S. Zelditch [44] and X. Dai, K. Liu, X. Ma [17]. See also the works by X. Ma
and G. Marinescu [34] for related spectral results and [35] for asymptotics
on the diagonal.

Without a positive curvature assumption there have been fewer results.
J.M. Bismut [5] used the heat kernel method in his approach to Demailly’s
holomorphic Morse inequalities. Using local holomorphic Morse inequalities
[2], the leading asympotics of the Hodge projections were obtained by the
first author in [3] without assuming that the curvature is non-degenerate.
X. Ma has pointed out to us that the method and results of [17] can be
extended to the case of non-positive holomorphic line bundles by using a
spectral gap estimate from [34] and this was recently carried out in the
preprint [36]. The result of Theorem 5.1 was announced in [47].

In this quick review, we omitted results away from the diagonal, since
our work only concerns the asymptotics modulo O(k−∞).
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1.3. Why the heat kernel method?

Originally we thought about a direct semiclassical adaptation of the
methods in [13] and both L. Boutet de Monvel and more recently the referee
have suggested such an approach to us. For a long time our attempts in that
direction were stalled by some algebraic problems in the case n− > 0, and
only recently (after finishing the present paper) did we get an idea about
how to circumvent the algebraic difficulty.

We believe however that the heat kernel method has its own interest and
is not really longer than the adaptation of [13]. Undoubtedly it can also be
used to obtain the complete asymptotics of the inverse of ∆q when q �= n−
and the partial inverse on the orthogonal of the kernel when q = n−.

Acknowledgements. — The first author has been partially supported by a
Marie Curie grant. The second author has benefitted from the hospitality of
Chalmers and Gothenburg University in 2000–02. We express our gratitude
to Bo Berndtsson for many stimulating discussions and for continued inter-
est in this work. We have also benefitted from discussions with L. Boutet
de Monvel L. Charles, X. Ma, H. Seppänen and G. Zhang, as well as with
M. Shubin who suggested a similar problem to one of us in 1994. Finally,
we thank the referee for several interesting remarks.

2. Holomorphic line bundles and the ∂-complex, a review

Let L be a Hermitian holomorphic line bundle over X. Later, we shall
use a local holomorphic non-vanishing section s. We write the point-wise
norm of s as

|s|2 = |s|2h1
=: e−2φ.

The curvature form of L can be identified with the Levi form ∂∂φ.

Add a Hermitian metric on T 1,0X:

H(ν, µ) =
∑

Hj,kνkµj , if ν =
∑

νj
∂

∂zj
, µ =

∑
µj

∂

∂zj
. (2.1)

We have a natural duality between T ∗
1,0X and T 1,0X, satisfying

〈dzj ,
∂

∂zk
〉 = δj,k,
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so if ω =
∑
ωkdzk, then 〈ω, ν〉 =

∑
ωjνj . For each x ∈ X, we can choose

z1, ..., zn centered at x so that

Hj,k(x) = δj,k; Hx(
∂

∂zj
,
∂

∂zk
) = δj,k.

The metric H also determines a metric on Λ0,q(T ∗X) such that in the
special coordinates above, we have that

dzj1 ∧ ... ∧ dzjq
, 1 � j1 < j2 < ... < jq � n,

is an orthonormal basis of Λ0,qT ∗
xX. Then we have a natural metric also on

L⊗ Λ0,qT ∗X.

Let us also fix some smooth positive integration density m(dz) on X.
(For instance, we can takem(dz) = ωn(dz); the induced volume form.) Then
we get a natural scalar product on

E0,q(L) = C∞(X;L⊗ Λ0,qT ∗X),

so if
∂ : ..→ E0,q(L) → E0,q+1(L) → ..

is the ∂ complex, then

∂
∗

: ..← E0,q(L) ← E0,q+1(L) ← ...

is also a well-defined complex.

If ω is a 0,1-form, let ω� : Λ0,q+1T ∗
xX → Λ0,qT ∗

xX be the adjoint of
left exterior multiplication ω∧ : Λ0,qT ∗

xX → Λ0,q+1T ∗
xX. Here we use the

Hermitian inner product H∗ on Λ0,qT ∗
xX that is naturally obtained from

H. Without that inner product, we can still define ν� : Λ0,q+1T ∗
xX →

Λ0,qT ∗
xX, when ν =

∑
νj

∂
∂zj

is a vector field of type 0,1, as the transpose
of ν∧ : Λ0,qTxX → Λ0,q+1TxX. We have the standard identity,

ω∧ν� + ν�ω∧ = 〈ω, ν〉id.

In the present case we have the analogous identity,

ω∧
1 ω

�
2 + ω�

2ω
∧
1 = H∗(ω1, ω2)id, (2.2)

when ω1, ω2 are (0,1)-forms. Notice also that ω�
2 depends anti-linearly on

ω2.
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Let e1(z), ..., en(z) be an orthonormal frame for Λ0,1T ∗X. Let
Z1(z), ..., Zn(z) be the dual basis of Λ0,1TX, so that on scalar functions,

∂ =
n∑
1

ej(z)∧ ⊗ Zj(z,
∂

∂z
).

If f(z)ej1 ∧ ... ∧ ejq
is a typical term in a general (0, q)-form, we get

∂(f(z)ej1 ∧ ... ∧ ejq
)

=
n∑
j=1

Zj(f)e∧j ej1 ∧ ... ∧ ejq +
q∑

k=1

(−1)k−1f(z)ej1 ∧ .. ∧ (∂ejk
) ∧ .. ∧ ejq

= (
n∑
j=1

Zj(f)e∧j )ej1 ∧ ... ∧ ejk
+ (

n∑
j=1

(∂ej)∧e
�
j)(f(z)ej1 ∧ ... ∧ ejq

).

So for the given orthonormal frame we have the identification

∂ ≡
n∑
j=1

(e∧j ⊗ Zj + (∂ej)∧e
�
j) (2.3)

and correspondingly

∂
∗ ≡

n∑
j=1

(e�j ⊗ Z∗
j + e∧j (∂ej)�),

where Z∗
j is the formal complex adjoint of Zj in L2(m).

If s is a trivializing local holomorphic section of L, then sk is a trivializing
local section of Lk, and the corresponding metric hk on Lk satisfies

|sk|2hk
= |s|2kh1

= e−2kφ(z).

Hence if

ω̃ = skω ∈ E0,q(X;Lk),
w̃ = skw ∈ E0,q+1(X;Lk),

we get for ∂, ∂
∗
, acting on (0, q)-forms with coefficients in Lk:

∂(skω) = sk
n∑
j=1

(e∧j ⊗ Zj + (∂ej)∧e
�
j)ω,

∂
∗
(skw) = sk

n∑
j=1

(e�j ⊗ (Z∗
j + 2kZj(φ)) + e∧j (∂ej)�)w.
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We next derive more symmetric representations for ∂, ∂
∗

in spaces with-
out exponential weights, by using the following local representation,

ω̃ = (seφ)kω̂ ∈ E0,q(X;Lk), (2.4)

so that
E0,q(X) � ω̂ �→ (seφ)kω̂ ∈ E0,q(X;Lk)

is locally unitary in view of the fact that |s(x)eφ(x)|h1(x) = 1:∫
|ω̃(x)|2hk(x)⊗Hm(dx) =

∫
|ω̂(x)|2H(x)m(dx). (2.5)

Using (2.3), which makes sense directly on elements of E0,q(X,Lk), we get

∂ω̃ = (seφ)k∂sω̂, (2.6)

where,

∂sω̂ =
n∑
j=1

(e∧j ⊗ (Zj + kZj(φ)) + (∂ej)∧e
�
j). (2.7)

Now the formal adjoint of ∂s for the scalar product given by the right hand
side of (2.5) is

∂
∗
sŵ =

n∑
j=1

(e�j ⊗ (Z∗
j + kZj(φ)) + e∧j (∂ej)�), (2.8)

where in view of the unitarity of the relation (2.4),

∂
∗
w̃ = (seφ)k∂

∗
sŵ, (2.9)

where
w̃ = (seφ)kŵ. (2.10)

Now rewrite things semiclassically. Put

h =
1
k
, (2.11)

h∂s =
n∑
j=1

(e∧j ⊗ (hZj + Zj(φ)) + h(∂ej)∧e
�
j), (2.12)

h∂
∗
s =

n∑
j=1

(e�j ⊗ (hZ∗
j + Zj(φ)) + he∧j (∂ej)�). (2.13)

Here hZj is a semiclassical differential operator.
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Proposition 2.1. — Using the representation (2.4), we can identify the
Hodge Laplacian with

∆ = (2.14)

(h∂s)(h∂
∗
s) + (h∂

∗
s)(h∂s) =

n∑
j=1

1⊗ (hZ∗
j + Zj(φ))(hZj + Zj(φ))

+
∑
j,k

e∧j e
�
k ⊗ [hZj + Zj(φ), hZ∗

k + Zk(φ)]

+O(h)(hZ + Z(φ)) +O(h)(hZ∗ + Z(φ)) +O(h2),

where O(h)(hZ +Z(φ)) indicates a remainder term of the form h
∑

k ak(z)
(hZk+Zk(φ)) with ak smooth, matrix-valued, and similarly for the two other
remainder terms in (2.14).

Proof. — We make a straightforward calculation.

(h∂s)(h∂s)∗ + (h∂s)∗(h∂s) =∑
1�j,k�n

(
(e∧j ⊗ (hZj + Zj(φ)))(e

�
k ⊗ (hZ∗

k + Zk(φ)))

+(e�k ⊗ (hZ∗
k + Zk(φ)))(e∧j ⊗ (hZj + Zj(φ)))

+(e∧j ⊗ (hZj + Zj(φ)))(he∧k (∂ek)�) + (he∧k (∂ek)�)(e∧j ⊗ (hZj + Zj(φ)))

+h((∂ej)∧e
�
j)(e

�
k ⊗ (hZ∗

k + Zk(φ))) + (e�k ⊗ (hZ∗
k + Zk(φ)))h((∂ej)∧e

�
j)

+h((∂ej)∧e
�
j)he

∧
k (∂ek)� + he∧k (∂ek)�h((∂ej)∧e

�
j)

)
.

Using (2.2), we see that the sum of the first two terms inside the general
term of the sum is equal to

(e∧j e
�
k + e�ke

∧
j )⊗ ((hZ∗

k + Zk(φ))(hZj + Zj(φ)))

+e∧j e
�
k[hZj + Zj(φ), hZ∗

k + Zk(φ)]

= δj,k(hZ∗
k + Zk(φ))(hZk + Zk(φ)) + e∧j e

�
k[hZj + Zj(φ), hZ∗

k + Zk(φ)].

The proposition follows. �

Let qj be the semiclassical principal symbol of hZj + Zj(φ), that we
shall write down more explicitly later, viewed as a function on the “real”
cotangent space T ∗X. (We refer to [42, 19] for standard terminology about
semiclassical pseudodifferential operators, and to [26, 48] for the fact that
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the Weyl quantization permits to define the symbol of such an operator
modulo O(h2) even on a manifold.) The semiclassical principal symbol of
∆ is

p0 = 1⊗
n∑
j=1

qjqj . (2.15)

The semiclassical subprincipal symbol of ∆ is a well-defined endomorphism
of Λ0,qT ∗X at every point (x, ξ) ∈ Σ on the doubly characteristic manifold
Σ ⊂ T ∗X, given by q1 = ... = qn = 0. For an operator of the form (hZ∗

k +
Zk(φ))(hZj +Zj(φ)) this subprincipal symbol is given by h

2i{qk, qj} and the
contribution from the double sum in (2.14) to the subprincipal symbol of ∆
is

h

i

∑
j,k

e∧j e
�
k ⊗ {qj , qk}.

Thus on Σ, we get the subprinicipal symbol of ∆:

hp1 = h(1⊗
∑
j

− 1
2i
{qj , qj}+

∑
j,k

e∧j e
�
k

1
i
{qj , qk}). (2.16)

Since p1 is invariantly defined on Σ as well as the first sum, the double sum
is also invariantly defined.

To compute further, we choose holomorphic coordinates z1, ..., zn, zj =
xj+iyj . We make the following fiberwise bijections between Λ1,0T ∗X, T ∗X,
Λ0,1T ∗X:

n∑
1

ζjdzj ↔ Re (
n∑
1

ζjdzj) ↔
n∑
1

ζjdzj . (2.17)

Writing
ζj = ξj − iηj ,

we get
Re (

∑
ζjdzj) =

∑
(ξjdxj + ηjdyj),

so in local coordinates, we have bijections between

(z, ζ) ∈ Λ1,0T ∗X, (x, y; ξ, η) ∈ T ∗X, (z, ζ) ∈ Λ0,1T ∗X.

The semiclassical symbol of h ∂
∂zj

= 1
2 (h ∂

∂xj
+ ih ∂

∂yj
) is i

2 (ξj + iηj) = i
2ζj .

Hence the symbol of

h
∂

∂zj
+
∂φ

∂zj
is
i

2
ζj +

∂φ

∂zj
,
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so in the coordinates (z, ζ), the equation for Σ becomes:

ζj = −2
i

∂φ

∂zj
,

or equivalently,

ζj =
2
i

∂φ

∂zj
, j = 1, 2, .., n. (2.18)

For later use we here compute the principal symbol qj of hZj + Zj(φ):
Let the orthonormal frame e1, ..., en be given by

ej(z) =
∑
k

aj,k(z)dzk,

and the corresponding dual basis Z1, ..., Zn of Λ0,1T ∗
zX by

Zj =
∑
k

bj,k
∂

∂zk
,

where the invertible matrices (aj,k) and (bj,k) are related by

t(bj,k)(aj,k) = 1.

Then it follows from the calculations above that

qj =
∑
k

bj,k(
i

2
ζk +

∂φ

∂zk
). (2.19)

Proposition 2.2. — In the (z, ζ)-coordinates, the Poisson bracket {f, g}
of two C1-functions f, g is given by

1
2
{f, g} =

1
2
Hfg = (

∂f

∂ζ
· ∂g
∂z

+
∂f

∂ζ
· ∂g
∂z

)− (
∂f

∂z
· ∂g
∂ζ

+
∂f

∂z
· ∂g
∂ζ

) (2.20)

Proof. — Consider the real canonical 1-form on T ∗X:

Re (
∑

ζjdzj) =
∑

(ξjdxj + ηjdyj).

Hence the real symplectic form becomes

d(
∑

(ξjdxj + ηjdyj)) = Re (
∑

dζj ∧ dzj) = Reσ =: ω,

where σ =
∑
dζj ∧ dzj . If f is a smooth real function on the real phase

space, the corresponding Hamilton field Hf is given by

〈ω, t ∧Hf 〉 = 〈t, df〉. (2.21)
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With t = 2Re
∑

(aj ∂
∂zj

+ bj ∂
dζj

), the right hand side becomes

2Re
∑

(aj
∂f

∂zj
+ bj

∂f

∂ζj
),

while the left hand side is equal to

Re 〈σ, t ∧Hf 〉 = Re
∑

(bj〈dzj , Hf 〉 − aj〈dζj , Hf 〉).

Varying t, we conclude that

〈dzj , Hf 〉 = 2
∂f

∂ζj
, 〈dζj , Hf 〉 = −2

∂f

dzj
,

so
1
2
Hf = (

∂f

∂ζ
· ∂
∂z

− ∂f

∂z
· ∂
∂ζ

) + (
∂f

∂ζ
· ∂
∂z

− ∂f

∂z
· ∂
∂ζ

).

In particular, we get (2.20) This expression now extends to the case when
f, g are complex-valued functions which completes the proof. �

Of course (2.20) can also be obtained by straightforward calculation from

{f, g}=
∂f

∂ξ

∂g

∂x
+
∂f

∂η

∂g

∂y
−∂f
∂x

∂g

∂ξ
−∂f
∂y

∂g

∂η
,
∂

∂x
=
∂

∂z
+
∂

∂z
,
∂

∂y
=

1
i
(
∂

∂z
− ∂

∂z
), ...

(2.22)

Now return to the expressions (2.14), (2.15). If z0 is a fixed point,
we choose holomorphic coordinates z1, ..., zn as above in such a way that
Zj = ∂

∂zj
, ej = dzj at z0. Then bj,k(z0) = δj,k in (2.19) and at the corre-

sponding point ρ0 = (z0, ζ0) ∈ Σ, we have

{qj , qk}(ρ0) = { i
2
ζj +

∂φ

∂zj
,− i

2
ζk +

∂φ

∂zk
}.

Applying (2.20), we now get

1
2
{qj , qk} =

i

2
∂2φ

∂zj∂zk
+

∂2φ

∂zk∂zj

i

2
= i

∂2φ

∂zj∂zk
.

We rewrite this as
1
2i
{qj , qk} =

∂2φ

∂zj∂zk
, (2.23)

and recognize here the coefficients of the Levi-matrix appearing also in ∂∂φ.
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Proposition 2.3. — Σ is symplectic at a point (z0; ξ0, η0) iff ( ∂2φ
∂zj∂zk

)(z0)
is non-degenerate. Indeed, if we identify Λ1,0T ∗X and T ∗X, by means of the
first bijection in (2.17), then the real symplectic form ω becomes Re (

∑
dζj∧

dzj) and its restriction to Σ can be identified with 2
i ∂∂φ.

Proof. — With the above mentioned identification, Σ takes the form
(2.18) which can be written more invariantly as

ζ · dz =
2
i
∂φ. (2.24)

Hence,

σ|Σ = d
n∑
1

2
i

∂φ

∂zj
∧ dzj =

n∑
j=1

n∑
k=1

2
i

∂2φ

∂zk∂zj
dzk ∧ dzj =

2
i
∂∂φ.

This is a real form, so it is also the restriction to Σ of Reσ and it is non-
degenerate precisely when ( ∂2φ

∂zj∂zk
) is (cf [45]). �

Back to the general case, we recall the condition for having the apriori
estimate

h‖u‖ +
∑

‖(hZj + Zj(φ))u‖+
∑

‖(hZ∗
j + Zj(φ))u‖ � C‖∆qu‖, (2.25)

for u ∈ C∞
0 (neigh (z0); Λ0,qT ∗X).

Proposition 2.4. — (2.25) does not hold precisely when n− � q �
n− n+, where (n+, n−) is the signature of ( ∂2φ

∂zj∂zk
(z0)).

This is essentially well-known since the ∂-estimates of L. Hörmander
(see [27]), and in the context of more general hypoelliptic operators it was
obtained in [46] in the non-degenerate symplectic case. The constant C in
formula (2.25) is also closely related to the curvature term appearing in
the Bochner-Kodaira-Nakano formula [24, 18]. The result will not be used
explicitly since the heat equation method below will give enough control
(and would allow to recover it easily, compare Proposition 3.1).

3. The associated heat equations

We work locally near a point z0 ∈ X, where

(
∂2φ

∂zj∂zk
) is non-degenerate of signature (n+, n−), (3.1)
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so that the characteristic manifold Σ of ∆q is symplectic. We review some
results of A. Menikoff, J. Sjöstrand [40], [41] that apply to the present
situation with minor changes:

In those works, we considered a scalar classical pseudodifferential oper-
ator with principal symbol p0 vanishing to precisely the second order on a
conic symplectic submanifold of T ∗X. In the present work, we have a semi-
classical differential operator with a leading symbol p0 in (2.3) that we can
view as scalar; p0 =

∑n
1 qjqj and p0 is no longer homogeneous, and Σ is no

longer conic in the fiber variables.

In this section we consider the problem:

(h∂t + ∆q)u(t, x) = 0, u(0, x) = v(x). (3.2)

We shall apply the standard WKB construction of an approximative solution
operator and apply arguments from [40] together with a “Witten trick” to
get additional properties to be used later. See Proposition 3.3 for the precise
statement about the solution to (3.2). Following a standard idea, we will
see how to reduce ourselves to the homogeneous situation (in the proof of
Proposition 3.3). Since the non-scalar nature of the operator appears only
in the subprincipal terms, it will only affect the transport equations which
can be treated very much as in the scalar case. The really new feature is the
exponential convergence of the heat parametrix when t→∞ in the case of
(0, n−)-forms.

We forget about most of the complex structure of X and work in some
smooth local coordinates x = (x1, ..., x2n) defined on X̃ ⊂⊂ X. At least
for small t � 0, we look for an approximate solution of (3.2) of the form
u(t, x) = U(t)v(x),

u(t, x) =
1

(2πh)2n

∫∫
e

i
h (ψ(t,x,η)−y·η)a(t, x, η;h)u(y)dydη, (3.3)

where a is a matrix-valued classical symbol of order 0:

a(t, x, η;h) ∼
∞∑
0

ak(t, x, η)hk, a|t=0
= 1, (3.4)

and ψ with Imψ � 0 should solve the eikonal equation,

i∂tψ(t, x, η) + p0(x, ψ′
x(t, x, η)) = 0 +O((Imψ)∞), ψ|t=0

= x · η. (3.5)

The amplitude a is determined by a sequence of transport equations that
will be reviewed later. (Here we follow the convention that u = O((Imψ)∞)
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means that u = O((Imψ)N ) for every N � 0, uniformly or locally uniformly
depending on the context.)

According to the general theory in [37, 38], this equation can be solved
locally, provided that we also denote by p0 an almost holomorphic exten-
sion. The general theory also tells us that U(t) is associated to a canonical
transformation,

κt = exp(−itHp0). (3.6)

(Here κt depends slightly on the choice of almost holomorphic extension of
p0, so κt(ρ) is well-defined only up to |Im ρ|∞. In [38] we also made the
assumption that p0(x, ξ) is positively homogeneous of degree 1 in ξ, but as
noticed for instance in [40] and will be reviewed in the proof of Proposition
3.3, one can easily reduce the general case to the homogeneous one, by
adding a variable x0 and consider the homogeneous symbol ξ0p(x, ξ/ξ0),
then restrict the results to ξ0 = 1.)

So far, we only used the non-negativity of (the real part of) p0. Now we
use that p0 ∼ dist (·,Σ)2. It follows that

ψ(t, x, η) = x · η +O(tdist (x, η; Σ)2), (3.7)

Imψ(t, x, η) ∼ tdist (x, η; Σ)2, (3.8)

for 0 � t � t0, and t0 > 0 fixed. Correspondingly, we have

κt|Σ = id, (3.9)

When t > 0, κt is a strictly positive canonical (3.10)
transformation with graph (κt) ∩ (T ∗X)2 = diag (Σ× Σ).

Recall that a positive canonical transformation is strictly positive if the
graphκ intersects T ∗X×T ∗X cleanly along a smooth submanifold. Thanks
to these simplifying features, all essential properties of ψ and κt are captured
by their Taylor expansions at t = 0 and at Σ.

In [40] it was shown that (3.5) can be solved for all t � 0, and that we
have,

Imψ(t, x, η) ∼ dist (x, η; Σ)2, (3.11)

uniformly for t � 1, that (3.9), (3.10) remain valid for all t > 0, and
finally that there exists a smooth function ψ(∞, x, η), well-defined mod
O(dist (x, η; Σ)∞) such that for all k, α:

∂kt ∂
α
x,η(ψ(t, x, η)− ψ(∞, x, η)) = O(e−t/C), (3.12)
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uniformly on [0,+∞[×Σ. (In [41] we also established asymptotic expansions
when t→ ∞ in terms of exponentials in t. We do not need those improved
results here.) Here we have locally uniformly on X̃ ×R2n:

ψ(∞, x, η) = x·η+O(dist (x, η; Σ)2), Imψ(∞, x, η) ∼ dist (x, η; Σ)2. (3.13)

Further, the canonical relation C∞ generated by the phase ψ(∞, x, η)−y ·η
is strictly positive with

C∞ ∩ (T ∗X × T ∗X) = diag (Σ× Σ), (3.14)

and C∞ can be described in the following way:

There are two almost holomorphic manifolds J+, J− ⊂ T ∗XC (where the
latter set is the almost complexification of T ∗X) intersecting T ∗X cleanly
along Σ, with the following properties:

codimCJ± = n, J± ⊂ p−1
0 (0), (3.15)

J± are involutive and J− = J+,

1
i
σ(t, t) > 0, ∀t ∈ Tρ(J+) \ Tρ(ΣC), ρ ∈ Σ.

Here the involutivity of J+ (and similarly for J−) means that J+ is
given by the equations q̃1 = ... = q̃n = 0, where dq̃1, ..., dq̃n are C-linearly
independent and {q̃j , q̃k} = 0 on J+. Further the complexification ΣC is
contained in J+ and H

q̃1
, ..., H

q̃n
span TρJ+/TρΣC. The positivity property

above is equivalent to the fact that the Hermitian matrix (1
i {q̃j , q̃k}) is

positive definite. In terms of J±, we can describe the limiting canonical
relation C∞ as {(ρ, µ) ∈ J+ × J−; the n-dimensional bicharacteristic leaves
through ρ, µ of J+ and J− respectively, intersect ΣC

+ at the same point }.

Finally we can also view C∞ as the limit of Ct = graph (κt), when
t→ +∞, where the convergence is exponentially fast (in the sense of Taylor
expansions at diag (Σ×Σ)). We can also view J+, J− as the stable outgoing
and incoming manifolds respectively, for the H−ip-flow, near the fixed point
set ΣC. Let us also add that J± are uniquely determined and that in the
case n+ = n, we can take q̃j = qj .

Next we consider the behaviour of a in (3.3), (3.4), where we recall that
a0, a1, ... are successively determined by a sequence of transport equations.
Following [40] this can be done in the following way, where we take some
advantage of the fact that we work in the Weyl quantization. (See also
appendix b of [26].): Formally, with ψ = ψ(t, ·, η), P = ∆q and with the
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exponent w indicating that we take the h-Weyl quantization, we get

e−iψ ◦ P ◦ eiψ/h = P (x, ψ′
x(x) + ξ;h)w +O(h2) =

p(x, ψ′
x) + hp1(x, ψ′

x) +
1
2
(hDx ◦ p′ξ(x, ψ′

x)

+p′ξ(x, ψ
′
x) ◦ hDx) +O(h2) =

p(x, ψ′
x) + hp1(x, ψ′

x) +
h

i
p′ξ(x, ψ

′
x) ·

∂

∂x

+
h

2i
div (p′ξ(x, ψ

′
x) ·

∂

∂x
) +O(h2),

where the ”O(h2)” refers to the action on symbols and p1 is the subprincipal
symbol. This gives the first transport equation for a0:

(ν +
1
2
div (ν) + p1)a0 = 0,

where
ν =

∂

∂t
− ip′ξ(x, ψ′

x) ·
∂

∂x
.

The higher transport equations for aj , j � 1, are of the form

ν(aj) = Fj(t, x, a0, ..., aj−1).

Then if a(t, x, η;h) ∼
∑∞

0 aj(t, x, η)h
j in C∞([0,+∞[×X̃ ×R2n), we have

(h∂t + ∆q)(e
i
hψ(t,x,η)a(t, x, η;h)) = O(h∞)

locally uniformly on [0,+∞[×X̃ ×R2n and similarly for the derivatives.

The discussion on page 69 in [40] shows that div (ν) → 1
2 t̃rF expo-

nentially fast on Σ, where t̃rF =
∑
fj , and F is the fundamental matrix

of p ie the linearization of Hp at the point of Σ and has the spectrum
σ(F ) = {±ifj}, fj � 0. In the further discussion of the transport equations
the only new feature is that p1 is now a square matrix rather than a scalar,
and whenever we needed a lower bound on Re p1, we now need a lower
bound on the set of real parts of the eigenvalues of p1. Proposition 2.2 in
[40] becomes

Proposition 3.1. — Let λ ∈ C(Σ;R) satisfy

λ(x, η) <
1
2
t̃rF (x, η) + inf Reσ(p1(x, η)), (x, η) ∈ Σ.

Then for every compact set K ⊂ Σ, j ∈ N and (γ, α, β) ∈ N1+2n+2n, we
have

|∂γt ∂αx ∂βη aj(t, x, η)| � Cj,α,β,γe−tλ(x,η), (x, η) ∈ K, t � 0.
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We are therefore interested in whether
1
2
t̃rF + inf Reσ(p1) > 0 on Σ (3.16)

or not. Now

p =
n∑
1

qjqj , Hp =
∑

(qjHqj + qjHqj
).

At a given point ρ0 ∈ Σ, we choose the basis Hq1 , ..., Hqn , Hq1 , ..., Hqn
for

Tρ0(T
∗X)C/ΣC, and compute the linearization of Hp:

Hp(ρ0 +
∑

tkHqk
+

∑
skHqk

) =

O((t, s)2) +
∑
j,k

tk{qk, qj}Hqj
+

∑
j,k

sk{qk, qj}Hqj
.

So the matrix Fp of the linearization is expressed in the basis above by

1
i
Fp =

(
( 1
i {qk, qj}) 0

0 ( 1
i {qk, qj})

)
,

where we recall (2.23). Let µ1, ..., µn be the eigenvalues of (∂zj
∂zk
φ), with

µj > 0 for 1 � j � n+ and µj < 0 for n+ + 1 � j � n. Then

(i−1{qk, qj}) = t(i−1{qj , qk}) has the eigenvalues 2µ1, ..., 2µn,

and

(i−1{qk, qj}) = −t(i−1{qj , qk}) has the eigenvalues − 2µ1, ...,−2µn.

Hence the non-vanishing eigenvalues of Fp are ±2iµ1, ...,±2iµn, and

1
2
t̃rFp = µ1 + ...+ µn+ − µn++1 − ...− µn. (3.17)

For the first term in (2.16), we get

∑
j

− 1
2i
{qj , qj} = − 1

2i
tr ({qj , qk}) = −

n∑
1

µj . (3.18)

We can also compute the eigenvalues of the matrix part of the subprincipal
symbol appearing in (2.16) and in the subsequent remark about invariance.
We choose holomorphic coordinates such that at the given point z0: Zj =
∂zj

, ej = dzj and moreover (i−1{qj , qk}) is diagonalized, equal to


2µ1 0 .. 0
0 2µ2 .. 0
.. .. ..
0 0 .. 2µn


 .
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Then ∑
j,k

1
i
{qj , qk}e∧j e

�
k =

∑
j

2µje∧j e
�
j .

On (0, q)-forms, the eigenvalues are the numbers

2(µj1 + µj2 + ...+ µjq ), for 1 � j1 < j2 < ... < jq � n.

From (3.17), (2.16) and the other calculations we get

p1 +
1
2
t̃rF = −2

n∑
n++1

µj +
∑
j,k

1
i
{qj , qk}e∧j e

�
k,

which on the space of (0, q)-forms has the eigenvalues

−2
n∑

n++1

µj + 2(µj1 + ..+ µjq ), 1 � j1 < ... < jq � n.

We see that on Σ

inf σ(p1 +
1
2
t̃rF )

{
= 0, q = n−
> 0, q �= n− . (3.19)

This is the answer to the question (3.16) and Proposition 3.1 then shows
that when q �= n−, there exists a constant C > 0 such that

|∂kt ∂αx,ηaj(t, x, η)| � Ck,α,je−t/C , t � 0, (x, η) ∈ Σ, (3.20)

while in the case q = n−, we have for every ε > 0:

|∂kt ∂αx,ηaj(t, x, η)| � Ck,α,j,εeεt, t � 0, (x, η) ∈ Σ. (3.21)

We also notice from [40], that (3.20) and (3.21) respectively hold also when
the initial condition in (3.4) is replaced by a|t=0

= b for any classical symbol
b(x, η;h) ∼

∑∞
0 bj(x, η)h

j .

Using the particular structure of the problem, we will next show

Proposition 3.2. — Consider the case q = n− and let a be the symbol
in (3.3), (3.4). Then there exist C > 0 and a classical symbol

a∞(x, η;h) ∼
∞∑
0

a∞j (x, η)hj ,

such that

|∂kt ∂αx,η(aj(t, x, η)− a∞j (x, η))| � Ck,α,je−t/C , t � 0, (x, η) ∈ Σ. (3.22)
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Proof. — a is determined by the initial condition in (3.4) and the fact
that

(h∂t + ∆q)(e
i
hψ(t,x,η)a(t, x, η;h)) = O(h∞), (3.23)

locally uniformly in t, and similarly for the derivatives. Let Zφ := h∂s be
given in (2.12) , so that Z∗

φ is given by (2.13). Then we have the intertwining
properties,

∆q+1Zφ = Zφ∆q, ∆q−1Z
∗
φ = Z∗

φ∆q. (3.24)

Combining this with (3.23), we get

(h∂t + ∆q−1)(Z∗
φ(e

i
hψa)) = O(h∞), (3.25)

(h∂t + ∆q+1)(Zφ(e
i
hψa)) = O(h∞). (3.26)

Now
Z∗
φ(e

i
hψa) = e

i
hψã, Zφ(e

i
hψa) = e

i
hψâ, (3.27)

where ã, â are classical symbols of order 0 in h, and combining this with
(3.25), (3.26), we see that (3.20) applies to ã, â. Now, ∆q = Z∗

φZφ + ZφZ∗
φ,

so
∆q(e

i
hψa) = e

i
hψb (3.28)

where b ∼
∑∞

0 bj(t, x, η)h
j and the bj satisfy (3.20).

Combining this with (3.23), we see that

h∂t(e
i
hψa) = e

i
hψc, (3.29)

where c (= −b+O(h∞)) has the same properties as b. But

c = h∂ta+ i(∂tψ)a,

so if we combine (3.12), (3.21) with the fact that c satisfies (3.20), we get

|∂kt ∂αx,η∂taj(t, x, η)| � Ck,α,je−t/C , t � 0, (x, η) ∈ Σ, (3.30)

for k � 1, α ∈ N4n. From this we get (3.22). �

We introduce the semiclassical Sobolev space

Hs(R2n) = {u ∈ S ′(R2n); 〈hDx〉su ∈ L2}, s ∈ R,

with the h-dependent norm ‖u‖Hs=‖〈hDx〉su‖. Here 〈hDx〉=(1+(hD)2)1/2.
From this, we form Hs

comp(X), Hs
loc(X) in the usual way, when X is a

smooth paracompact manifold, as well as Hs(X), when X is compact. On
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the Fréchet space Hs
loc(X), we have natural h-dependent semi-norms, so it

makes sense to say that u = uh is O(hN0) in Hs
loc.

We now return to our local coordinate patch X̃ ⊂ X, and define

U(t)u(x) =
1

(2πh)2n

∫∫
e

i
h (ψ(t,x,η)−y·η)a(t, x, η;h)u(y)dydη, (3.31)

with ψ, a ∼
∑∞

0 aj(t, x, η)h
j constructed as above. More precisely, we can

choose a, aj ∈ C∞([0,∞[×X̃ ×R2n) with the following properties:

∂kt ∂
α
x ∂

β
η aj =

{
Oj,α,β,K(1)e−t/C , q �= n−
Oj,α,β,K,ε(1)eεt, q = n−

, (x, η) ∈ K ⊂⊂ X̃ ×R2n, ε > 0,

(3.32)

∂kt ∂
α
x ∂

β
η (a−

∑N−1
0 hjaj) = hN

{
Ok,α,β,K(1)e−t/C , q �= n−
Ok,α,β,K,ε(1)eεt, q = n−

, (3.33)

(x, η) ∈ K ⊂⊂ X̃ ×R2n, ε > 0.

Moreover, in the case when q = n−, we have a(∞, x, η;h) ∼
∑∞

0 aj(∞, x, η)hj
in C∞(X̃ ×R2n), such that

∂kt ∂
α
x ∂

β
η (aj(t, x, η)− aj(∞, x, η)) = Ok,α,β,K(1)e−t/C (3.34)

and similarly for a(t, x, η;h)− a(∞, x, η;h). We also arrange so that

a(0, x, η;h) = 1. (3.35)

The construction of ψ, a can be extended in the natural way to the
elliptic region |η| % 1, and here it all boils down to Taylor expanding in t.
We quickly review a way of treating this standard heat evolution problem
by a simple dilation argument. (The reader may skip this and go directly
to Proposition 3.3.) If ∆q = P (x, hDx;h) (say with P (x, ξ;h) denoting the
Weyl symbol for our local coordinates) then in the problem (3.2), we let
λ % 1 and make the change of time variable s = λt, so that λ−1∂t = ∂s.
Then dividing (3.2) by λ2, we get the new evolution equation

(h̃∂s + P̃ (x, h̃Dx,
1
λ

; h̃))u = 0, h̃ = h/λ, (3.36)

where

P̃ (x, ξ,
1
λ

; h̃) =
1
λ2
P (x, λξ;h). (3.37)
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Recall here that P (x, ξ;h) = p(x, ξ) + hp1(x, ξ) + h2p2(x), where p, p1, p2
are polynomials in ξ of degree 2, 1 and 0 respectively. If we decompose into
homogeneous polynomials,

p(x, ξ) = p2(x, ξ) + p1(x, ξ) + p0(x),
p1(x, ξ) = p11(x, ξ) + p01(x),

then we know that p2(x, ξ) is elliptic; p2(x, ξ) � |ξ|2, and

P̃ (x, ξ,
1
λ

; h̃) = (p2(x, ξ) +
1
λ
p1(x, ξ) +

1
λ2
p0(x)) (3.38)

+
h

λ
(p11(x, ξ) +

1
λ
p1(x)) + (

h

λ
)2p2(x).

If λ is sufficiently large, then p2(x, ξ) is dominating in the region |ξ| � 1,
and we can construct WKB-solutions to (3.36) modO(h̃∞) with all the
derivatives, of the form

eiψ̃(s,x,η̃, 1λ )/̃hã(s, x, η̃,
1
λ

; h̃), (3.39)

with
ψ̃|s=0 = x · η̃, |η̃| � 1, ã|s=0 = 1.

We are now in the elliptic region and it suffices to solve the eikonal equation
and the transport equations to infinte order at s = 0, since Im ψ̃ � s.

If η = λη̃, |η̃| � 1, then, at least formally, (3.39) is just the WKB
solution e

i
hψ(t,x,η)a(t, x, η;h) of the original problem (3.2) with ψ|t=0

= x·η,
a|t=0

= 1, so we can choose

ψ(t, x, η) = λψ̃(λt, x,
η

λ
,
1
λ

)

a(t, x, η;h) = ã(λt, x,
η

λ
,
1
λ

;
h

λ
),

where λ � |η|. Now Imλψ̃(λt, x, ηλ ,
1
λ ) � λ2t for 0 � λt& 1 and we get

e
i
hψ(t,x,η) = O((

h

λ
)∞), when λt � (h/λ)1−δ,

for any fixed δ > 0.

The above discussion indicates how to take care of the uninteresting
elliptic region. A more complete (and more tedious) treatment could be
given for example by combining the above scaling argument with a dyadic
decomposition in ξ-space. We observe that a satisfies the symbol estimates

∂kt ∂
α
x ∂

β
η a = O(〈η〉k−|β|).
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Proposition 3.3. — Modulo a standard reduction to homogeneous non-
semiclassical theory (see the proof), U(t) is a Fourier integral operator of
order 0 with complex phase in the sense of [37], associated to the canonical
transformation κt.

U(t) is O(1)e−t/C and Oε(1)eεt, ∀ε > 0: Hs
comp(X̃) → Hs

loc(X̃), in the
cases q �= n− and q = n− respectively.

We have

(h∂t + ∆q)U(t) = O(h∞)
{
e−t/C ,
Oε(1)eεt, ε > 0

: Hs−N
comp → Hs+N

loc ,

in the cases {
q �= n−,
q = n−,

for all s ∈ R, N � 0.

Proof. — The statement could be proved directly, but it is perhaps more
convenient to use the classical theory of Fourier integral operators with
complex phase ([37]). The standard trick to get a reduction to that situation
is by adding a variable x0 and to relate semiclassical objects (without a tilde)
to non-semiclassical objects (with a tilde) in the following way:

For functions we relate the semiclassical ones;
u(x), to ũ(x0, x) = eix0/hu(x).

We relate a semiclassical Fourier integral operator

Fu(x) =
∫∫

e
i
hφ(x,y,θ)a(x, y, θ;h)u(y)dydθ

to a standard (microlocally defined) Fourier integral operator

F̃ ũ(x0, x)=
∫∫∫∫

θ0>0

ei(φ(x,y,θ)θ0+(x0−y0)θ0)a(x, y, θ;
1
θ0

)ũ(y0, y)
dy0
2π
dydθ0dθ,

so that
F̃ (e

i
hx0u(x)) = e

i
hx0Fu(x).

Here, we require that Imφ � 0, so that the same holds for

φ̃ = φ(x, y, θ)θ0 + (x0 − y0)θ0.

Let Cφ = {(x, y, θ); φ′θ(x, y, θ) = 0} and recall that φ is non-degenerate if
dφ′θ1 ,...,dφ

′
θN

are linearly independent at every point of Cφ. Then it easy to
see that φ is non-degenerate iff φ̃ is, and we have

C
φ̃

= {(x0, y0, θ0;x, y, θ); (x, y, θ) ∈ Cφ, x0 = y0 − φ(x, y, θ)}
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We assume (which is the case for U(t)) that we are in the non-degenerate
case. Then we introduce the corresponding canonical relation

Λφ = {(x, φ′x; y,−φ′y); (x, y, θ) ∈ Cφ}.

Then for φ̃, we have

Λ
φ̃

= {(x0, ξ0, x, ξ; y0, η0, y, η); x0 = y0 − φ(x, y, θ),

ξ0 = η0 = θ0, (x,
ξ

θ0
; y,

η

θ0
) ∈ Λφ}.

The corresponding relation between the evolution equations is that

(h∂t+P (x, hDx))u = O(h∞) ⇔ (∂t+Dx0P (x,D−1
x0
Dx))ũ = 0 microlocally,

when ũ(t, x0, x) = eix0/hu(t, x). This is coherent with the two other cor-
respondances above, let us just check the geometric one: The canonical
transformations associated to U(t), and the solution operator Ũ(t) of the
second evolution problem are denoted by κt and κ̃t respectively, so that κ̃t
is obtained by integrating the system:

iẋ0 = ∂ξ0 p̃, iξ̇0 = −∂x0 p̃, iẋ = ∂ξp̃, iξ̇ = −∂xp̃, (3.40)

with
p̃(x0, x; ξ0, ξ) = ξ0p(x, ξ−1

0 ξ),

while the corresponding evolution problem giving κt is

iẋ = ∂ξp, iξ̇ = −∂xp. (3.41)

Now (3.40) becomes

iẋ0 = p(x, ξ/ξ0)− p′ξ(x, ξ/ξ0) · (ξ/ξ0), iξ̇0 = 0,

iẋ = p′ξ(x, ξ/ξ0), iξ̇/ξ0 = −p′x(x, ξ/ξ0),

which reduces to κt after restriction to ξ0 = 1.

To get the second statement, we observe that ψ(t, ξ, η) → ψ(∞, x, η)
and that the corresponding canonical relation κ∞ is strictly positive with
real part being the identity relation on Σ. The statement then follows by
the description of our operators after conjugation by an FBI-Bargmann
transform as in [39].

The proof of the third statement is straightforward. �

In the remainder of this section, we assume that q �= n−
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Proposition 3.4. — We have

[∆q, U(t)] = O(hN )e−t/C , Hs−N
comp → Hs+N

loc , (3.42)

for all s ∈ R and all N � 0.

Proof. — Using the theory of [37], we see that

[∆q, U(t)]u(x) =
1

(2πh)2n

∫∫
e

i
h (ψ(t,x,η)−y·η)b(t, x, η;h)u(y)dydη+R(t)u(x),

(3.43)
whereR(t)=O(h∞)e−t/C : H−∞

comp→H∞
loc, and b(t, x, η;h)∼

∑∞
0 bj(t, x, η)h

j

satisfies (3.32), (3.33) in a region with η bounded and ∂kt ∂
α
x ∂

β
η b =

O(〈η〉2+k−|β|) in a region where t is bounded. Further, we have

[∆q, U(0)] = 0, (3.44)

(h∂t + ∆q)[∆q, U(t)] = O(h∞)e−t/C . (3.45)

From (3.44) we conclude that bj(0, η) = 0 and from (3.45) we see that bj
satisfy the same transport equations as aj , and hence

bj = O(t∞), bj = O(e−t/Cdist (·,Σ)∞),

where we restrict the attention to a region with η bounded for simplicity.
From this we deduce (3.42). �

Combining the last two propositions, we get

h∂tU(t) + U(t)∆q = O(h∞)e−t/C : H−∞
comp(X̃) → H∞

loc(X̃). (3.46)

From this we get a two-sided parametrix for ∆q:

Theorem 3.5. — We recall that we work with the assumption q �= n−.
Put

E =
1
h

∫ ∞

0

U(t)dt. (3.47)

Then
E = O(h−1) : Hs

comp → Hs
loc, (3.48)

for every s ∈ R, and

∆qE − 1, E∆q − 1 = O(h∞) : H−∞
comp → H∞

loc. (3.49)
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Proof. — The first estimate follows from the second statement in Propo-
sition 3.3. Further,

∆qE =
1
h

∫ ∞

0

−h∂tU(t)dt+
1
h

∫ ∞

0

(h∂t + ∆q)U(t)dt.

Here the first integral is equal to 1, since U(0) = 1, and the second integral
is O(h∞) : H−∞

comp → H∞
loc by the last part of Proposition 3.3. The proof of

(3.49) is similar except that we use (3.46) instead. �

4. Π as a local projection on N (∆q) modO(h∞)

In this section we continue to work in a connected open subset where
the curvature ∂∂φ is non-degenerate of signature (n+, n−) and we restrict
the attention to (0, q)-forms, with q = n−.

Recall that U(t), defined by (3.3), is well-defined mod O(h∞) as an
operator: Hs

comp → Hs
loc for t � 0 and as an operator: Hs−N

comp → Hs+N
loc , for

t � t0 for all t0 > 0. Put

Πu =
1

(2πh)2n

∫∫
e

i
h (ψ(∞,x,η)−y·η)a(∞, x, η;h)u(y)dydη, (4.1)

so that Π is well-defined modO(h∞) as an operator Hs−N
comp → Hs+N

loc , for all
s ∈ R, N � 0. Then by Proposition 3.2, and (3.12), we have

U(t) = Π + V (t), V (t) = O(e−t/C) : Hs−N
comp → Hs+N

loc , t � t0, ∀ t0 > 0.
(4.2)

To see this one can introduce Us(t) with phase (1−s)ψ(t, x, η)+sψ(∞, x, η)
and amplitude (1 − s)a(t, x, η) + sa(∞, x, η;h), 0 � s � 1, and show that
∂sUs(t) satisfies the estimate in (4.2).

Proposition 4.1. — We have in the sense of operators: Hs−N
comp → Hs+N

loc ,

∆qΠ ≡ Π∆q ≡ 0 modO(h∞), (4.3)

Π∗ −Π ≡ 0 modO(h∞), (4.4)

[Π, V (t)] = O(e−t/Ch∞). (4.5)

Proof. — We know from (3.27), (3.20) that

Zφ(e
i
hψ(t,x,η)a(t, x, η;h)) = e

i
hψ(t,x,η)b(t, x, η;h),
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where b = O(e−t/C). Write this as

O(e−t/C) = b = e−
i
hψ(t,x,η)◦Zφ◦e

i
hψ(t,x,η)(a(t, x, η;h)) =: Zφ,ψ,ηa(t, x, η;h).

Here
Zφ,ψ,η = Zφ,ψ∞,η +O(e−t/C),

in the sense of Taylor expansions of the coefficients in the h-asymptotic
expansions at Σ, by (3.12). We conclude that

Zφ,ψ∞,ηa∞ = O(e−t/C) +O(h∞),

but here the left hand side is independent of t and hence

Zφ,ψ∞,ηa∞ = O(h∞). (4.6)

This means that
Zφ(e

i
hψ∞a∞) = O(h∞). (4.7)

Similarly,
Z∗
φ(e

i
hψ∞a∞) = O(h∞). (4.8)

Hence,
∆q(e

i
hψ∞a∞) = O(h∞), (4.9)

which implies that

∆qΠ = O(h∞) : Hs−N
comp → Hs+N

loc . (4.10)

[∆q, U(t)] is an h-Fourier integral operator of the same type as U(t). We
have

∂t[∆q, U(t)] + ∆q[∆q, U(t)] = [∆q, ∂tU(t) + ∆qU(t)] = O(h∞)

in the sense of such operators and using also that [∆q, U(0)] = 0, we get
[∆q, U(t)] = O(h∞) in the sense of such operators and hence [∆q, U(t)] =
O(h∞) as an operator: Hs+2

comp → Hs
loc for t � 0 and Hs−N

comp → Hs+N
loc , for

t � t0 > 0. It follows that [Π,∆q] = O(h∞) : Hs−N
comp → Hs+N

loc and together
with (4.10), this gives (4.3).

Next we see that in the sense of h-Fourier integral operators:

∂tU
∗ + ∆qU

∗ ≡ (∂tU + U∆q)∗ ≡ (∂tU + ∆qU)∗ ≡ 0.

Hence ∂t(U∗ − U) + ∆q(U∗ − U) ≡ 0, (U∗ − U)(0) = 0, so by considering
again the transport equations, we get U∗ ≡ U . It follows that Π∗ ≡ Π, so
we have (4.4).
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Consider [U(t), U(s)], 0 � s < ∞ (after introducing a cutoff near the
diagonal to make our operators properly supported without affecting any
other properties). This commutator is obviously a Fourier integral operator
associated to κt+s. For s = 0, we have

[U(0), U(t)] = [1, U(t)] = 0.

Moreover, since ∆q commutes with U(t):

(h∂s + ∆q)[U(s), U(t)] ≡ [(h∂s + ∆q)U(s), U(t)] ≡ [0, U(t)] = 0.

From considering the transport equations for the amplitude of [U(s), U(t)]
with the phase ψ(t + s, x, η) − y · η, we see that [U(s), U(t)] ≡ 0. Letting
s→∞, we get [Π, U(t)] ≡ 0 and (4.5) follows. �

For Re z < 0, we put

R(hz) = − 1
h

∫ ∞

0

etzU(t)dt = O(h−1) : Hs
comp → Hs

loc. (4.11)

Then modulo O(h∞) : Hs−N
comp → Hs+N

loc we have,

∆qR(hz) = − 1
h

∫ ∞

0

etz∆qU(t)dt ≡ 1
h

∫ ∞

0

etzh∂tU(t)dt

= −
∫ ∞

0

∂t(etz)U(t)dt− 1 = hzR(hz)− 1.

We also have R(hz)∆q ≡ ∆qR(hz), so we get

(hz −∆q)R(hz) ≡ R(hz)(hz −∆q) ≡ 1. (4.12)

In order to extend to a domain, Re z < 1/(2C), we first rewrite (4.11) as

R(hz) = − 1
h

∫ ∞

0

etz(Π + V (t))dt =
1
hz

Π− 1
h

∫ ∞

0

etzV (t)dt,

and for
Re z < 1/(2C), |z| � hN0 , (4.13)

with N0 > 0 arbitrarily large but fixed, we define

R(hz) =
1
hz

Π− 1
h

∫ ∞

0

etzV (t)dt = O(|hz|−1 + h−1) : Hs
comp → Hs

loc.

(4.14)
Then this is a holomorphic extension of R(hz), defined by (4.11). It is there-
fore no surprise that (4.12) remains valid (even though we cannot appeal to
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unique holomorphic extension, since we work with errors that are O(h∞)):
Use that (h∂t + ∆q)V (t) = O(h∞e−t/C) :Hs−N

comp → Hs+N
loc (cf (4.2), (4.3))

V (0) = 1−Π, to get modO(h∞) : Hs−N
comp → Hs+N

loc ,

∆qR(hz) ≡ − 1
h

∫ ∞

0

etz∆qV (t)dt ≡
∫ ∞

0

etz∂tV (t)dt

= Π− 1− z
∫ ∞

0

etzV (t)dt = Π− 1− hz 1
h

∫ ∞

0

etzV (t)dt

= Π− 1 + hz(R(hz)− 1
hz

Π) = hzR(hz)− 1,

so indeed we have (4.12) for z in the region (4.13).

Proposition 4.2. — We have

Π =
1

2πi

∫
|z|=r

R(z)dz, (4.15)

if hN0 � r � 1/(2C). Moreover,

Π2 ≡ Π. (4.16)

In order for (4.16) to make sense, we have multiplied the distribution
kernel of U(t) by a cutoff near the diagonal in order to make all the operators
properly supported without changing any of their other properties.

Proof. — (4.15) is immediate from (4.14), since the last term in (4.14)
is holomorphic in |z| < 1/(2C). To prove (4.16), we follow the standard
procedure and establish first an approximate version of the resolvent identity
when hN0 � |z|, |w| � h/(2C), modulo O(h∞): Hs−N

comp → Hs+N
loc ,

R(z)−R(w) ≡ R(z)(w − z)R(w) ≡ R(w)(w − z)R(z). (4.17)

Write
(z −∆q)− (w −∆q) = (z − w),

and apply R(z)R(w). Then (4.17) follows.

Using (4.17), we write

Π2 = (
1

2πi
)2

∫
|z|=r1

∫
|w|=r2

R(z)R(w)dwdz

≡ (
1

2πi
)2

∫
|z|=r1

∫
|w|=r2

(w − z)−1R(z)dwdz

+(
1

2πi
)2

∫
|w|=r2

∫
|z|=r1

(z − w)−1R(w)dzdw.

– 747 –



Robert Berman, Johannes Sjöstrand

Choose hN0 � r1 < r2 � h/(2C). In the second integral, we first integrate
with respect to z and get 0. In the first integral, we first integrate in w and
get

1
2πi

∫
|z|=r1

R(z)dz ≡ Π. �

The next result together with (4.3), (4.5), (4.16) says that in an approx-
imate sense Π is the orthogonal projection onto the kernel of P and that
1 −Π is approximately the orthogonal projection onto the range of P :

Theorem 4.3. — For hN0 � r � h/(2C), put

E = − 1
2πi

∫
|z|=r

1
z
R(z)dz = O(

1
h

) : Hs
comp → Hs

loc. (4.18)

Then modulo O(h∞) : Hs−N
comp → Hs+N

loc ,

1 ≡ Π + ∆qE ≡ Π + E∆q. (4.19)

Proof. — Since E∆q ≡ ∆qE, we only have to prove the first relation in
(4.19):

∆qE = − 1
2πi

∫
|z|=r

1
z
∆qR(z)dz

= − 1
2πi

∫
|z|=r

1
z
(∆q − z)R(z)dz − 1

2πi

∫
|z|=r

R(z)dz

≡ 1
2πi

∫
|z|=r

1
z
dz −Π = 1−Π. �

From the discussion around (3.7)–(3.14), we recollect that uniformly for
t � t0 > 0:

ψ(t, x, η) = x · η +O(dist (x, η; Σ)2), (4.20)

Imψ(t, x, η) ∼ dist (x, η; Σ)2. (4.21)

The complex stationary phase method ([37]) then permits us to carry out
the η-integration in (3.31), (4.1), to get

Theorem 4.4. — For every t0 > 0, we have uniformly for t � t0

U(t)u(x) = h−n
∫
e

i
h ψ̃(t,x,y)b(t, x, y;h)u(y)m(dy) +R(t)u(x), (4.22)
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Πu(x) = h−n
∫
e

i
h ψ̃(∞,x,y)b(∞, x, y;h)u(y)m(dy) +R(∞)u(x), (4.23)

where

b(t, x, y;h) ∼
∞∑
0

bj(t, x, y;h)hj , (4.24)

R(t)u(x) =
∫
r(t, x, y;h)u(y)m(dy), (4.25)

∂α(t,x,y)r = O(h∞), (4.26)

Im ψ̃(t, x, y) ∼ |x− y|2, ψ̃(t, y, x) = −ψ̃(t, x, y), (4.27)

graphκt = {(x, ∂xψ̃(t, x, y); y,−∂yψ̃(t, x, y)); (x, y) ∈ neigh (diag (X̃×X̃))},
(4.28)

∂αt,x,y(ψ̃(t, x, y)− ψ̃(∞, x, y))|y=x = O(e−t/C) (4.29)

and similarly for bj.

5. The global null-projection

We first recollect what we have done locally. Let s be a local non-
vanishing holomorphic section of L, defined on X̃ ⊂ X. Write |s(x)|2 =
e−2φ(x), and recall that we have the unitary map

E0,q(X̃) � u �→ ũ = (seφ)ku ∈ E0,q(X̃;Lk) (5.1)
∂s �→ h∂

∆q �→ ∆̃q,

where ∆̃q = h∂h∂
∗
+h∂

∗
h∂ is the Hodge Laplacian on E0,q(X̃;Lk). Assume

the curvature is non-degenerate with n− = q on X. In Section 4 we con-
structed an approximate resolvent for ∆q for z in the domain (4.13) and an
approximate null-projection of the form

Πu(x) = h−n
∫
eψ(x,y)/hb(x, y;h)u(y)m(dy), h = 1/k, (5.2)

where our new ψ is related to ψ̃(∞, x, y) in (4.23) by

ψ(x, y) = iψ̃(∞, x, y), (5.3)

so that (4.27), (4.28) give

Reψ(x, y) ∼ −|x− y|2, ψ(y, x) = ψ(x, y) (5.4)
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dx
1
i
ψ(x, y) ∈ J+, −dy

1
i
ψ(x, y) ∈ J−. (5.5)

When x = y, this implies that

dxi
−1ψ(x, y) = −dyi−1ψ(x, y) ∈ Σ.

We also know from the construction that

ψ(x, x) = 0. (5.6)

On the other hand, we know that Σ is given by Re ξdx = Re 2
i
∂φ
∂xdx (using

the notations of Section 2 but writing x, ξ instead of z, ζ), so we get for
x = y:

dx
1
i
ψ(x, y) = Re

2
i

∂φ

∂x
dx =

1
i

∂φ

∂x
dx− 1

i

∂φ

∂x
dx.

Hence for x = y:

∂ψ

∂x
=
∂φ

∂x
,
∂ψ

∂x
= −∂φ

∂x
,
∂ψ

∂y
= −∂φ

∂x
,
∂ψ

∂y
=
∂φ

∂x
. (5.7)

Since Π is selfadjoint modulo O(h∞), we also have

b(x, y;h)∗ = b(y, x;h), (5.8)

where the * indicates that we take the complex adjoint of

b(x, y;h) : Λ0,qT ∗
yX → Λ0,qT ∗

xX.

In terms of

ũ = (seφ)ku, ṽ = (seφ)kv ∈ E0,q(X̃;Lk),

we get from v = Πu, that ṽ = Π̃ũ, with

ṽ = h−n
∫
eψ(x,y)/hb̃(x, y;h)ũ(y)m(dy), (5.9)

where the “symbol”

b̃(x, y;h) = (s(x)eφ(x))kb(x, y;h)(s(y)eφ(y))−k (5.10)

maps
Lky ⊗ Λ0,qT ∗

yX → Lkx ⊗ Λ0,qT ∗
xX (5.11)

and satisfies (5.8), now in the sense of maps as in (5.11). Notice that though
seφ is normalized, the “symbol” b̃ may contain oscillations, contrary to the
true symbol b.
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Let s1 be a second non-vanishing local holomorphic section of L with
|s1| = e−2φ1 , so that s1eφ1 is normalized. In the intersection of the domains
of definition, we have

s1e
φ1 = seφeig,

with g real and φ1−φ pluriharmonic. We then have the local representation

ũ = (s1eφ1)ku1, ṽ = (s1eφ1)kv1,

and a null-projection that is unitarily equivalent to the one in (5.2):

Π1u1(x) = h−n
∫
eψ1(x,y)/hb1(x, y;h)u1(y)m(dy), h = 1/k. (5.12)

Since the heat parametrix constructed in Section 3 is unique modO(h∞) :
H−∞

comp → H∞
loc, we have the corresponding facts for the local resolvents and

null-projections, so (5.12) necessarily leads to the same relation (5.9), and
we can also relate Π, Π1 more directly, by writing

u1 =
( seφ
s1eφ1

)k
u = e−ikgu = e−ig/hu,

to get
Π1 = e−ig/h ◦Π ◦ eig/h,

so
b1 = b, ψ1(x, y) = ψ(x, y)− ig(x) + ig(y). (5.13)

In particular, Reψ(x, y) does not depend on the choice of local holomorphic
section s. The argument above gives a clear idea about the asymptotic
behaviour of the kernel of the projection onto the space of q-harmonic forms.
To justify this idea we shall consider the global resolvents.

On the full manifold X we know that the Hodge Laplacians ∆̃q−1, ∆̃q+1

have no spectrum below h/C for some C > 0 (as could easily be proved
using Theorem 3.5) and by a standard argument, we conclude that the
spectrum of ∆̃q below h/C is reduced to {0}. For z in a set (4.13) we can
glue together the local operators R(z) of Section 4 to an operator R̃(z) (or
rather we first glue together the locally unique heat kernels to a global one
and then define R̃(z) as in (4.14)) in such a way that

(z − ∆̃q)R̃(z) ≡ R̃(z)(z − ∆̃q) ≡ 1 modO(h∞) : H−∞(X) → H∞(X).
(5.14)

Here we define the Sobolev spaces Hs(X) = Hs(X,L) of sections of Lk with
h = 1/k in a straightforward way from the local representations (5.1), by
means of coverings and partitions of unity. The choice of such coverings and
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partitions will affect the Hs-norm only up to an equivalence that is uniform
in k.

Since ∆̃q is an elliptic operator in the classical sense, we know on the
other hand that for z in the set (4.13),

(z − ∆̃q)−1 = O(h−N0−1) : Hs → Hs+2 (5.15)

for all s ∈ R, so combining this with (5.14), we get

(z − ∆̃q)−1 ≡ R̃(z) modO(h∞) : H−∞ → H∞. (5.16)

Notice that the distribution kernel of an operator which is O(h∞) : H−∞ →
H∞ is O(h∞) together with all its derivatives. On the other hand, the
approximate global projection Π̃ discussed earlier in this section satisfies
(cf. Proposition 4.2)

Π̃ ≡ 1
2πi

∫
|z|=r

R̃(z)dz modO(h∞) : H−∞ → H∞, (5.17)

while the true nullspace projection of ∆̃q,

Π0 : 1{0}(∆̃q) (5.18)

satisfies
Π0 =

1
2πi

∫
|z|=r

(z − ∆̃q)−1dz. (5.19)

Combining (5.16), (5.17), (5.19), (5.8), we get the main result of this
work:

Theorem 5.1. — Let L be a Hermitian holomorphic line bundle over a
compact complex manifold X and fix a positive smooth measure m(dx) on
X, so that the Hodge Laplacian ∆̃q = ∆̃q,k = ∂

∗
∂ + ∂∂

∗
is well-defined on

(0, q)-forms with coefficients in Lk, k ∈ N. Assume the curvature of L has
constant signature (n−, n+) with n− + n+ = n := dimX. Then for k % 1,
the null-space of ∆̃q,k is reduced to 0 when q �= n−.

In the case q = n−, let s be a non-vanishing holomorphic section of L on
the open subset X̃, so that (5.1) gives a unitary map between (0, q)-forms on
X̃ and (0, q)-forms on X̃ with coefficients in Lk. If Π0 denotes the orthogonal
projection onto the null-space of ∆̃q, we put Π0,su = (seφ)−kΠ0(seφ)ku,
u ∈ L2(X̃,Λ0,qT ∗X̃). Then the distribution kernel of Π0,s is of the form

KΠ0,s(x, y) = h−neψ(x,y)/hb̃(x, y;h) + r(x, y;h), h = 1/k, (5.20)
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with ψ, b̃ as in (5.9), (5.3) , (4.23), (5.5), (5.6), (5.7), (5.8) and where
∂αx,yr = O(h∞) for all α.

Remark 5.2. — Theorem 5.1 also holds for the more general situation
of (0, q)-forms with values in Lk ⊗ E, where E is a rank r holomorphic
Hermitian vector bundle over X. Indeed, locally E is isomorphic to the
trivial holomorphic vector bundle Cr ×X with a Hermitian metric γ. The
local expression (2.14) for ∆q then still holds if the operators hZj + Zj(φ)
and their adjoints are tensored by Ir, the identity matrix on Cr. This follows
from the fact that the Hermitian metric γ on E is independent of h = k−1.
Moreover, globally there is still a spectral gap for the same reason (as is well-
known), giving an asymptotic expansion as before. For example, if µn is a
general volume form on X and ωn is the one induced by the given Hermitian
metric on X, then the function µn/ωn defines a Hermitian metric on the
trivial line bundle E.

6. Change of complex structure

In this section we will investigate some relations to [44] (see also [12]).
Let us first recall the setting in [44]. Assume given a symplectic manifold
(X,ω) such that πω represents an integral cohomology class. Then there
exists a Hermitian line bundle L over X with a unitary connection ∇ whose
curvature satisfies i

2Θ = ω (compare Section 6.2 for notation). Take an
almost complex structure J ′ on X (i.e. J ′ ∈ End(TX), J ′2 = −I) such that

(i) ω(J ′v, J ′w) = ω(v, w)
(ii) ω(v, J ′v) > 0 (6.1)

for all v, w in TX. We decompose

TX ⊗C = T 1,0(X, J ′)⊕ T 0,1(X, J ′),

so that J ′ ⊗ C = i ⊕ −i (then 6.1 means that ω is a positive (1, 1)−form
with respect to J ′). Then we get an operator ∇0,1 := ∂J′ acting on sections
of L. Furthermore, a Riemannian metric g is said to be compatible with J ′

if
g(J ′v, J ′v) = g(v, v), (6.2)

i.e. g corresponds to the real part of a Hermitian metric on T 1,0(X, J ′).

In [44] Shiffman and Zelditch, motivated by the work [20] of Donald-
son, define a sequence of spaces imitating H0(X,Lk) in the usual integrable
case. A naive choice would be the kernel of ∂J′ acting on Lk, but if J ′
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is non-integrable then these spaces are too small. Instead, Shiffman and
Zelditch, following Boutet de Monvel and Guillemin [12], introduce a se-
quence of spaces of so called asymptotically almost holomorphic sections.
The main result in the present section (theorem 6.5) says that the dimen-
sion of the null-space of ∆q, studied in the previous sections, coincides with
the dimension of a space of asymptotically almost holomorphic sections.
The latter space is defined with respect to a new almost complex structure
on the original complex manifold X. It would be very interesting to know
if this correspondence could be extented to the level of Bergman kernels in
a suitable sense, in particular in view of the results in [35] on lower order
terms of generalized Bergman kernels. It should finally be pointed out that
in [44] the analysis is reduced to the homogenous theory in [12] by adding a
varible dual to k, i.e. by embedding X in the unit circle bundle in L∗ (this
is a global version of the reduction used in proposition 3.3). But since we
work directly in a semiclassical inhomogenous setting we have developped
some of the material in [44] from our point of view.

6.1. The pair (J, J ′)

We now return to the situation in the previous chapters, i.e. we take L to
be a Hermitian line bundle which is also holomorphic over (X, J) where J
denotes the integrable complex structure. Then it has a canonical connection
∇ (see Section 6.2). The curvature Θ of ∇ is assumed to be of signature
(n−, n+) = (q, n − q) and we will call q the index of Θ. Hence, ω := i

2Θ
is not positive with respect to J, unless q = 0. However, given a Hermitian
metric H on T 1,0(X, J) as in Section 2 (so that its real part corresponds to
g in (6.2)) we can define an almost complex structure J ′ making ω positive,
in the following way. Split the real tangent bundle TX as

TX = (TX)− ⊕ (TX)+ (6.3)

according to the positive and negative eigenspaces of ω(·, J ·) with respect
to the metric g. Then J splits as J+ ⊕ J− by restriction. Now define J ′ by
the splitting

J ′ = (−J−)⊕ J+. (6.4)

Then, clearly, ω(v, J ′v) > 0. Equivalently, let ei be a local frame for
T ∗0,1(X, J), orthonormal with respect to H, such that

Θ =
∑
i

λiei ∧ ei, (6.5)

where λi < 0 for i � q and λi > 0 for i > q. Let e′i = ei for i � q and
e′i = ei for i > q. Then T ∗0,1(X, J ′) is spanned by all e′i and Θ = |λi| e′i∧e′i
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satisfies (6.1). The canonical connection ∇ on the Hermitian line bundle L
induced by J now gives an operator ∇0,1 := ∂J′ (decomposing with respect
to J ′).

In the sequel X and X ′ will denote the almost complex manifolds (X, J)
and (X, J ′) respectively and in general a prime on an object will indicate
that it is defined with respect to the almost complex structure J ′.

Remark 6.1. — Even though the pair (ω, J ′) fits into the setup of [44] it
should be pointed out that the Riemannian metric ω(v, J ′w) on X was used
in [44], but we will use the the Riemannian metric g induced by the given
Hermitian metric H instead. It should be pointed out that the results in this
paper are independent of the metric, but the metric may be important in a
more refined study involving Bergman kernels. Also, in [44] the asymptotics
of projection operators acting on Lk were studied, but as mentioned there,
the case Lk ⊗ E where E is a complex vector bundle is similar. In Section
6.5 we will study Lk ⊗ E for a certain complex line bundle E = K−

X′ .

6.2. Connections and commutation relations

Let us first recall some basic facts about connections [50],[24]. A connec-
tion ∇ on a complex line bundle L over a real manifold X is an operator

∇ : C∞(X;L) → C∞(X;L⊗ T ∗X)

satisfying Leibniz rule: ∇(fs) = df⊗s+f∇s for f a function and s a section
of L. Given a vector field v on X the contracted operator ∇v on sections of
L is called the covaraint derivative along v. The curvature two-form Θ of ∇
can be defined by

Θ(v, w) = [∇v,∇w]−∇[v,w], (6.6)

where v and w are vector fields on X. If L has a Hermitian metric 〈·, ·〉 ,
then a connection ∇ is called unitary if

d 〈s, t〉 = 〈∇s, t〉+ 〈s,∇t〉 (6.7)

and if L is a holomorphic line bundle over a complex manifold X, then ∇
is called holomorphic if

∇0,1 = ∂ (6.8)

i.e. ∇0,1s = 0 if s is a holomorphic section. There is a unique unitary
holomorphic connection (see below) on a Hermitian holomorphic line bundle
L. If (X, J) is only an almost complex manifold, any given connection ∇
defines an operator ∂J := ∇0,1 acting on sections with values in L, but there
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is no canonical operator ∂J on L. In the following we will only consider
unitary connections ∇ on L over an almost complex manifold (X, J).

The local situation is as follows. Let t be a local unitary trivializing
section of L and let A be the local one form defined by ∇t = A ⊗ t. Note
that ∇ is unitary (i.e. (6.7) holds) precisely when A is an imaginary one
form. Now we get the local representation ∇ = d+A, i.e.

∇(fs) = (d+Af)s, (6.9)

and the curvature two-form Θ of ∇ is locally given by

Θ = dA. (6.10)

If t̂ = eigt is another unitary frame for L over U, then, using Leibniz rule,
the corresponding one form is given by

Â = A+ idg, (6.11)

confirming that the curvature two-form (6.10) is independent of the local
frame. Take local dual orthonormal frames Zi and ei for T 0,1(X, J) and
T ∗0,1(X, J), respectively as in Section 2. Splitting ∇ = ∇1,0 +∇0,1 we may
then write

∇ =
∑
i

(ei∇i + ei∇i), (6.12)

where ∇i := ∇Zi and ∇i are the corresponding covariant derivatives along
Zi and Zi respectively. Let us now consider some local commutation rela-
tions. Write

[Zi, Zj ] =
∑

p(a
p
ijZp − a

p
jiZp)

[Zi, Zj ] =
∑

p(f
p
ijZp +Np

ijZp)
, (6.13)

where the bracket denotes the commutator between the corresponding dif-
ferential operators. Then Np

ij is identically zero precisely when T 1,0(X, J) is
closed under the bracket, which in turn is equivalent to J being integrable
[27, 44]. In general the Np

ij define the so called Nijenhuis tensor of the al-
most complex structure J. Now, using formulas (6.6) and (6.13) we get the
following commutation relations:

[∇i,∇j ] = Θ(Zi, Zj) +
∑

p(a
p
ij∇p − apji∇p)

[∇i,∇j ] =
∑

p(f
p
ij∇p +Np

ij∇p),
(6.14)

where we have used that Θ vanishes on T 0,1X ⊗ T 0,1X, by the assumption
(6.1) (i) on J.
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Let us now specialize to our original situation (compare Section 6.1),
where J is integrable and Θ has index q and take a local frame ei diagonal-
izing Θ. Recall (Section 2) that |s|2 = e−2φ where s is a local holomorphic
trivializing section of L so that t :=: eφs is a local unitary section. Then if
∇ denotes a connection satisfying (6.7) and (6.8) we see that ∇ is unique
since the local one form A is given by

A = −∂φ+ ∂φ, Θ = dA = 2∂∂φ (6.15)

Indeed, the assumption (6.8) gives as in Section 2 that ∇0,1 is locally rep-
resented (with respect to t) by

∂ + ∂φ =
∑
i

ei(Zi + Ziφ)

and since A is imaginary (by (ii)) we get (6.15). Moreover, we get that
Θij = λiδij and Np

ij = 0 in (6.14). Next, introducing the complex structure
J ′ defined above corresponds to letting

∇
′

i = ∇i, i � q and ∇′

i = ∇i, i > q (6.16)

since the decomposition (6.12) of ∇ changes in the corresponding way.

6.3. Symbols and ideals

We will now consider an arbitrary almost complex structure J again and
replace L by Lk and consider semiclassical symbols as in Section 2 (setting
h = k−1). The discussion will be local on U , given a unitary trivializing
section t over U and dual orthonormal frames Zi and ei for T 0,1(U, J) and
T ∗0,1(U, J), respectively. Any given connection ∇ on L induces a connection
on Lk, that we also denote by ∇ (i.e. locally A in (6.9) is replaced by kA).We
denote by σ the semiclassical principal symbol map (compare the discussion
about semiclassical principal symbols following the proof of proposition 2.1)
and let

qi := σ(h∇i)

in terms of the decomposition (6.3) (i.e. qi is the principal symbol of the
ith component of h∂J). We will call J = (q1, ..., qn) the symbol ideal of ∂J .
Since ∇ is unitary, i.e. it satifies (6.7), integration by parts gives

σ(−h∇i) = σ(h∇∗
i ) = qi, (6.17)

also using the general fact that σ(D∗) = σ(D) in the last equality. Recall
the following general relation between the operator bracket and the Poisson
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bracket:
σ[D1, D2] = −ih {σ(D1), σ(D2)} ,

Hence, the commutator relations (6.14) become:

i {qi, qj} = Θ(Zi, Zj) +
∑

p(a
p
ijqp − a

p
jiqp)

i {qi, qj} =
∑

p(f
p
ijqp +Np

ijqp),
(6.18)

Let now J and J ′ be as in Section 6.1. Note that when ∇ is the canonical
connection determined by J, the local expression (6.15) shows that

h∇i = hZi + hZiφ

and note that (6.18) is consistent with the formula (2.23). Now (6.18) and
(6.17) give q′i = −qi for i � q and q′i = qi for i > q. In particular, the zero
varieties in T ∗U defined by the symbol ideals J and J ′ coincide and are
equal to the real characteristic variety Σ = {p0: := σ(∆q) = 0} , where p0 is
as in formula (2.15). In Section 3 the local almost holomorphic manifold J+

in the almost complexification of T ∗X was introduced. It corresponds to a
local ideal J + of local smooth functions on the symplectic manifold T ∗X
such that for all f in J +

∂f̃J+(x) = O(Imx)∞,

where f̃ denotes an almost holomorphic extension of f from T ∗X. The
properties of J+, reviewed in (3.15), when formulated in terms of the ideal
J +, can be stated as the following lemma [12],[44],[40], where IΣ denotes
the ideal of elements in C∞(X,C) vanishing on Σ.

Lemma 6.2. — There exists a unique positive Poisson ideal J + with
respect to Σ containing p0. That is, there exists a unique ideal J + ⊂ IΣ with
common zero set Σ satisfying (i) J + is closed under the Poisson bracket
and (ii) there are generators qi of J + such that the matrix 1

i {qi, qj} is
positive definite on Σ and p0 ∈ J +.

Note that by (6.18) the ideal J fails to satisfy the positivity condition (ii)
above, since Θ is assumed to have index q. On the other hand, the positive
ideal J ′ only satisfies condition (i) mod IΣ (compare Proposition 6.5). By
the uniqueness of J +, we then deduce that J + = J ′ mod I2

Σ. In fact, the
ideal J + can be constructed from J ′ by induction with respect to N on
the vanishing order INΣ [44] so that J + is unique mod INΣ for each N.

Remark 6.3. — The uniqueness mod I2
Σ in Lemma 6.2 is equivalent to

the well-known fact that given a Riemannian metric g on a symplectic man-
ifold (X,ω) there is a unique almost complex structure J such that (6.2)
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and (6.1) hold. The point is that given (X,ω, g, J) we get a map

(T 0,1X, J) → J +/I2
Σ, Zi �→ σ(h∇Zi) =: qi

By (6.18) the conditions (6.1) on ω correspond to the conditions in Lemma
6.2 on the Poisson brackets when restricted to Σ and the condition (6.2) on
g corresponds to the condition on p0 = σ(∆). However, Lemma 6.2 applies
to a more general situation where p0 is a general function on a symplectic
manifold Y (replacing T ∗X with its usual symplectic form) vanishing to
second order on Σ := {p0 = 0} . Then one gets a complex structure on the
normal bundle TY/TΣ of Σ in Y [12].

One final

Remark 6.4. — In Section 3 J+ was only locally defined, but it corre-
sponds to a global submanifold of the almost complexification of the affine
bundle AX defined in Section 8.

6.4. J ′ is generically non-integrable

We will call a function f on T ∗X fiber affine if it is affine on each fixed
fiber of T ∗X. Equivalently, f is fiber affine if it is the semiclassical principal
symbol of a first order h−differential operator on X. Consider C2 with its
standard complex structure and metric and let L be the trivial holomorphic
line bundle with fiber metric φ. We will also assume that the index of the
curvature Θ = 2∂∂φ is one.

Proposition 6.5. — The almost complex structure J ′ is non-integrable
for generic fiber metrics φ. More precisely, J ′ is non-integrable if

∂3φ

∂2z1∂z̄2
�= 0 (6.19)

at 0. In particular, the ideal J + has no fiber affine generators then.

Proof. — We will identify Θ with a Hermitian matrix: Θij := Θ( ∂
∂z̄i
, ∂
∂zj

)

= −2 ∂2φ
∂zj∂z̄i

with respect to the standard orthogonal frame ∂
∂z̄i

and we may
assume that Θ(0) is diagonal. Denote by Zi an orthonormal frame diago-
nalizing Θ close to z = 0, i.e. Dij := Θ(Zi, Zj) =: −δijλi. Equivalently,
Zi = U ∂

∂z̄i
where the matrix valued function U satisfies

(i) U∗U = I (ii) U∗ΘU = D , (6.20)
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denoting by U∗ the Hermitian adjoint U
t
. By the definition (6.4) of J ′

and the subsequent discussion we may take Z ′
1 = Z1 and Z ′

2 = Z2. In
particular, J ′ is non-integrable if a121, defined with respect to J in (6.13), is
non-vanishing at the origin. Now observe that at z = 0,

−a121 =
〈
[Z1, Z2], Z1

〉
= (

∂

∂z1
u21)(0) (6.21)

Indeed, Z1 = ∂
∂z̄1

at z = 0 and when calculating

[Z1, Z2] = [u11
∂

∂z1
+ u12

∂

∂z2
, u21

∂

∂z̄1
+ u22

∂

∂z̄2
],

we can use Leibniz rule for the bracket to expand the right hand side and
get terms of the form

(u11[
∂

∂z1
, u21])

∂

∂z̄1
+ ...

But since, uij(0) = δij the other term proportional to ∂
∂z̄1

vanishes at z = 0,
proving (6.21). Hence, we just have to show that ( ∂

∂z1
u21)(0) �= 0, if (6.19)

holds. To this end, apply ∂
∂z1

to (6.20) and use that U(0) = I and Θ(0) = D
to get at z = 0

(i)
∂

∂z1
(U∗) = − ∂

∂z1
U, (ii)

∂

∂z1
Θ + [D,

∂

∂z1
U ] =

∂

∂z1
D. (6.22)

In particular,
∂

∂z1
Θ21 − (λ1 − λ2)

∂

∂z1
u21 = 0,

i.e. at z = 0 we have

∂

∂z1
u21 = 2

∂3φ

∂2z1∂z̄2
/(λ2 − λ1)

By (6.21) this proves first part of the proposition about the non-integrabili-
ty of J ′.

The second part is a direct consequence of the first part, by the way
J + is constructed in [12]. Indeed, by the uniqueness property mod I2

Σ in
Lemma 6.2 we have, since J + is assumed to be generated by fiber affine
functions, that J + = (q

′

1, q
′

2, ..., q
′
n). But then the assumption that J + is

a Poisson ideal forces N
′p
ij = 0 in the relations corresponding to (6.18) for

the almost complex structure J ′. But this contradicts the first part of the
proposition. �
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6.5. Partial Serre duality

In this section J and J ′ (and X and X ′) will be as in Section 6.1. More-
over, we will consider globally defined symbol ideals etc (compare Remark
6.4). Denote by H0,q(X,Lk) the global null space of ∆q and denote in this
section by Πq

X the orthogonal projection on H0,q(X,Lk). In simple cases,
e.g. when X is a product of complex curves and L is the product of pulled
back line bundles one can show that that, for k sufficiently large, any element
α in H0,q(X,Lk) may be written locally as

α = fe1 ∧ ... ∧ eq

with respect to a frame as in formula (6.5). Moreover f is holomorphic with
respect to a new integrable complex structure of the form J ′. In fact, this
follows from “partial Serre duality”, i.e. Serre duality along the negative
directions of the line bundle in the product case. In this section we will
show that a version of this phenomenon, with J ′ possibly non-integrable,
persists for general X.

Denote by KX the canonical line bundle on X = (X, J), i.e. KX is the
holomorphic line bundle Λn,0(T ∗X, J) (considering (T ∗X, J) as a holomor-
phic vector bundle). The splitting (6.3) then induces a decomposition of
complex line bundles

KX = K−
X ⊗K+

X (6.23)

where K−
X := Λq,0((T ∗X)−, J) and K+

X := Λn−q,0((T ∗X)+, J). Note that
the bundles K±

X are not holomorphic in general. Now

K−
X′ := K−

X = Λq,0((T ∗X)−, J ′)

is a complex line bundle on X ′ with a connection induced by the canonical
connection on (TX, J) determined by the metric g and the complex struc-
ture J. Given a sufficiently large integer k the complex line bundle Lk⊗K−

X′

over X ′ has positive curvature with respect to J ′ and fits into the setup in
the beginning of Section 6. Denote by H0(X ′, Lk⊗K−

X′) the space of asymp-
totically almost holomorphic sections defined in [44] (see Remark 6.1) We
will just recall that H0(X ′, Lk ⊗ K−

X′) is defined as the range of a global
projection operator Π0

X′ , which is a Fourier integral operator with complex
phase and its canonical relation can be described in the following way. Let
Σ′ be the real characteristic variety of ∂J′ and let J ′+ be the ideal obtained
from Lemma 6.2 applied to Σ′. Then the canonical relation may be written
as C′= J ′+ ×Σ′ J ′+, which is to be interpreted in terms of bicharacteristic
strips as in the expression for C∞ (the canonical relation of Πq

X) in Section
3. But since Σ′ = Σ, as observed in Section 6.3, the uniqueness in Lemma
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6.2 gives J ′+ = J + and hence C′ = C∞. The construction in [44] actually
only determines Π0

X′ mod O(k−∞) i.e. the asymptotics of its distribution
kernel is only determined up to terms of order O(k−∞). But this means
that the dimension of H0(X ′, Lk ⊗K−

X′) is independent of the construction
for k sufficiently large. We will now prove the following

Theorem 6.6. — Assume that the index of Θ is q. Then, for k suffi-
ciently large,

dimH0,q(X,Lk) = dimH0(X ′, Lk ⊗K−
X′). (6.24)

Furthermore, if KX has a square root K1/2
X , then

dimH0,q(X,Lk ⊗K1/2
X ) = dimH0(X ′, Lk ⊗K1/2

X′ ), (6.25)

where the right hand side is defined using the induced connection on K1/2
X′ .

Proof. — In the proof we will identify TX := (TX, J) with T 1,0(X, J)
as complex vector bundles, so that Λr,0(T ∗X, J) is identified with Λr(T ∗X)
(in particular KX = Λn(T ∗X) and similarly for TX ′ := (TX, J ′). Let us
first prove (6.24). Observe that for k sufficiently large, the left hand side of
(6.24) is given by

dimH0,q(X,Lk) = (−1)q
∫
X

Td(TX) ∧ ekc
1(L), (6.26)

where Td(TX) is the Todd class of the complex vector bundle (TX, J). In-
deed, for any line bundle L the Riemann-Roch theorem [24],[23] applied to
the complex (E0,∗(X,Lk), ∂) gives that the alternating sum of the dimen-
sions of the spaces H0,j(X,Lk) is given by the right hand side in (6.26).
Moreover, if L has index q, then the dimensions of all H0,j(X,Lk) such that
j �= q vanish for k sufficiently large (as follows from Proposition 2.4) giving
(6.26). Similarly, it was shown in [12] that the right hand side of (6.24) is
given by

dimH0(X ′, Lk ⊗K−
X′) =

∫
X′
Td(TX ′) ∧ ekc

1(L)+c1(K−
X′ ), (6.27)

now using the Todd class of the complex vector bundle (TX, J ′). Using
(6.26) and (6.27) and the fact that [X ′] = (−1)q[X] as integration currents
(since the orientation depends on the almost complex structure) it is enough
to show that

Td(TX) ∧ ekc
1(L) = Td(TX ′) ∧ ekc

1(L)+c1(K−
X′ ). (6.28)
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to prove the theorem. To this end, we first recall the following basic prop-
erties of the Todd class. Let F be a complex line bundle and E1 and E2

complex vector bundles over a real manifold X. Then

(i) Td(F ) = c1(F )/(1− e−c1(F ))
(ii) Td(E1 ⊕ E2) = Td(E1) ∧ Td(E2)

, (6.29)

where the expression in (i) is to be interpreted as a formal power series in
c1(F ), yielding a polynomial in c1(F ), since c1(F )j vanishes if j > n. In fact,
by the “splitting principle” the properties (6.29) determine Td uniquely [10].
Next, we will show that the following universal identity holds

Td(E) ∧ ec
1(E) = Td(E). (6.30)

To prove a universal identity between characteristic classes it is, by the
“splitting principle” enough to prove it when E is a direct sum of line
bundles over a manifold Y. Moreover, by (6.29) (ii) and the multiplicativity
of ec

1
we may then assume that E is a line bundle. By (6.29) (i) the identity

(6.30) is then equivalent to the function identity

x

1− e−x =
−x

1− e−(−x) · e
x

which clearly holds. Let us now finish the proof of the identity (6.28). By
the definition of J ′ the splitting (6.3) gives

TX ′ = TX− ⊕ TX+

as complex vector bundles. Substituting this into the right hand side of
(6.28) and using the multiplicative property (6.29) (ii) we see that it is
enough to show that

Td((TX)−) = Td((TX)−) ∧ ec
1(K−

X′ ).

Finally, since c1(K−
X′) := c1(Λq((T ∗X)−) = c1((TX)−), the identity (6.28)

follows from the identity (6.30) applied to E = (TX)−. This finishes the
proof of (6.24). To prove (6.25), note that the previous argument also shows
that (6.24) remains true after replacing Lk by Lk⊗F in both sides of (6.24),
where F is a complex vector bundle. In particular, letting F = K1/2

X we get,
using the decomposition (6.12), that F ⊗K−

X′ is given by

((K−
X)1/2 ⊗ (K+

X)1/2)⊗ (K−
X)−1 = K−1/2

X− ⊗K1/2
X+ = K1/2

X′

where we have used that E + E∗ := E−1 for any complex line bundle E.
This proves (6.25). �
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Remark 6.7. — To prove the second part of the previous theorem one
could also use that any almost complex structure whose canonical line bun-
dle has a square root determines a spin structure on X. Then the use of
the Riemann-Roch theorem may be replaced by the index theorem for the
correponding Dirac operator. In this context it is well-known that the index
only depends on the induced orientation of the real manifold X. See [23].

7. Examples: Flag manifolds

In this section we will recall (without giving proofs) the construction of
flag manifolds and their homogeneous line bundles, emphasizing the complex
analytical aspects. It turns out that the new almost complex structures J ′

(defined by (6.4)) in this context are actually integrable and we show that
Theorem 6.6 corresponds to a weak version of the Borel-Weil-Bott theorem.
For general references on flag manifolds see [7][29][22][1]. See also [31] and
[28] where they are also studied from an asymptotic point of view.

Let K be a compact semi-simple real Lie group and take a maximal
connected Abelian subgroup T of K (i.e. a maximal torus of K). The
K−homogenous manifold X := K/T is called a flag manifold. Recall that
the complexification of the Lie algebra k of K decomposes as

kC = tC

⊕
α∈∆

Eα (7.1)

diagonalizing the adjoint action of t on k (acting by the Lie bracket). The
label α of the eigen space Eα is called a root and it defines a non-zero
element of t∗C :

[t, Zα] = (α, t)Zα

for any element Zα, called a root vector, of the root space Eα. From (7.1)
and a consistent choice of positive roots ∆+ one gets a decomposition at
the identity element e of K :

TeX ⊗C ∼=
( ⊕
α∈∆+

⊔
−∆+

Eα

)
=: T 1,0

e X ⊕ T 0,1
e X (7.2)

inducing an invariant integrable complex structure on X. In fact, exponen-
tiating the (1, 0) part of (7.2) expresses X as a holomorphic quotient,

X := K/T � G/B, (7.3)

where B is a Borel group in the complexification G of K.We fix a Hermitian
invariant metric on K/T making the decomposition (7.2) orthogonal.
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The Hermitian holomorphic line bundles onX may be identified with the
weight lattice in t∗, i.e. the elements λ of t∗ that exponentiate to characters
on the torus T , with values in U(1). To see this, recall that in general a
hermitian line bundle over a manifold X can be considered as the vector
bundle associated to a principal U(1)−bundle over X. In our situation K is
a principal T−bundle over X(= K/T ) and since λ induces a homomorphism
of the fiber T into U(1) it determines a Hermitian line bundle Lλ over X.
The curvature two form Θλ of Lλ is determined by

Θλ(Zα, Zβ) = δαβcα 〈λ, α〉 (7.4)

using the Killing form 〈·, ·〉 on t∗C, where Zα is a normalized root vector in
Eα and cα is a certain positive number. Formula (7.4) shows that the index
of Θλ is equal to the index of λ, where the latter is defined as the number of
positive roots α such that 〈λ, α〉 < 0. The hyper planes kerα divide t∗ into
so called Weyl chambers and the index is constant for all λ in the interior
of a chamber. In the following we will assume that the curvature of Lλ is
non-degenerate i.e. that λ is in the interior of a chamber.

Example 7.1. — Let K = SU(n+ 1). Then T = U(1)n and G = SL(n+
1,C) with B the subgroup of upper triangular matrices and X is the man-
ifold of all complete flags in Cn+1, i.e. the set of all n−tuples of linear sub-
spaces (V1, ...Vn) such that Vi� Vi+1 For example, if n = 1, then X = P1

and the conjugate complex manifold P1 is obtained by letting B be defined
by lower triangular matrices. Moreover, t = iR, the weight lattice is, under
proper normalization, iZ and the Weyl chambers are the positive and nega-
tive half-axes. The element im corresponds to the line bundle O(m), whose
sections are the homogoneous polynomials of degree m. If n = 2, then X
may be identfied with the three dimensional manifold

(Z,W ) ∈ P2 ×P2 : Z0W0 + Z1W1 + Z2W2 = 0, (7.5)

in terms of homogenous coordinates and the action of SU(3) is given by the
action

(A; (Z,W )) �→ (AZ, (At)−1W ).

The weight lattice is now iZ2 and there are six Weyl chambers. This follows
from the representation theory of SU(3) but using the realization (7.5)
it is straight forward to see that all line bundles on X are obtained as
π∗1(O(m)) ⊗ π∗2(O(n)) in terms of the projections on the factors in (7.5).
Moreover, by homogenity it is, using the fiber metric induced by the Fubini-
Study metric, enough to calculate the index at a given point. Then one sees
that there are six chambers determined by linear conditions on m and n.
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7.1. Change of complex structure - The Weyl group

The Weyl group is the group generated by the reflections in the hyper
planes kerα determined by the roots. It preserves the weight lattice and acts
transitively and simply on the set of Weyl chambers. In particular, if λ has
index q there is an element w of the Weyl group such that w(λ) is positive.
Dualy, the action of the Weyl group may be interpreted as a change of the
complex structure J. Indeed, since

〈w(λ), α〉 > 0 ⇔
〈
λ,w−1(α)

〉
> 0 (7.6)

the weight w(λ) is in the positive Weyl chamber if and only if the line
bundle Lλ is positive with respect to Jw, where Jw is the complex structure
determined by the positive roots w−1(α). Hence, Lλ determines a unique
invariant complex structure on X, making Lλ positive. More concretely,
assume that the positive roots αi are labeled so that

〈λ, αi〉 < 0, i � q, 〈λ, αi〉 > 0, i > q

This means that the functional defined by λ is positive precisely on the
subset

{−α1, ...,−αq, αq+1, ...} (7.7)

of the set the roots. By (7.6) this set must then be the image of the positive
roots under w−1 (which is known to permute the roots). Furthermore, the
action of w induces an isomorphism of holomorphic line bundles:

Lµ → Lw(µ)

↓ ↓
G/Bw → G/B

, (7.8)

where G/Bw is the holomorphic quotient corresponding to (X, Jw). The
point is that w can be identified with an element of K, acting on G by the
adjoint action.

7.2. The Borel-Weil-Bott theorem

Theorem 6.6 applied to a homogenous line bundle L over the homogenous
complex manifold X (that can be represented as in (7.3)) gives, with ρ :=
1
2

∑
α∈∆+

α :

Corollary 7.2. — Assume that the weight λ is in the interior of a
Weyl chamber and that it has index q. Then, after replacing λ by a suffi-
ciently large multiple,

dimHq(G/B,Lλ) = dimH0(G/Bw, Lλ+ρ−w−1(ρ)). (7.9)
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Equivalently, fixing the complex structure J on K/T :

dimHq(K/T,Lλ) = dimH0(K/T,Lw(λ+ρ)−ρ) (7.10)

Proof. — Assume that Lλ has index q and let J ′ be the new invariant
almost complex structure determined by (6.4). Then J ′ is an almost complex
structure such that Lλ is positive with respect to J ′ and so is the complex
structure Jw determined by w in the Weyl group as explained in Section
7.1. By the uniqueness in Remark 6.3 we have J ′ = Jw. Hence, Theorem
6.6 gives (7.9), but with the line bundle Lλ ⊗K−

X′ in the right hand side.
To see that Lλ ⊗K−

X′ = Lλ+ρ−w−1(ρ) note that, given the ordering of the
positive roots in Section 7.1,

K−
X′ ↔

q∑
i=1

αi = ρ− w−1(ρ) (7.11)

Indeed, from the definition (7.2) of the complex structure J on K/T

T 1,0X =
⊕
α∈∆+

Lα,

where Lα is the line bundle corresponding to the root α, giving

KX = Λn(T ∗1,0X) +
⊗
α∈∆+

L−α = L−2ρ

and a similar argument gives the first correspondence in (7.11). Finally,
since the image of the positive roots under w−1 is given by (7.7),

ρ− w−1(ρ) =
1
2
(
q∑
i=1

αi +
n∑

i=q+1

αi)−
1
2
(
q∑
i=1

−αi +
n∑

i=q+1

αi) =
q∑
i=1

αi

Now the induced isomorphism (7.8) applied to µ = λ+ρ−w−1(ρ) proves
(7.10). �

The previous corollary (in the formulation (7.10)) is a weak version of
Bott’s generalization of the Borel-Weil theorem [8],[9]. The Borel-Weil-Bott
theorem may also be proved using Lie algebra cohomology [30][52].
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8. Appendix: The affine bundle AX

We will define an affine bundle AX over X with symplectic form Ω so
that the global sections of AX are the unitary connections of the Hermitian
line bundle L over X. Given an open set U and a local unitary frame t
for L over U we identify (AU,Ω) with (T ∗U, dp ∧ dx) in terms of the usual
coordinates (x, p) on T ∗U. If t̂ = eigt is another unitary section the two
identifications are assumed to be related by

(x, p̂1, ..., p̂n) = (x, p1 −
∂

∂x1
g, ..., pn −

∂

∂xn
g),

Hence, Ω = dx ∧ dp is a globally well-defined symplectic two-form on AX.
Given a global connection ∇ represented by d+A with respect to the frame
t the transformation property (6.11) now shows that (x, iA1(x), .., iAn(x))
defines a global section of AX.

Notice that the local characteristic variety Σ in Proposition 2.3 corre-
sponds globally to the graph in AX of the canonical connection ∇ on the
Hermitian holomorphic line bundle L. Indeed, by (2.17) and (2.24) we get
locally on Σ

pdx = Re( 2
i ∂φ) = i(−∂φ+ ∂φ)

By (6.15) the right hand side equals iA, where A is the local one form
associated to ∇ with respect to t = eφs.

Finally, for comparison with [25][16] observe that any given unitary con-
nection ∇ on L induces a global isomorphism

Φ∇ : AX ↔ T ∗X, (x, p) �→ (x, p1 − iA1, ...), (8.1)

The map is defined using local frames t as above and it maps the graph of
the section of AX corresponding to ∇ to the zero-section in T ∗X. We get
that

(Φ−1
∇ )∗(Ω) = d(−γ) + π∗(−iΘ),

where γ is the tautological 1−form on T ∗X and π∗(−iΘ) is the normalized
curvature of ∇ pulled back from X. The bundle AX may also be defined
by symplectic reduction of (T ∗Y, d(−γ) where Y is the unit circle bundle in
L∗ (compare the proof of Theorem 2.3 in [44]).
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[45] Sjöstrand J.. — Singularités analytiques microlocales, Astérisque 95 (1982).
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