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Poincaré-Hopf index and partial hyperbolicity®

C. A. MoraLes®)

ABSTRACT. — We use the theory of partially hyperbolic systems [HPS] in
order to find singularities of index 1 for vector fields with isolated zeroes
in a 3-ball. Indeed, we prove that such zeroes exists provided the maximal
invariant set in the ball is partially hyperbolic, with volume expanding
central subbundle, and the strong stable manifolds of the singularities are
unknotted in the ball.

RESUME. — Nous utilisons des systémes partiellement hyperboliques [HPS]
pour trouver des singularités d’indice 1 pour les champs de vecteurs avec
singularités isolées sur la boule tridimensionelle. En fait, on trouvera de
telles singularités lorsque I’ensemble maximal invariant dans la boule est
partiellement hyperbolique, & sous-fibré central volume-dilatant, et les
variétés stables fortes sur les singularités sont toutes non nouées.

1. Introduction

The existence of fixed points of index 1 for homeomorphisms has been
considered elsewhere in the literature. For example, by work of Eliashberg
[E] every volume-preserving diffeomorphism homotopic to the identity of a
closed, oriented surface of genus 0 with zero Calabi class has at least one
fixed point of index 1. Dancer and Ortega proved in [DO] that every stable
isolated fixed point of a local homeomorphism of R? has index 1 (a result
which is false in R, n > 3). Le Calvez [L] proved that the index of every
isolated fixed point of an orientation-preserving homeomorphisms without
wanderting points on an orientable surface must be less than or equal to
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one. Franks [F] studied C! area-preserving diffeomorphisms f isotopic to
the identity and with zero mean rotation vectors for some admisible lift f
on closed orientable surfaces of genus g. He proved that if the projected

image Fiz(f, f) of the fixed points of f is finite, then there are at least two

fixed points of index 1 in Fiz(f, f). Matsumoto [M] generalized Franks’s to
the homeomorphism case.

In this paper we consider the existence of singularities of index 1 for
vector fields X in a neighborhood of a 3-ball B inwardly transverse to the
boundary.

To motivate our hypotheses let us mention that if X; denote the flow
of X and the maximal invariant set [,., X¢(B) of X in B is a hyperbolic
set of X ([HK]), then no such singularities exist since the maximal invari-
ant set reduces to a single equilibrium of index —1. Alternatively we can
assume that the maximal invariant set is partially hyperbolic according to
the definition below [HPS]:

DEFINITION 1.1. — A compact invariant set A of a C* vector field X
defined in a manifold M is partially hyperbolic if there are an invariant
splitting TaAM = Ef & Ef, with ES,E¥ # 0 for all x € A, and positive
constants K, A such that:

1. EX is contracting, ¢.e.,

|| DX /ES ||< Ke ™, Vx €A, Vt>0.

2. E} dominates Ef, i.e.,

| DXy/ES || - || DX _4/E%, () |IS Ke ™™, Vz e A, Vt>0.

However this hypothesis does not work too because of the following
counterexample (see Figure 1):

Ezample 1.2. — There is a C* vector field X in B inwardly transverse
to the boundary such that (., X(B) is partially hyperbolic but X has no
singularities of index 1 in B.
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Figure 1

Therefore we need extra hypotheses even if the maximal invariant set in
the ball is partially hyperbolic. The ones we shall handle here are related
to the central subbundle of the maximal invariant set and the strong stable
manifolds of the singularities in B. More precisely, we shall assume that they
are volume expanding and unknotted respectively. Example 1.2 shows that
not only the unknotted but also the volume expanding condition is necessary
to obtain the result. See [MPP2] where the volume expanding condition is
used to characterize robustly transitive sets for three-dimensional vector
fields is given. Let us present our result in a precise way.

Consider a compact manifold M with boundary M (possibly empty).
Denote by X a C? vector field in M whose flow X; is inwardly transverse
to OM (if non-emtpy).

It follows from the Invariant Manifold Theory [HPS] that if A is a par-
tially hyperbolic set of X then through each point x € A passes a unique
strong stable manifold W$? (z) tangent at x to the subspace EZ. These man-
ifolds are invariant in the sense that X,(W3(x)) = WFE(Xi(x)) for all
(z,t) € A x R. In particular, W§?(o) is formed by solutions of X when
o € A is a singularity of X. Note that the dimension of W§*(z) is precisely
the dimension of E? for all x € A.

The next definition is motivated by the definition of cube with knotted
hole ([BMo] p. 218) and the definition of trivially embedded stable sepa-
ratrices ([GMZ] p. 980). We denote by JA the boundary of A. A curve is
called simple if it has no self-intersection points.

DEFINITION 1.3. — Let ¢ be a simple non-closed compact curve in a 3-
ball B satisfying OB N ¢ = dc. We say that ¢ is unknotted in B if there is
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a simple compact curve 3 € OB with 08 = dc such that the simple closed
curve B U c is unknotted in B (see Figure 2).

unknotted knotted

Figure 2

We shall use this definition in the following context. Let X be a C!
vector field defined in a neighborhood of a 3-ball B such that (., X¢(B) is
a partially hyperbolic set with one-dimensional contracting subbundle E*.
Then each strong stable manifold W§#(x) is a one-dimensional submanifold
and if 0 € B is a singularity of X satisfying

(ﬂ Xt(B)> NWE (o) = {0}, (1.1)

>0
then ¢ = W35?(0) N B is a simple closed curve satisfying 0B N ¢ = Jc.

With this in mind we can state our third definition.

DEFINITION 1.4. — Let X be a C' vector field defined in a neighborhood
of a 3-ball B inwardly transverse to 0B such that ﬂt>0 Xi(B) is a partially
hyperbolic set with one-dimensional contracting subbundle E°. We say that
X has unknotted singular manifolds in B if for every singularity o of X
satisfying (1.1) the curve c = W (o) N B is unknotted in B.

The motivation for the definition above comes from the following exam-
ple.

Ezample 1.5. — Thereis a C'! vector field X defined in a neighborhood of
a 3-ball B having a hyperbolic singularity ¢ € B with one-dimensional stable
manifold W$ (o) (hence of index —1) such that ((0,., X¢(B)) N W (o) =
{0} and W§ (o) N B is not unknotted in B.
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This example can be constructed in the following way: Take the vector
field in Figure 3-(a) (which is that of Example 1.2) and the small tubular
neighborhood described in Figure 3-(b). Remove this neighborhood from
the ball and inserts the tubular flow depicted in Figure 1 p. 26 of [C] (or in
Figure 3-(c)) instead. The resulting vector field in Figure 3-(d) is the one in

Example 1.5.
(b) ©

(@) (d)
Figure 3

Our last definition is the following.

DEFINITION 1.6. — Let A be a partially hyperbolic set of X. We say that
the central subbundle Ef above is volume expanding if the constants K, A
in Definition 1.1 satisfies the following additional property:

| J(DX:/ES) |= K~ e, Va €A, Vt>0,
where J(L) denotes the jacobian of a linear operator L.

Examples of partially hyperbolic sets with volume expanding central
subbundle are the non-trivial hyperbolic sets and the geometric Lorenz at-
tractor ([ABS], [GW]). More examples can be found elsewhere [B], [M1],
[MPP1], [MPu]. See Chapter 9 in [BDV] for some background. It is not
difficult to see that if [,., X:(B) is a partially hyperbolic with volume
expanding central subbundle, then the contracting subbundle E? is one-
dimensional and so Definition 1.4 applies.

With the above definitions in mind we can state our main result.

THEOREM. — Let X be a C! vector field with isolated singularities in a
3-ball B inwardly transverse to 0B. If ﬂt>o X:(B) is a partially hyperbolic
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set with volume expanding central subbundle and X has unknotted singular
manifolds in B, then X has a singularity of index 1 in B.

Let us present an example where the hypotheses of the Theorem are sat-
isfied. It is a minor modification of the geometric Lorenz attractor (compare
with [GT] p. 2).

Example 1.7. — Let X be the C™ vector field in R? depicted in Figure
4. Then, X is inwardly transverse to the boundary of B, (1,5, X¢(B) is
partially hyperbolic with volume expanding central subbundle and X has
unknotted singular manifolds in B.

Figure 4

A natural question is if the conclusion of the Theorem holds without
the unknotted assumption. Note that Example 1.5 does not give negative
answer for such a question because [,., X¢(B) in that example may not
be partially hyperbolic. Indeed, ﬂt>0 X;(B) intersects the tubular neighbor-
hood in Figure 3-(c) due to the Wazewski Principle (see p. 26 in [C]). In
particular, we don’t know if the partially hyperbolicity of (1,., X¢(B) with
one-dimensional contracting subbundle E° does imply that X has unknot-
ted singular manifolds in B.

This paper is organized as follows. In Section 2 we give two lemmas re-
lated to dynamical systems in the 3-ball and the solid torus. In Section 3 we
give some properties of the singular-hyperbolic sets introduced in [MPP2].
In Section 4 we prove the Theorem using the results in sections 2 and 3.
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2. Some dynamics on the 3-ball and the solid torus

In this section we prove two lemmas concerning the dynamics in the 3-
ball and the solid torus. We start with some basic notations and definitions.

The interior and the boundary of a set A will be denoted by Int(A) and
0A respectively.

Let X be a vector field with flow X; on a manifold M. The omega-limit
set of a point p is the set w(p) defined by:

wx(p) = {x :x = lim X; (p) for some sequence ¢, — oo} .

n—oo

The a-limit set ax(p) of p is the w-limit set of p with respect to the time-
reversed vector field —X. A compact invariant set A of X is an attracting
set if it has an isolating block, i.e. a compact neighborhood U of it such that

A= Xu(U).

t=0

It follows from the definition that if U is an isolating block of an attracting
set A, then wx(z) C Aforall z € U.

Figure 5

A compact invariant set H of X is hyperbolic if there is a continuous
invariant splitting Ty M = E%, @ Ejx @ EY over H consisting of a contracting
subbundle E%;, an expanding subbundle EY and the flow direction E3 . The
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Stable Manifold Theory [HPS] asserts that through each point € H there
are a stable manifold W$ (z), tangent to ES@® E<X, and an unstable manifold
Wi(x), tangent to EX @ EY. An attracting closed orbit is a closed orbit O
which is a hyperbolic set with zero dimensional E* (equivalently O is a
hyperbolic closed orbit which is also an attracting set).

The lemma below allows us to construct invariant solid torus using the
unknotted assumption in the Theorem.

LEMMA 2.1. — Let X be a C! vector field in a 3-ball B inwardly trans-
verse to the boundary. Assume also that X has a unique singularity o in B
which is hyperbolic of index —1 (thus dim(Wx (o)) = 1). If (o Xe(B)) N
W3 (o) = {o} and W% (o) is unknotted in B, then there is a solid torus
ST C Int(B) such that X is inwardly transverse to O(ST) and X has no
singularities in ST.

Proof.— Since (2o X¢(B)) N W5(0) = {0} we have that the separa-
trices of W4 (o) \ {0} exit B in the past as in Figure 5. Then, by using the
flow of X we can construct a torus T transverse to X in the interior of B by
removing an small tubular neighborhood in B of the curve ¢ = W§ (o) N B.
Note that T' is the boundary of a compact manifold ST contained in the
interior of B. Moreover, X points inward to ST in T' = 9(ST'). The hypoth-
esis that W (o) is unknotted in B implies that ST is a solid torus. The
result follows. O

The second lemma allows us to construct attracting periodic orbits from
invariant solid torus.

LEMMA 2.2. — Let Z be a C! vector field defined in a neighborhood of
a solid torus ST inwardly transverse to the boundary. If (5o Z:(ST) is a
hyperbolic set of Z, then ﬂt>0 Zy(ST) is an attracting periodic orbit of Z.

Proof.— Denote H = (., Z:(ST). To prove the result it suffices to
prove that the unstable subbundle E; of H is zero dimensional. Assume
by contradiction that this is not so. Then, E¥ # 0 for all x € H since H
is connected. As H is also an attracting set we have that dim(EZ) # 0
for all x € H as well. On the other hand, there is no singularity in H
(since the hyperbolic splitting is continuous) therefore dim(EZ) = 1 for
all z € (59 Z7(ST). Then, the stable manifolds {W3(z)}.en induce a
codimension one foliation F on ST transverse to 9(ST).

Next we apply an argument in [B] based on the following definition: A
half-Reeb component of F is a saturated subset H C ST, bounded by an
annulus leaf A and an annulus K C 0(ST) with 0K = 0A, such that the
double 2H is a Reeb component [G] of the double foliation 2F (see Figure 6).
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Half-Reeb component

Reeb component

Figure 6

We claim that F has neither Reeb nor half-Reeb components. Indeed,
since F is induced by stable manifolds we have that F has no compact
leaves in Int(ST). Consequently F has no Reeb components. Now suppose
by contradiction that there is a half-Reeb component H of F. Let A, K be
the boundary annuli of H with K C 9(ST). Pick « € Int(H). Note that
the positive trajectory of x does not intersect A. As Z points inward to ST
as indicated in Figure 6 we have that wz(x) C Int(H). Since [, Z:(ST)
is an attracting set with isolating block ST of Z and x € ST we have
wz(x) C Ny Ze(ST).

Now, wz(x) is contained in [, Z;(ST) which is a hyperbolic set. By
using the orbit of « we can construct a periodic pseudo-orbit close to wz ().
By the Shadowing Lemma for flows (Theorem 18.1.6 p. 569 in [HK]) we have
that such a pseudo-orbit is shadowed by a periodic orbit O C Int(H). We
have that O is contained in a leaf L of F and L # A. The last property
implies that L is a half-plane, and so, it is simply connected as well. Conse-
quently, O bounds a disk in L. Applying the Poincaré-Bendixon Theorem
[PAM] to this disk we could find a singularity in H which is absurd. This
contradiction proves the claim.

Now we finish the proof of the lemma. Take the double foliation 2F de-
fined on the double manifold M = 2S5T. On the one hand, ST is a solid torus
so M is diffeomorphic to S? x S'. Consequently, 72 (M) # 0. On the other
hand, the claim says that F has neither Reeb nor half-Reeb components.
Therefore, 2F has no Reeb components. Then, standard results in foliation
theory (e.g. Theorem 1.10-(iii) p. 92 in [G]) imply that 2F is the product
foliation S? x % of M = S? x S'. Then, F is the product foliation D x *
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by meridian disks on ST, and so, the leaves of F are invariant disks. But
applying Poincare-Bendixon’s to one of such disks as before we could find a
singularity of Z in Int(ST) which is absurd. This contradiction proves the
result. (]

3. Some singular-hyperbolic dynamics

The results of this section resemble ones in [BMo]. Let X be a C*! vec-
tor field defined in a 3-manifold. A compact invariant subset of X is called
singular-hyperbolic if it is partially hyperbolic with volume expanding cen-
tral subbundle and its singularities are hyperbolic. A compact invariant
subset without singularities of a singular-hyperbolic set is hyperbolic and
satisfies EZ # 0 and E¥ # 0 for all z on it [BDV]. It follows that a singular-
hyperbolic set has no attracting closed orbits. We denote by Sing(X) the
set of singular points of X.

In this section A denotes a connected singular-hyperbolic set of X and
TaM = E} ® Ef denotes the corresponding partially hyperbolic splitting.

LEMMA 3.1. — X(z) &€ ES for every x € A\ Sing(X).

Proof.— Suppose by contradiction that X(zg) € Ej for some z¢ €
A\ Sing(X). The invariance of E® implies X (x) € E$ for all x in the orbit
of xzg. So, X(z) € EZ for all x € ax(xg) since E® is continuous. As E* is
contracting we conclude that wyx (z) is a singularity for all € ax(zp). In
particular, ax(zo) contains a singularity o which is necessary saddle-type
(i.e. neither attracting nor repelling).

Now we arrive to a contradiction depending on whether ax () = {0}
or not. In the first case (i.e. ax(xo) = {o}) we would have zy € Wi (o).
Define the unitary vectors

¢ DXi(x0)(X(20))

S IDX )Xoy R

It follows that

/Ut S TXt(JZ())W)%(O-) ﬁ Ei(t(“/'())’ Vt S R
Take a sequence t,, — oo such that the sequence v~» converges to v (say).
Clearly v is an unitary vector. As X_;(xg) — o and E® is continuous we
obtain

v € T,W¥ (o) N ES.
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Therefore v*° is an unitary vector which is simultaneously expanded and
contracted by DX; a contradiction.

In the second case (i.e. ax(zo) # {o}) we would have (W¥ (o) \ {c}) N
ax(zo) # 0. Pick 21 € (W%(o) \ {o}) Nax(xg). As 1 € ax(xp) we have
X(x1) € B, and then we get a contradiction as in the first case replacing
xo by x1. The lemma is proved. O

We denote by Sing(X) the set of singularities of X.

LEMMA 3.2. — X(z) € ES for every x € A.

Proof. — Fix an open neighborhood U of Sing(X)NB. Therefore A\U is
compact, and so, Lemma 3.1 implies that the angle between E? and X (z) is
uniformly bounded away from 0 for z € A\ U. On the other hand, if we take
U formed by linearizing coordinates around the singularities in Sing(X)NB,
we can see that the angle between E? and X (z) is also uniformly bounded
away from O for x € AN U. We conclude that the angle between E? and
X (x) is uniformly bounded away from 0 for all z € A\ Sing(X).

Now take z € A. If t > 0 we define v; = X(X_¢(x)). The previous
conclusion implies that the angle between v; and £ is bounded away
from zero. It then follows from the dominance of E*® over E€ in Definition
1.1-(2) that the angle between DX (X _;(z))(v¢) and ES goes to 0 as t — oo.
As X(z) = DXt(X_¢(z))(vs) we conclude that X(z) € ES. As x € A is
arbitrary we obtain the result. O

LEMMA 3.3. — ANW¥ (o) = {o} for every singularity o € A of X.

Proof. — By contradiction suppose that there is 2o € AN(W (o) \{c}).
As before we define for all ¢ € R the unitary tangent vector

¢ DXi(x0)(X(20))

| DXo(wo) (X (o)) I

Since W§#(0) is invariant and zo € W§(o) we get v € Tx, (50 W5 (o) for
all t. On the other hand, Lemma 3.1 implies that v* € ngt(zo) for all .
Therefore

vt c TXt(wo)W)S(S(O') n Eg(t(x())'
By taking limit as ¢ — oo as before we would obtain an unitary vector
T,W (o) N ES.
But T,W$ (o) = E% so
v e EENES
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which is absurd since v>° is unitary (hence non-zero) and the sum EJ & ES
is direct. This contradiction proves the lemma. O

4. Proof of the Theorem

Let X be a C! vector field with isolated zeroes in a 3-ball B inwardly
transverse to the boundary. Assume that (1,., X;(B) is partially hyperbolic
with volume expanding central subbundle and that X has unknotted sin-
gular manifolds in B. Assume by contradiction that X has no singularities
of index 1 in B.

It follows from the volume expanding condition on the central subbundle
of (= X¢(B) that each singularity of X in B is hyperbolic or saddle-node
(i.e. 1 is its unique eigenvalue of modulus 1). As is well known a saddle-node
singularity disappears after an small perturbation. Therefore, by making a
small perturbation if necessary, we can assume that each singularity of X
in B is hyperbolic none of which has index 1. Since B has Euler number 1
and X points inward in 0B we have from Poincaré-Hopf (e.g. [CMV], [Mi])
that X has only one singularity ¢ in B which has index —1.

On the other hand, we have that A = ,., X:(B) is partially hyperbolic
with volume expanding central subbundle by assumption. As o is the sole
singularity of A and o is hyperbolic, we conclude that A is a singular-
hyperbolic set. Note that A is also connected since B also is. Therefore
ANW$ (o) = {o} by Lemma 3.3. But ¢ has index —1 so W§*(0) = W (o)
therefore

(ﬂ Xt(B)> NW(0) = {o}.

t=>0

We also have that W§ (o) = W5 (o) is unknotted in B since X has un-
knotted singular manifolds. Therefore, by Lemma 2.1, there is a solid torus
ST C Int(B) such that X is inwardly transverse to 9(ST) and X has no
singularities in ST'. In particular, ST is positively invariant.

Note that (.o X¢(ST) C [,5o X7(B) which is singular-hyperbolic.
Since X has no singularities in ST we conclude that (,., X;(ST) is hy-
perbolic. Then, by Lemma 2.2 applied to Z = X, we would have that
N0 X¢(ST) is an attracting periodic orbit.

However, this is absurd since a singular-hyperbolic set has no attracting
periodic orbits. This contradiction proves the result.
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