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Study of Anisotropic MHD system in Anisotropic
Sobolev spaces*)

JAMEL BEN AMEUR(Y) | RipHA SELMI®)

ABSTRACT. — Three-dimensional anisotropic magneto-hydrodynamical
system is investigated in the whole space R3. Existence and uniqueness
results are proved in the anisotropic Sobolev space H®* for s > 1/2.
Asymptotic behavior of the solution when the Rossby number goes to zero
is studied. The proofs, where the incompressibility condition is crucial, use
the energy method, an appropriate dyadic decomposition of the frequency
space, product laws in anisotropic Sobolev spaces and Strichartz-type
estimates.

RESUME. — On étudie un systéme magneto-hydro-dynamique tridimen-

sionnel dans le cas de lespace entier R3. On démontre Dexistence et

P'unicité de la solution pour des données initiales dans les espaces de

Sobolev anisotropes ; H%%, s > 1/2. On étudie le comportement asymp-

totique de la solution lorsque le nombre de Rossby tends vers zéro. Les

preuves se basent essentiellement sur des méthodes d’energie, une décompo-
sition adéquate de ’espace de fréquences, les lois produit dans les espaces

de Sobolev anisotropes et une estimation de type Stichartz. La condition

d’incompressibilité joue un réle crucial dans les démonstrations.
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1. Introduction
The purpose of this paper is to study the incompressible M H D model

with anisotropic diffusion in the limit of small Rossby number, namely the
following system

1
8tu71/hAhu+u~Vufb~Vb+gcurlbx63

1
+-uxe3=—-Vp inRT xR3
€

8tb—nhAhb+u-Vb—b~Vu
1
(MHDE ) +ECUI'1 (’LL X 63) =0 in R+ X RB

diveu=0 in R* xR3

divb=0 in RT xR?

(u,b)|t=0 = (uo, bo),

where the velocity field u, the induced magnetic perturbation b and the pres-
sure p are unknown functions of time ¢ and space variable x = (z1, z2, x3),
es is the third vector of the cartesian coordinate system, v, is the anisotropic
dynamic viscosity, ny is the anisotropic magnetic diffusivity, A, denotes the
horizontal Laplace operator defined by A;, = 97 4+ 03 and ¢ is the Rossby
number which is the ratio between the fluid’s typical velocity to the earth
rotation velocity around the axis eg.

The above system is a simplified version of a general one given in [4] to
modelise the magneto-hydrodynamical process in the earth’s core which is
believed to support a self-excited dynamo process generating the earth’s
magnetic field.

Our first motivation follows from Taylor Proudman Theorem [10], that the
three-dimensional fluid is inclined to behave as a two-dimensional one. The
second motivation follows from the fact that large turbulent eddies move
preferably in horizontal layers and do rarely move vertically, which makes
vertical turbulent diffusion negligible compared to the horizontal one (see
[3] and references therein). So, it makes sense to consider an anisotropic
diffusive process. Without loss of generality, —es is supposed to be the time
independent component of the earth magnetic field B defined in [4] by

B = —e3 + 00,

where 6 denotes the Reynolds’ number. According to [5], the magnetic
Prandt]l number P,, defined as the ratio of the dynamic viscosity by the
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Study of Anisotropic MHD system in Anisotropic Sobolev spaces

magnetic viscosity is equal to 107° in the case of the earth’s core. However,
to simplify the mathematical computation we will take v, = n;,. Moreover,
we remark that

curl (u X e3) = dsu

and thanks to the divergence free condition,
curl b X e3 = 93b — Vbs.

Since the proofs are based in taking the L2-scaler product either in (u,b)
or in their associated dyadic blocs (A%u, A%b) (see section 2 for notation),
terms like Vf, for any function f, have no contribution in the L2-energy
estimate. Thus, we can reformulate the (M HD;, ) system to obtain the
following noted also (M HD, )

8tu—uhAhu—|—u-Vu—b-Vb+133b+1u><e3
=—-VP inRt xR3 © c

(MHD;,) 0tb—uhAhb—|—u-Vb—b-Vu+é@gu:O in RT xR?

divu=0 in R xR3

divb=0 in Rt xR?

(u,b)|t=0 = (uo, bo),

where

This system can be written in the following abstract form

U+ Q(U,U) + ag n(D)U + L¢(U) = *(=Vp,0) in RT xR3
divu=0 in R* xR3

divb=0 in RT xR?

Uli=o = Up
u
=)

the quadratic term @ is defined by

(59)

where

QU= (TumbVey

the viscous term is

a27h(D)U = —VhAhU

and the linear perturbation L¢ is given by

1 71( 83b—g31;><63 )



Jamel Ben Ameur, Ridha Selmi

We note that L¢ is a skew-symmetric linear operator. This skew-symmetry
is an important property for the existence results since the perturbation
disappears in the energy estimate.

In the case of anisotropic diffusion process, existence, uniqueness and asymp-
totic behavior of some magneto hydrodynamical systems have been studied
by several authors ([1], [2], [11]). According to our knowledge, no paper is
concerned by the anisotropic case. Nevertheless, anisotropic Navier-Stokes
equation was studied in [3], where it was proved the local existence for ar-
bitrary initial data and global existence for small initial data in H®*(R?)
for s > 1/2 and uniqueness for s > 3/2. In [8], the author closed the gap
between existence and uniqueness and proved that uniqueness holds when
existence does; that is for s > 1/2.

In this paper, dealing with all coupled nonlinearities and singular per-
turbation, we establish local well-posedness (existence and uniqueness) for
arbitrary initial data, global existence for small initial data in H%*(R3) for
s > 1/2 and we investigate the asymptotic behavior of the solution as the
Rossby number ¢ tends to zero.

Precisely, we establish global existence for small initial data and local
existence of solution on uniform time for arbitrary initial data. Namely,
solution given by the following theorems.

THEOREM 1.1. — Let s > 1/2 be a real number and Uy = (ug,by) €
HY%3(R3) such that divug = 0 and divby = 0. There exists a positif time
T such that for all € > 0, there exists a unique solution U® of (MHD, )
satisfying U¢ € L¥(H%*(R?)) and V,U® € LZ(H"*(R?)). Moreover, U®
satisfies the following energy estimate

t
U= (8, M 3r0.0 sy + v / IVAU (o < Vollgo. (L1)

Furthermore, there exists a constant ¢ such that if |[Up|| go.»(rs) < cvp, then
the solution is global.

To prove Theorem 1.1, we will rearrange the nonlinear terms in a suit-
able way to apply Lemma 2.2. The proof, where the divergence free con-
dition plies a crucial role, uses the energy method, an appropriate dyadic
decomposition of the frequency space, compactness argument and classical
analysis.

The following theorem gives an uniqueness result.
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THEOREM 1.2. — Let U® and V* be two solutions of (M HD;, ) on [0,T]

belonging to
LF(H*(R®)) N L7(H*(R?)),

where s > 1/2. If U® and V¢ have the same initial data, then U = Ve,

To prove Theorem 1.2, we will estimate the H%~1/2 norm of the differ-
ence U — V¢ instead of the H%1/2 one. This will be done via Lemma 3.3
and standard arguments.
Once the existence and the uniqueness results are proved we turn to the
asymptotic behavior of the solution when the initial data belongs to H%*(R?),
s > 2. This will be the aim of the following theorem.

THEOREM 1.3. — Let s > 2, Uy = (ug, by) € HY*(R3) such that divug =

0 and divbg = 0. Let (U®) be the family of solution given by Theorem 1.1,
then

Us —— 0 in LA(C3%RY)). (1.2)

e—0

That is, for x in D(R), U = x (|[V4|/R)) U and Ug = U® — Us, it holds

li Ug oy — 0 1.3

11;155113 | R||L4T(L ) R too (1.3)

lims(1)1p HﬁEHLzT(Hl_n,omHo,s') P 0, Vs' < s andn>0. (1.4)
£— o

To prove Theorem 1.3, we will use a Strichartz type inequality and stan-
dard Fourier analysis results. In fact, dispersive effects are of great impor-
tance in the study of nonlinear partial differential equations, since they yield
decay estimates on waves when the domain is the whole space R3, chosen
here essentially for mathematical convenience.

2. Proof of existence results

2.1. Anisotropic Littlewood-Paley theory

To introduce the anisotropic Sobolev spaces, we use an anisotropic dyadic
decomposition of the frequency space and we introduce, for any function a,
the following operators of localization in Fourier space:

Ala = F e[ F(a)) for jeZ,
Ata = FUe(2 &) F(a) for qeN,
Aya = FHI(&)F(a)
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and

Aja=0 for ¢<-2.
The functions ¢ and ¥ represent a dyadic partition of unity in R. This means
that these functions are regular non-negative and satisfy

supp () € B(0,4/3),
supp () C C(0,3/4,8/3)

and for all t € R,

I(t) + Y e(279%) = 1.

q>0
Here,
C(0,3/4,8/3) = {¢, £ € R?, 3/4 < |¢] < 8/3}.
We define, also, for any function u, the operators S; u and S;L u by

Sgu= Z Ay u
q

'<q—1

and

S;Lu: Z A?,u.

§'<i—1

By this way, we note that we consider an homogeneous decomposition in
the horizontal variable and an inhomogeneous one in the vertical.

We define the corresponding Sobolev spaces by the following.

DEFINITION 2.1. — Let s and s’ be two real numbers and u a tempered
distribution. Let

o 1/2
el e = (2220549 A% A .2 )
J:q
The space H**'(R3) is the closure of D(R3) for the above semi-norm.

The interest of the dyadic decomposition lies in the fact that any vertical
derivative of a function localized in vertical frequencies of size 29 acts as a
multiplication by 29. We refer to [8] for a precise construction of anisotropic
Sobolev spaces.

-6 —
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2.2. Global existence result for small initial data

In this section, the following lemma, a detailed proof of which is given
in [3], will be useful to estimate the nonlinear part.

LEMMA 2.2. — For any real numbers so > 1/2 and s > so a constant C
exists such that for any divergence free vectors fields a and b, we have

[(A(a- VD)AGL) 2| < Cdg272%|[b]| g2 (Ilal\Huzso

|V 1bl| gro.s
b||H1/2,s)

Vibllgoso +  [|Viha| oo

6]l 11725 + |Vl gro.:

+llall iz
where the positive numbers d, verify Z dg =1.
q€Z

To prove Theorem 1.1, apply the operator Ay to (S8°), denote U, =
q
(Ajus, Ay ba) and use an L2 energy estimate to obtaln

thIIUE()||L2+vh|\VhU§(t)IIL2 < [(AY (- V) |ug) 1 |
+ [(Ag(w - Vb)[b) s |
+ o [(AL@F V) |ug) .
+ (AL - Vu)b) .-

In order to estimate the left hand side of the above inequality, rearrange the
nonlinearity as

(b - Vb ) o+ (05 - VUl [b) 2 = (6 - V(U +59)|(wF + b))
(b° - Vb [6°) 2 — (b° - Ve [uf) 12

Note that the H** norm of any vector field is the Eucldiean norm of the
H?*% norms of its components. That is why

[l 1671 < U=,
IVau |, Vb7 < [[VaUF]|

and so on.
Use Lemma 2.2, in the case s = sg, to deduce that

I\Ugllm +vnl|VaUg 72 < Cdg27 270 |UZ[[71 2.5

th |VhUEHH1/2,SO. (2.1)

Multiply by 229% and take the sum over ¢ to obtain

th”UE”HO w0 VR VAU F0.00 < NUSNZ/2.6 [ VAU | gr1/2.06

-7 -
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An interpolation inequality yields
1UE 11 /2.00 < NUE[pr0.00 [ VAU || 0,50

So, one concludes that if ||Up|| go.«o is sufficiently small then [|US(¢)]|%0.., is
a decreasing function. More precisely, if

Vn

1Uoll ro.s0 < 20

then for any positive time ¢, one gets

t
U= (@) F0.50 + Vh/ IVRUS ()10, d7 < [Uol[F70,50- (2.2)

0
Finally, a standard compactness argument gives the global existence result.

2.3. Local existence result for arbitrary initial data

Now, we turn to the local existence result of (M HDj, ). Decompose the
frequency space in order to investigate the high vertical frequencies then
the low vertical-high horizontal ones.

For the high vertical frequencies term, one multiplies inequality (2.1) by
22450 then takes the sum for ¢ greater than n — 1 in order to obtain after
integration in time

110 = SU g (oo + 20m] Va0 = SOU 22 (5100
< O)l1d — SHU 301, (2.3)

T
e / U= ()22

[V U ()| go.s0 dt.

To study the low vertical-high horizontal frequency, let m and n tow cutoff
integers such that m > n and define Uy, ,, by

Us, = (Id = Sk)SuU=.

Denote, respectively, by @ and Qv the horizontal and the vertical part of
the nonlinear term defined by

h _f up-Vau—="by-Vipd
@) = ( up - Vb —bp - Vyu

and 5 5
v _( uz-0su—bs-03b
Q (U’ U) o ( us 831) — bg@gﬂ' ) ’

— 8 —
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By standard L? energy estimate, one has

1d
2 dt

Uz 22 + vnl| ViU, ol

where

(Ad = SP)Su(@ (U, UML) . = ((Ad = Sk)Sh(us,
— ((1d - S8%) 55 (b5,
+ ((1d - Sk)S2 (us,
— ((1d - S%) 55 (b5,

and

(Ad = SP)So(Q (U=, UNU, ) o = ((1d—S))S5 (ug
— ((Id—S})S5 (b5
+  ((1d — Sk)SE (ug
— ((1d— S})Sh (b5

By product law in Sobolev spaces, one infers that

13 — S3) S5 (Q"(US, US) (s w3)) | mr-1/2 e, )

. th5)|ufn7n)
. Vhb5)|ufn7n)
Vb6, ) 1o
- VRut) by, )

((1d = S3)Sn(Q" (U=, UV, ) 1
+ ((1d = 87)S0(Q (U, U))IUS, )

L2’

L2

L2

L2

: 83u6)|ufn,n)L2
: 83b8)|u78n,n)L2
. a3b6)|bs )L2

m,n

: a3u£) |bfn,n)L2 .

< CNUEC )l ze ) IVRU= (s 23)l L2z, )-

Since sg > 1/2, one obtains

|| (Id - S&)SZ(Qh(Usv UE))”LQ (RW;H*UZ(RZ))

By Cauchy-Schwarz inequality, one has

[((1d = Sp)Sp(@QM(UE, UNU ) oy | < CIUF I 1/2.06
(R?)

< CNURI 17250 VAU | 0,50 -

VUS| 0,00 -

To estimate QV(U*,U*), use the divergence free condition; that is

€ 3 €
Osug = —divpug,

and
Osb5 = —divybj,.

These equalities allow one to reformulate the vertical nonlinearity as

QYU U%) = Qi(U5,U%) + Q3(U*, U"),

-9 -



Jamel Ben Ameur, Ridha Selmi

where

v(TTE £\ _ 0 (ueus) — 0 (bebs)
QiU%U%) = < Oy (u5he) — Dub50°) )

and
aiw=

The nonlinear term, ((Id — S2,)S2(Q%(U*®, UE))|Ufn7n)L2 can be estimated
exactly as the term ((Id — Sp,)S5(Q"(US,U%))|US, 1) ;-
To study the other term, one observes that

u® divpuj, — b° divybj, )
£ 1 g g 3 £ N
b® divpuj, — u® divybj,

Id — Sy, = 27" (Id = S,) (x1(D)01 + x2(D)ds),

where x; and y2 are homogeneous functions of degree 0. Then, it is clear
that, when m > n,

((1d = S2)SL(QUUE Uz ) o < 27 U0 oy | VaUS, o 2o
< ONU N2 V4TS 11000
<

C||U€||2Hl/2’50 |VhU€||HUxSO .

Finally, by integration in time, one has

||U;,n||%;°(Hoﬂso) + 2Vh||vthn,n||2L?F(H°v50)

< O O o (2.4)
T
e / 1= 21 0 90U () 100l

To conclude the proof of the local part, one begins by observing that since
Up belongs to L?(IR?) the basic L? energy estimate holds

0O +2u [ IV Oar <0G @5)
Thus, it is obvious that
155 S5 U ()1 310,50 +20, /Ot VS5 S U (7[00 dT < C22™ 2020 || UF 2.
Using an interpolation inequality, estimations (2.3) and (2.4) one infers that

(2vn)'2(|U* |

HO:s0

H185(1d = S5 ) UG 30,0 + 22200 T||Uo 12

T
[ IO 90O o).
0

2y vy P20l VAUT s oy < C (1104 = SHUGE

~10 —
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It follows that
1 2
N2, gy R0 2 00y < © (10— S2)US 3., +
C
1S2(Id — SE)US ||20,00 + 2272750 || Up|2, + ZIIUE( Ws (arr/e.s ))

Choose, in this order, an integer n, then an integer m greater than n and
finally a strictly positive real number Ty such that

13 = SP)UG 70,00 <,
155 (1d — S5 )Us 1300 <1

and
POy 3, <

to obtain, for any T < Ty,
1/2 € C e
U173 (sr1/2.00y + RlIVRUS I (170.00) < O + ;IIU (N7 (172,009

So, for any positive real number 7, such that
V2
402

a positive real number 77 exists, such that

0<n<

1/2
v/ ||U€||2L4T1(H1/2’5°> + uh\lvhUE||2L2T1 (Ho<0) ST

That proves Theorem 1.1.

3. Proof of uniqueness result

In this section we denote by (z) the quantity (1 + |z|?)/? and by As
the operator defined by
Az = (1 - 922

that is, the operator of multiplication by (£3) in the frequency space. Clearly,
A3 is an isometry from H*®*® to H%*® ~! for all real numbers s and s’.

The following lemmas will be useful in the sequel. The first one and the
second one are proved in [7], the third one is proved in [8].

LEMMA 3.1. — Let s,t,s',t' € R and a € [0,1]. If f € 755 A then
f belongs to Host(—at)as'+(1—at’) gy g

179l e a-anwersi—ary < N5 gl

~11 -
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LEMMA 3.2. — Let s,t <1, s+t >0 and s',t' <1/2,s' +t > 0. If f
belongs to H*>® and g belongs to HY' then fg belongs to HsTt—1s'+t'~1/2
and there exists a constant C such that

£ gl st e-riorver -2 < Ol f o gl e

LEMMA 3.3. — Let s,t < 1, s+t >0 and s’ > 1/2. If f belongs to H&s'
and g belongs to H>~ /2 then fg belongs to H*t*=1=1/2 and there exists a
constant C' such that

£ 9llresi-rmrz <Ol fll s

g||Ht.71/z.

The originality of Lemma 3.3, as said in [8], is to give a product law for
the anisotropic Sobolev spaces where the regularities in the vertical direction
are supercritical for one of the terms and subcritical for the other.

3.1. Proof of Theorem 1.2

Let U¢ = "(u®,b°) and V= = *(v°,¢°) be two solutions of (MHDS, )
satisfying Theorem 1.1 and having the same initial data. It is explained, in
Remark 2, that this makes sense.

Denote by W€ = t(w®, 3°) the difference W& = U¢ — V¢. One has

1
OWE + v Vi We + Q(W*, W* +2U%) + —L(W*)
= {(=Vp©,0) in R* xRS

, (3.1)
divw® =0 in Rt xR?

divgE =0 in RT x R3.

Without loss of generality, assume that s < 1. Suppose that U¢ and V¢
belong to C%.(H®") for all r < s, a fact on which we will return in Remark
1. By this assumption, one is able to multiply equation (3.1) by A?leVE
then integrate on (¢/,¢) x R3, let € tends to zero and use the continuity in
time of ||IWW¢|| gro,—1/2 to obtain

t
W20 ae + 20 / VAW 20 udr

t
- _2/ /Q(WE,WE+2UE)A;1WdedT, (3.2)
0
where

Q(Wg,WE+2UE)<u - Vw® 4+ w® - Vof — b - VB — 55 - Ve >

u® - VB + we - V& — b° - Vw® — §° - Ve

- 12 —
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Here, note that for every multi-index s and sufficiently smooth function U,
one has

JEREACEER

To estimate the left hand side of equation (3.2), one restricts itself to the
two first terms, the same holds for the others since that

[[a=fl, N7 < U]

and so on.
Following [8], decompose the nonlinearity as follows

/(u6 -V 4+ w® - Vo) - Ay lwide = i Ly,
i=1
where
L, = /ui - Vawe - Aglwedx,
L, = /u§ - Q3w -Aglwsdaz,
Ly = /w,i -Vt -Ag_lwedx
and

Ly= /wg - O30° - Aglwgdx.
To estimate L1, note that
\La| < luf, - Viw® | g2, -1 A5 w0l [ iz e,

apply Lemma 3.3 to the first factor, use properties of As and Lemma 3.1
for the second to obtain

W W

|L1| < C’”[JEHHU?’S FO0,-1/2 H1l,-1/2*

The same holds for Ls, just begin by
|L3| < wab . V}LUE||H—3/4,—1/2 ||A3_1w€||H3/4,1/2

to obtain

Wel2 L W

|L3‘ < CHVEHHl/QvS HO.—1/2 Hl.-1/2*

For L4, remark that

|L4| < ||w§83v8 HH*1/2»(25*3)/4 ||A§1w8 ‘|H1/2,(3723)/4,

~13 -
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use Lemma 3.2, decreasing inclusion of H® spaces and properties of Az to
infer that
|La| < Cllv* [l gr/es

Classical computation and divergence free condition imply that

w§||Ho,1/2||wEHH1/2,71/2.

w5 go.are < [lwfllgo.-1/2 + [0 gr-a/e.
By Lemma 3.1, one infers that

£ en3d/2 enl/2 enl/2 £113/2
La| S CIVE | arms (W32 L alWEINE e+ WISl WEI2E L ).

HO.—1/2 Hl.—1/2

To investigate Lo, use Parseval’s formula and Fourier analysis to obtain

L = s | [ 5 ate = i (~dedn

By the change of variables (§,1) «— (—v, —£), rewrite Lo in the the fol-
lowing form

L= s | [ (5 = ) Pale = ) (o) (=€)

For n3 and &3 in R, one simply checks that
3 & m3—&3 L (s — &3)&3(n3 — &3)

&)  (m3) (&) (n3)(&3) ((n3) + (&3))

and deduces that

141 < e 3 | [t (g g s mI s -ean

Use again the change of variables (§,n) «—— (—n, =) to infer

Lol < 62//'53 Tl 5 (6 — )| () | (—€) .

By the divergence free condition and the reversed computation of the first
step, one establishes that

|La| < / (IDLF = (15]) + [ Del 7~ (Jo5 ) w® - Az wcda,

where |D;| denotes the operator of multiplication in the frequency space by
1&5]. As |Dj|F~*(Jv5]) and 9;F 1 (|v5]) have the same H""" norm for all r, 1’
and j, the same argument used for L3 implies that

WeE W

|L2| < CVHVvE”Hl/Q’S HO0,-1/2 H1l,-1/2*

— 14 —
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Collect the |L;| estimations, for all nonlinear terms, and use inequality

1 3
b<*4 *b4/3
WS gty

to obtain

t
IWe N2 1o + 20 / IV |20 1 udr
0

t
4/3
< 0/ W 30172 (U= 5120 + IV + 1VE a2, )
0

(3.3)
By interpolation, one has

U (|20 < US| e IUS N2

and then ||U®| g1/2.« € L%. The same holds for ||V ¢ ;1/2... So, the function
h defined by

£ £ end/3
h(t) = 10 Iz + IV 2+ IVEL
belongs to L.
Gronwall’s lemma applied to (3.3) implies that W€ = 0. This completes the
proof.

Remark 1.— Tt makes sense to multiply equation (3.1) by Az'We.
Indeed, A;'We belongs to LZ(H''**) which is a subset of L2.(H"3/2).
Moreover, A,U® belongs to L2(HY*~2), L(U¢) belongs to L2.(H'*~1). On
the other hand, since U® belongs to L4T(H1/2*S) Lemma 3.2 implies that
U€.VU® belongs to L2.(H~17%). So, A U® + U.VU® + 1L(U*) belongs to
L2(H~173/2). Consequently, by the (MHD;,),

OUS € L3(H V73/2).

Remark 2. — The regularity made on U¢ invoked by hypothesis is insuf-
ficient by itself to define a trace of U¢ at time ¢ = 0. Nevertheless, the facts
that 9,U°¢ belongs L2 (H~"73/2) and U® belongs to L(H"*) imply by the
interpolation theory, developed in [9], that U® belongs to C%.(H(25=3)/4),
Lemma 3.1 and the fact that U® belongs to L5 (H%*) imply that

Vr<s, USeCQH").

~15 —



Jamel Ben Ameur, Ridha Selmi

4. Proof of convergence result

The “linearized” equation associated to the system (S°¢) is

1
U — v AUS + -~ L(U°) =0 in Ry xR3
€
(LS°) divu® =0
divb® =0
Uﬁ:o = Up(z).
In Fourier variables ¢ € R3, we obtain

O F(U?) + vy |&n|PF(U®) + éA(f)]-‘(UE) =0

Hence, we are led to study the following family of operators

G fr— F(f)(g)e o4z tineqe

RS
3
—t(v 2428y 4 i(z—y).
:/]Rs e Honlen 4152 bile—) € g gy
X

Notice that the phase function a(€) is such that

a() € {iE‘ (1+/1+4[E2) |£| ~VI+ P }.

So, it is almost stationary when {3 is almost equal to 0 as well as when |{]
goes to +oo.
For some 0 < r < min(R, R’'), let us define the domain C, g r' by

Crmr = {€ € RSR > |go| > 1l < R}

and consider a cut-off function ¢, which is radial with respect to horizontal
variable &, and whose value is 1 near C, g r.
First, we study the case when F(f) is supported in C, g r/. We have

G f(t,x) = (K(t/e,ut,.) *f) (2),

where the kernel K is defined by
K(t,T,z)= 1/)(5) ita(©)+iz.e-rlenl ge,

As in [3], we recall the following property of K:

~16 —
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LEMMA 4.1. — For all v, R and R’ satisfying 0 < r < min(R, R'), there
exists a constant C(r, R, R') such that

K (8,7, )| oo sy < Cr, R, R') min{1,¢7%}.

Proof. — The proof follows the lines of a stationary phase method. First,
using the rotation invariance in £, we restrict to the case zo = 0. Next, if
we denote

a(§) = —0g,a(8),

we remark that
la(€)] > CO(r, R, R)|&2],

where C is a strictly positive constant depending only on 7, R and R'.
Then, for all £ € C, g r/, we introduce the differential operator £ defined by

1 .
L= m(l + ia(§)0,)

which acts on the & variables and satisfies £(e?%) = e@,

Integrating by parts, we obtain

K(t,1,2) = /RS tL'(1,&(5)6_7'5"‘2)eit“(5)+i2'§d§.

Easy computation yields

2 1 . 1-— ta2 _r 2
PL(p(E)e ) = (m - Z(agza)m)ﬂf(f)@ e
e —rlén|?
1 +t0¢2(§) 852(1/)(5)6 )-
Using the fact that ¢ is in a fixed annulus of R3, and ¢ € D(R?), we get
d&o
K, 7,)|p~ <C(r,R,R /
K7 )l < OB R) [ 10

which proves the lemma. (Il

Denote by w® the solution of the free linear system associated to (S¢)
defined by

1 :
(PLFE) at'lUE — l/hAhUJ6 + EL(U}E) = f m Rt X Ri
w®(0) = wo.

Lemma 4.1 yields, in a standard way, the following Strichartz estimate (see

[6])-
—17 -
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COROLLARY 4.2. — For all constants r, R and R such that
0 <7 <min(R, R'), letC, g r' be the domain defined above. Then a constant

C'(r,R,R) exists such that if

supp (F(wo)) U supp (F(f)) C Cr.r,rr

then the solution w® of (PLF*®) with the forcing term f and initial data wy
satisfies

0|l paw, pey < C'(r, R, R') '/ <||U’0||L2 + ||f||L1(R+,L2))-

Notice that the constant C'(r, R, R') does not depend on e.
Using the above estimate, we are able to prove the convergence result.

Proof of Theorem 1.3.— Denote by F¢ the quadratic part, the system
S%) can be reformulated in the following form
g

1
0 U — v AR US + = L(US) = F° in Ry xR3

£

(S°) divu®*=0 in R3

dive* =0 in R3
Us_y = Uola).

Define Uy, and U & respectively by
Uk = x(IVp|/R)U*

and R
Ugp =U°—-Us.

To study the asymptotic behavior of U &, one begins by noting that, for all
n>0,
10500 = /]R (1= X(1&nl/R)?[en P F (UF) (€) [P
1
gy [6n P F(U) (6n, &)1 dE
/3 /h,?R ‘£h|2n ’

s , ) 2
Rnéﬁwgmuwx%®wé

N

It follows that, for all R > 1

T T
/ T8 2 odt < B2 / VAU (8) 2.
0 0
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By the energy estimate (2.5), one obtains

T
~ 1
[ 0RO oat < B2
0 2vp,

Moreover, for all 0 <7 <1 and R > 1, it holds that

T T
| 100t < [ 100t
0 0
So, by interpolation inequality, one infers that

Vn >0, Vs’ < s, limsup |Ug| 2 (H1-nonposy 7 0.
e—0 T R—+00

To estimate Uf, note that
1
8,5U§ — VhAhUE + EL(U]&%) = FIE%,
where
Fg == x(IVal/R)F*.
Apply the Fourier transform to obtain
F(UR)(, &) = F(HE)(t,§) + F(KE)(t,€),

where
F(HR)(t,€) := exp(tA(e, €))F (Uo,r) ()
and

FKS)(t,€) = / exp ((t — 7)A(e, ) F(F5)(7,£)dr.

The expression of the operator A is given by the above equation.
For 0 < r < R < min(R, R'), one can decompose F(K%,) as follows

F(KR),€) = x(&/r)F(KR)(t€)

+ (1= x(&/m)x(&s/R)F(KR)(,€)
+ (1= x(&/R)F(KR)(¢E).
To investigate x(|Ds|/7)K5(t), note that

1D 1) K50 1w ) < 17 (elIDal/ VB 0)
< / / X(Es /r)X[&nl / B)|F(F2) (. €) de
0 JR3

<oR [ NFUH ) @ U lumdr [ xtm)xm)dn
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By the fact that

|F(U(r,.) @ US(7,.)) | = 1U(r,.) @ US(7, )|

<
< IUE(r)lIEs
< Uol2s,

one has, for all R > 0,
hmsélp||X(|D3|/7")K§:%HLO;(L@C(RS)) — 0
E—

To investigate the term (1 — x(&3/r))x(&s/R)F(K5)(t,€), one begins by
using Corollary 4.2 to obtain

(1= x(IDs|/r))x(|Ds|/ R) K&l 1. (£
< CeVHI(1 = x(IDs|/m)x(1Dsl /R Fill s 12,

where C = C(r, R, R').
To prove that ||(1—X(|D3|/r))x(|D3\/R’)FEHUT(LQ) is bounded, use classical
computation and elementary properties of Fourier transform to obtain

10 = XDl P)X(Dsl /R Fil

= [ 0= xea/m)uiesl RIF (R O de

<R+ R)? [ (0= x(E/n) (@ Rl RPAFU° 9 U (1€ Pde
<R+ RPIF7 @ U [ (1= x(@/r) 6/ Rl /R
<R+ R0 @ US(EIR [(1= x6a/r)Px(Ea/ Rl R

<R+ RPRRIVN [ v ()P
< C(R, R/)||U8(t7 )”%2
< OB, B)|Uoll ...

It follows that

lin sup 11 = x(1Ds]/m))x(I1Ds| /RO)X(IVal/ R) K[| g, (=) = 0.
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Study of Anisotropic MHD system in Anisotropic Sobolev spaces
To investigate (1 — x(§3/R’))F(K5), note that

17 (1~ X(&s/B)F(KR)(t, €)) Il o~ (me)
/IIF (1= x(&/RNx(€nl /R)F(F*)(7,6)) | L~ dr

/” (1 = x(&/ BNl /R)F(F*)(7,€) | adr

A/Rg (1 = x(&/RN)x(|€nl/R)|F(FF)(T,€)|dr
<[ /R = LX) (el Ryl ()
<

RI% pi( 1) + I g (t,s),
where
15, (1, 6) = / / Pr (€6 | F(UF © U*)(r, €) dedr
and "
P () —% (16 l/ ).

It is clear that
| Paw(eyis —o.
R3 R — o0
Recall the elementary inequality
Va>0 and z,yeR |z|* <2%(z —y|* + |y|*)
to deduce that, for all a > 0 and for all V € H%%(R3), that
& I21F(V @ V)(E)] < 2 V]| o V] 2.
So, for all 5 € {s,s — 1}, it holds that

&I IFU @ U (Ol < 27 UP||pos U 12
< 27HUR o0

By the energy estimate (2.5), one obtains
I (o) RNF R O) ey < 2 (BT Nallo | Pre (€1

Finally, one deduces that

1113551p | F! (1- X(fS/R/))f(KIE%)(t7f))HL;’?(L"") E 0.
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5), (1.3) and (1.4) it holds that

y - _ 0. 4.2
lms(l)lpll Al 7=z (4.2)

£—

Use (4.1), (4.2) and the injection L>®°(R?) U L?(R?) < C~3/2(R3) to obtain

U — 0, in L2(C3/2(RY))

E—>

which ends the proof of Theorem 1.3. O
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