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On the small maximal flows in first passage
percolation(∗)

Marie Théret(1)

ABSTRACT. — We consider the standard first passage percolation on Zd:
with each edge of the lattice we associate a random capacity. We are
interested in the maximal flow through a cylinder in this graph. Under
some assumptions Kesten proved in 1987 a law of large numbers for the
rescaled flow. Chayes and Chayes established that the large deviations far
away below its typical value are of surface order, at least for the Bernoulli
percolation and cylinders of certain height. Thanks to another approach
we extend here their result to higher cylinders, and we transport this
result to the model of first passage percolation.

RÉSUMÉ. — Nous considérons le modèle de percolation de premier passage
sur Zd: à chaque arête du graphe nous associons une capacité aléatoire.
Nous nous intéressons au flux maximal à travers un cylindre dans ce
graphe. Sous certaines hypothèses Kesten a prouvé en 1987 une loi des
grands nombres pour le flux maximal renormalisé. Chayes et Chayes ont
établi que les grandes déviations loin en dessous de sa valeur typique
sont d’ordre surfacique, du moins pour la percolation de Bernoulli et des
cylindres d’une certaine hauteur. Grâce à une nouvelle approche nous
étendons ici leur résultat à des cylindres plus hauts, et nous transportons
ce résultat dans le modèle de percolation de premier passage.

1. Definitions and main result

We use the notations introduced in [5] and [6]. Let d � 2. We consider
the graph (Zd,Ed) having for vertices Z

d and for edges E
d the set of the

pairs of nearest neighbors for the standard L1 norm. With each edge e
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91405 Orsay cedex, France
marie.theret@math.u-psud.fr

– 207 –



Marie Théret

in E
d we associate a random variable t(e) with values in R

+. We suppose
that the family (t(e), e ∈ E

d) is independent and identically distributed,
with a common distribution function F . More formally, we take the product
measure P on Ω =

∏
e∈Ed [0,∞[, and we write its expectation E. We interpret

t(e) as the capacity of the edge e; it means that t(e) is the maximal amount of
fluid that can go through the edge e per unit of time. For a given realization
(t(e), e ∈ E

d) we denote by φ�k,m = φB the maximal flow through the box

B(	k,m) =
d−1∏
i=1

[0, ki] × [0,m] ,

where 	k = (k1, ..., kd−1) ∈ Z
d−1, from its bottom

F0 =
d−1∏
i=1

[0, ki] × {0}

to its top

Fm =
d−1∏
i=1

[0, ki] × {m} .

Let us define this quantity properly. We remember that E
d is the set of

the edges of the graph. An edge e ∈ E
d can be written e = 〈x, y〉, where

x, y ∈ Z
d are the endpoints of e. We will say that e = 〈x, y〉 belongs to a

subset A of R
d (e ∈ A) if the segment joining x to y (eventually excluding

these points) is included in A. Now we define Ẽ
d as the set of all the oriented

edges, i.e. an element ẽ in Ẽ
d is an ordered pair of vertices. We denote an

element ẽ ∈ Ẽ
d by 〈〈x, y〉〉, where x, y ∈ Z

d are the endpoints of ẽ and
the edge is oriented from x towards y. We consider now the set S of all
pairs of functions (g, o), with g : E

d → R
+ and o : E

d → Ẽ
d such that

o(〈x, y〉) ∈ {〈〈x, y〉〉, 〈〈y, x〉〉}, satisfying

• for each edge e in B we have

0 � g(e) � t(e) ,

• for each vertex v in B � Fm we have∑
e∈B : o(e)=〈〈v,·〉〉

g(e) =
∑

e∈B : o(e)=〈〈·,v〉〉

g(e) .

A couple (g, o) ∈ S is a possible stream in B: g(e) is the amount of fluid
that goes through the edge e, and o(e) gives the direction in which the fluid
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goes through e. The two conditions on (g, o) express only the fact that the
amount of fluid that can go through an edge is bounded by its capacity, and
that there is no loss of fluid in the cylinder. With each possible stream we
associate the corresponding flow

flow(g, o) =
∑

u/∈Fm , v∈Fm : 〈u,v〉∈Ed∩B

g(〈u, v〉)11o(〈u,v〉)=〈〈u,v〉〉

−g(〈u, v〉)11o(〈u,v〉)=〈〈v,u〉〉 .

This is the amount of fluid that crosses the cylinder B if the fluid respects
the stream (g, o). The maximal flow through the cylinder B is the supremum
of this quantity over all possible choices of stream

φB = φ�k,m = sup
(g,o)∈S

flow(g, o) .

We denote by pc(d) the critical value of the parameter of the Bernoulli
percolation in dimension d. We will prove the following result:

Theorem 1.1. — We suppose that

F (0) < 1 − pc(d) .

There exist a positive constant ε0, depending only on d and F , and a positive
constant C, depending only on d, such that for any function h : N → N

satisfying

lim
n→∞

lnh(n)
nd−1

= 0

we have

∀ε < ε0 lim inf
n→∞

− 1
nd−1

ln P
[
φ(n,...,n),h(n) � εnd−1

]
� C > 0 .

The condition F (0) < 1− pc is necessary for this result to hold. Indeed,
Yu Zhang (see [9]) proved in dimension 3 that for a function F satisfying

F (0) = 1 − pc and
∫

[0,+∞[

xdF (x) < ∞

we have

lim
k,l,m→∞

φ(k,l),m

kl
= 0 .

The spirit of this result is not new, Chayes and Chayes proved in [4] (see
Lemma 3.3) the following theorem:
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Theorem 1.2. — We suppose that the capacity t of each edge follows
a Bernoulli law of parameter p satisfying p > pc. Then there exist positive
constants ε̃, C̃ such that

P
[
φ(n,...,n),n � ε̃nd−1

]
� 1 − e−C̃nd−1

for n sufficiently large.

To prove it they divide the cylinder into thin layers, compare each one of
them to objects of dimension 2 and use the results of [1]. Because of the
passage in dimension 2, it seems to us that this proof can only be extended to
cylinders B((n, ..., n), h(n)) with a height satisfying limn→∞ lnh(n)/n = 0.
This is the constraint we have in dimension 2, but not in higher dimensions.
Actually the condition limn→∞ lnh(n)/nd−1 = 0 is the good one, in the
sense that in the model of Bernoulli percolation if h(n) = exp(knd−1) for
a constant k sufficiently large, the maximal flow φ(n,...,n),h(n) tends to 0
almost surely. Indeed if the nd−1 vertical edges of the cylinder that intersect
one fixed horizontal plane have all 0 for capacity then φ(n,...,n),h(n) = 0. By
independence and translation invariance of the model, we obtain, for k large
enough

P
[
φ(n,...,n),h(n) 
= 0

]
�

[
1 − (1 − p)n

d−1
]h(n)

−−−→
n→∞

0 .

The proof of Theorem 1.1 is based on the coarse graining techniques
of Pisztora (see [8]). Actually we don’t need estimates as strong as those
of Pisztora for the renormalization scheme. We will use a weaker version
of these results as in [3]. Moreover we won’t use the general stochastic
domination inequality (see [8], [7]), it is sufficient here to use a partition
of the space into equivalence classes to get rid of problems of dependence
between random variables, as we will see in section 4.2.

We will first study two particular cases of this result in the model of
Bernoulli percolation, that will allow us to deal very simply with the proof
of the main theorem in general first passage percolation.

2. Max-flow min-cut theorem

The definition of the flow is not easy to deal with. The maximal flow φB

can be expressed differently thanks to the max-flow min-cut theorem (see
[2]). We need some definitions.

A path on a graph (Zd for example) from v0 to vn is a sequence (v0, e1, ...,
en, vn) of vertices v0, ..., vn alternating with edges e1, ..., en such that vi−1
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and vi are neighbors in the graph, joined by the edge ei, for i in {1, ..., n}.
Two paths are said disjoint if they have no common edge.

A set E of edges of B(	k,m) is said to separate F0 from Fm in B(	k,m) if
there is no path from F0 to Fm in B(	k,m) � E. We call E an (F0, Fm)-cut
if E separates F0 from Fm in B(	k,m) and if no proper subset of E does.
With each set E of edges we associate the variable

V (E) =
∑
e∈E

t(e) .

The max-flow min-cut theorem states that

φB = min{V (E) |E is an (F0, Fm) − cut } .

In the special case where t(e) belongs to {0, 1}, i.e. the law of t is a
Bernoulli law, the flow has an other simple expression. In this case, let us
consider the graph obtained from the initial graph Z

d by removing all the
edges e with t(e) = 0. Menger’s theorem (see [2]) states that the minimal
number of edges in B(	k,m) that have to be removed from this graph to
disconnect F0 from Fm is exactly the maximal number of disjoint paths that
connect F0 to Fm. By the max-flow min-cut theorem, it follows immediately
that the maximal flow in the initial graph through B from F0 to Fm is
exactly the maximal number of disjoint open paths from F0 to Fm, where
a path is open if and only if the capacity of all its edges is one.

3. Bernoulli percolation for a parameter p near 1

We consider that the capacity t of each edge follows the Bernoulli law
of parameter p, with p = P[t = 1] as close to 1 as we will need. Remember
that here the maximal flow through a cylinder B is the maximal number of
disjoint open paths from the bottom to the top of B. We will first prove the
following theorem:

Theorem 3.1. — For all ε in [0, 1[, there exist p0(ε, d) < 1 and a con-
stant C ′ depending only on the dimension d such that for any function
h : N → N satisfying

lim
n→∞

lnh(n)
nd−1

= 0

and for all p � p0 we have

lim inf
n→∞

− 1
nd−1

ln P
[
φ(n,...,n),h(n) � εnd−1

]
� C ′ > 0 .
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To simplify the notations during the proof of this theorem, we define

α(ε) = P
[
φ(n,...,n),h(n) � εnd−1

]
.

Thanks to the max-flow min-cut theorem, we know that

α(ε) = P
[
there exists a (F0, Fh(n)) − cut E satisfying V (E) � εnd−1

]
.

We need to define a notion of �-connection. We associate with each edge
e a plaquette P(e) which is the only unit square of R

d of the form Pi +
(n1, ..., nd) that intersects e in its middle, where (n1, ..., nd) ∈ Z

d and Pi =
[−1/2, 1/2]i−1 × {1/2} × [−1/2, 1/2]d−i for 1 � i � d. We say that two
edges e1 and e2 are �-connected if and only if P(e1)∩P(e2) 
= ∅. According
to Kesten (see [6]) a (F0, Fh(n))-cut is �-connected. Moreover, it is obvious
that a cut contains at least nd−1 edges (to cut the nd−1 possible vertical
paths). In particular, if we consider a fixed vertical path and if we denote by
(ei, i = 1, ..., h(n)) the edges of this path, a (F0, Fh(n))-cut E must contain
at least one of these ei. We can then find a subset E′ of E which contains
exactly nd−1 edges, including one of these ei, and which is �-connected.
Obviously if V (E) � εnd−1 then V (E′) � εnd−1. Finally we can relax the
constraint for E′ to be in B, and by translation invariance of the model we
can suppose that E′ contains a determined edge e0. We deduce from these
remarks that

α(ε) �
h(n)∑
i=1

P

[
there exists a (F0, Fh(n)) − cut E s.t. V (E) � εnd−1

and ei ∈ E

]
� h(n) P

[
there exists a � −connected set E′ of nd−1 edges

such that V (E′) � εnd−1 and e0 ∈ E′

]
� h(n)

∑
A

P

[∑
e∈A

t(e) � εnd−1

]
,

where the sum is over the �-connected sets A of nd−1 edges including e0.
We know (see [6]) that there exists a constant c > 1 depending only on
the dimension d such that the number of such possible sets A is bounded
by cn

d−1
. We deduce then, thanks to the exponential Chebyshev inequality,

that, for all λ > 0,

α(ε) � h(n)cn
d−1

eλεn
d−1

E
[
e−λt

]nd−1

� exp
(
−nd−1

[
− lnh(n)

nd−1
− ln c + λ(1 − ε) − ln(p + (1 − p)eλ)

])
.
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We choose λ such that
λ(1 − ε) � 3 ln c ,

and then p0 < 1 (depending on d and ε) such that for all p � p0 we have

ln
(
p + (1 − p)eλ

)
� ln c .

We conclude that

∀p � p0 α(ε) � exp
(
−nd−1

[
ln c− lnh(n)

nd−1

])
.

This ends the proof of theorem 3.1.

4. Bernoulli percolation

We consider now that the law of t is a Bernoulli law with a fixed param-
eter p > pc. We will prove the following result:

Theorem 4.1. — For any p > pc, there exist a positive ε0 (depending
on d and p) and a positive constant C ′′ (depending only on the dimension
d) such that for any function h : N → N satisfying

lim
n→∞

lnh(n)
nd−1

= 0

we have

∀ε � ε0 lim inf
n→∞

− 1
nd−1

ln P
[
φ(n,...,n),h(n) � εnd−1

]
� C ′′ > 0 .

The proof of this theorem is based on the coarse graining techniques of
Pisztora (see [8], [3]). The idea is to use a renormalization scheme: instead
of looking at what happens for each edge, we try to understand what are
the typical properties of the edges in a box, and to deduce some properties
for the entire graph.

4.1. Coarse graining

Let Λ be a box. We define its inner vertex boundary as

∂inΛ = {x ∈ Λ | ∃ y /∈ Λ , |x− y| = 1} .

An open cluster within Λ is said crossing for Λ if it intersects each of
the 2d faces of ∂inΛ. The diameter of a set A is given by diam(A) =
maxi=1...d supx,y∈A |xi − yi|. We now consider the event

U(Λ) = { there exists an open crossing cluster in Λ }
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and, for m less than or equal to the diameter of Λ,

W (Λ,m) = { there exists a unique open cluster in Λ with diameter � m } .

Let Λ(n) be the square box ] − n/2, n/2]d. We know that

Lemma 4.2. — For all dimension d � 2 and for all p > pc, we have

lim
n→∞

P[U(Λ(n))] = 1 .

Moreover, there exists a finite constant γ (depending on d and p) such that

lim
n→∞

P[W (Λ(n), γ lnn)] = 1 .

For a proof, see [3]. In particular, this lemma implies that

lim
n→∞

P(W (Λ(n), n/3)) = 1 .

To use this estimate, we will rescale the lattice. Let K be a positive
integer. We divide Z

d into small boxes called blocks of size K in the following
way. For x = (x1, ..., xd) ∈ Z

d, we define the block indexed by x as

BK(x) = Kx + Λ(K) ,

where Kx is the vertex (Kx1, ...,Kxd). We remark that the blocks partition
R

d. Let A be a region of R
d, we define the rescaled region AK as

AK =
{
x ∈ Z

d |BK(x) ∩A 
= ∅
}

.

For x ∈ Z
d, we define next a neighborhood of the block BK(x), called the

event-block, as
B′

K(x) =
⋃
u

BK(u) ,

where the union is over the vertices u = (u1, ..., ud) ∈ Z
d satisfying

max1�i�d |xi − ui| � 1. Finally we define the block process (XK(x), x ∈ Z
d)

as

∀x ∈ Z
d XK(x) = 11U(BK(x)) × 11W (BK(x),K

3 ) ×
∏
y∈Y

11W (BK(x)+y,K
3 ) ,

where Y = {(±K/2, 0, ..., 0), (0,±K/2, 0, ..., 0), ..., (0, ..., 0,±K/2)}. We say
that the event-block B′

K(x) is good if XK(x) = 1; it is bad otherwise.
According to lemma 4.2, we know that for a fixed x the variable XK(x) is a
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Bernoulli random variable with parameter 1 − δK , where limK→∞ δK = 0.
This way we obtain a dependent percolation by edges on the rescaled lattice.

Now if we have a L1-connected path of good event-blocks (B′
K(xi), i ∈ I)

in the rescaled lattice from the bottom to the top of a rescaled cylinder B,
we can find an open path from the bottom to the top of the corresponding
cylinder B in the initial graph which is completely included in ∪i∈IBK(xi).
Indeed, take x, y and z three successive elements of the L1-connected se-
quence (xi, i ∈ I). Suppose (for the recurrence) that we have already con-
structed an open path γ in BK(x)∪BK(y) which join the two opposite faces
of ∂in(BK(x)∪BK(y)) at distance 2K (the ones perpendicular to the direc-
tion of the vector y − x). We know that B′

K(y) and B′
K(z) are good event-

blocks, so the events U(BK(y)), U(BK(z)) and W (BK(y)+(z−y)K/2,K/3)
occur. On U(BK(y))∩U(BK(z)), we know that there exists an open path γ′

1

(respectively γ′
2) in BK(y) (respectively BK(z)) that join the two opposite

faces of ∂inBK(y) (respectively ∂inBK(z)) perpendicular to the direction
of the vector z − y. Moreover, since W (BK(y) + (z − y)K/2,K/3) occurs,
γ′
1 and γ′

2 are connected by an open path γ′
3 in BK(y) + (z − y)K/2 be-

cause of the uniqueness of the open cluster of diameter greater than K/3 in
BK(y)+(z−y)K/2 (see figure 1). So γ′ = γ′

1∪γ′
2∪γ′

3 contains an open path
in BK(y)∪BK(z) which joins the two opposite faces of ∂in(BK(y)∪BK(z))
at distance 2K (the ones perpendicular to the direction of the vector z−y).
Finally the event W (BK(y),K/3) occurs so we know that γ and γ′ are con-
nected by an open path γ′′ in BK(y) (see figure 2). From an event-block to
another, we can build the desired open path from the bottom to the top of
the cylinder B, and it lies indeed in ∪i∈IBK(xi).

K γ
1'

γ
3'

γ
2'

y z

Figure 1. — Construction of the open path - 1.

Moreover, if we have N disjoint L1-connected paths of good event-blocks,
that we denote by (B′

K(xi), i ∈ Ij), j = 1, ..., N , in the rescaled lattice from
the bottom to the top of a rescaled cylinder B, we can find N disjoint
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open paths from the bottom to the top of the corresponding cylinder B in
the initial graph, because the sets Ij are pairwise disjoint and so are the
sets ∪i∈Ij

BK(xi), which contains the different open paths constructed as
previously.

K

y

z

x

γ γ

γ

'' '

Figure 2. — Construction of the open path - 2.

4.2. Proof of theorem 4.1

As previously we use the notation

α(ε) = P
[
φ(n,...,n),h(n) � εnd−1

]
.

We define the cylinder

A(n) = [0, n]d−1 × [0, h(n)] ,

and AK is the rescaled cylinder for an integer K which will be chosen soon.

According to the remark at the end of the previous subsection, we know
that if there exist εnd−1 disjoint paths of L1-connected good event-blocks
from the bottom to the top of the rescaled cylinder AK(n), then there exist
at least εnd−1 disjoint open paths from the bottom to the top of A(n).
Therefore

α(ε) � P

[
there exist less than εnd−1 disjoint paths of good

event − blocks from the bottom to the top of AK(n)

]
.
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Now the arguments which will be used are very similar to those used in
the proof of theorem 3.1. The main difference is that the random variables
(XK(x), x ∈ Z

d) are not independent.

We work for the rest of the proof in the rescaled lattice. The notion of
cut can be adapted easily in the model of site percolation and the max-
flow min-cut theorem remains valid in this model. Thanks to the max-flow
min-cut theorem applied in the rescaled lattice we obtain that

α(ε) � P

[
there exists a (F0K

, Fh(n)
K

) − cut E satisfying V (E) � εnd−1
]
,

where here
V (E) =

∑
x∈E

XK(x) .

Note that such a (F0K
, Fh(n)

K
)-cut contains at least u = �(n/K)d−1� ver-

tices. As previously, we obtain

α(ε) � h(n)
K

∑
A

P

∑
x∈A

XK(x) � εnd−1

 ,

where the sum is over the L1-connected sets A of u vertices containing a
fixed vertex x0 of Z

d.

To deal with the variables (XK(x), x ∈ Z
d) we introduce an equivalence

relation on Z
d: x ∼ y if and only if 3 divides all the coordinates of x − y.

There exist 3d equivalence classes V1, ..., V3d in Z
d. For a set of vertices E,

we define
El = E ∩ Vl .

Now the variables (XK(x), x ∈ Vl) are independent for a fixed l ∈ {1, ..., 3d},
so we want to consider only sums of variables indexed by vertices in the
same equivalence class. For that purpose, we remark that if

∑
x∈A XK(x) �

εnd−1 for some set A of u vertices and for some ε � 1/Kd−1, then A
contains at least u − �εnd−1� bad event-blocks which are included in the
subsets A1, ..., A3d

. Thus there exists l ∈ {1, ..., 3d} such that Al contains
at least (u− �εnd−1�)/3d bad event-blocks, so

∑
x∈Al XK(x) � |Al| − (u−

�εnd−1�)/3d. This remark leads to

P

∑
x∈A

XK(x) � εnd−1

 �
3d∑
l=1

P

 ∑
x∈Al

XK(x) � |Al| − 1
3d

(u− εnd−1)

 ,
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where |Al| is the cardinal of Al. Now, thanks again to the bound on the
number of possible sets A and to the exponential Chebyshev inequality, we
obtain as in the proof of theorem 3.1 that, for all λ > 0,

α(ε) � h(n)
K

∑
A

3d∑
l=1

exp
(
λ

[
|Al| − 1

3d
(u− εnd−1)

])
E

[
e−λXK(x0)

]|Al|

�h(n)
K

∑
A

3d∑
l=1

exp
(
λ|Al| − λ

u− εnd−1

3d
+ |Al| ln

[
e−λ(1 + δK(eλ − 1))

])

� 3dh(n)
K

exp
(
−u

[
− ln c′ +

λ

3d
(1 − εnd−1

u
) − ln(1 + δK(eλ − 1))

])
,

because |Al| � u. Now we choose first λ such that

λ

2 × 3d
� 3 ln c′ ,

and then K large enough (depending on d and p), so δK small enough, to
have

ln
(
1 + δK(eλ − 1)

)
� ln c′ .

We obtain

∀ε � 1
2Kd−1

α(ε) � 3dh(n)
K

e−u ln c′ ,

and this ends the proof.

5. Proof of theorem 1.1

We consider finally the general case of the first passage percolation
model, with the condition

F (0) < 1 − pc .

The distribution function F is right continuous, so there exists a positive η
such that

p′ = P[t > η] = 1 − F (η) > pc .

Now we consider a new family of random variables on E
d defined as

t′(e) =
{

1 if t(e) > η
0 otherwise

The family (t′(e), e ∈ E
d) defines an independent Bernoulli percolation of

parameter p′ on the lattice. We consider the rescaled lattice, and we say that
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an event-block is good if it is good for this Bernoulli percolation according
to the definition given in the previous section. We remark that the existence
of a path of good event-blocks in the rescaled lattice implies the existence of
a path of edges with a capacity greater than η in the initial graph. Therefore

α(ε) = P
[
φ(n,...,n),h(n) � εnd−1

]
� P

[
there exist less than ε

ηn
d−1 disjoint paths of good

event − blocks from the bottom to the top of AK(n)

]
.

We proceed as in the proof of theorem 4.1 to obtain the desired estimate.
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