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Limit trees and generic discriminants of minimal
surface singularities(∗)

Eric Dago Akéké(1)

ABSTRACT. — According to R. Bondil the dual graph of the minimal
resolution of a minimal normal surface singularity determines the generic
discriminant of that singularity. In this article we give with combinatorial
arguments the link between the limit trees and the generic discriminants
of minimal normal surface singularities. The weighted limit trees of a
minimal surface singularity determine the generic discriminant of that
singularity.

RÉSUMÉ. — D’après R. Bondil, le graphe dual de la résolution minimale
d’une singularité minimale de surface normale détermine le discriminant
générique de cette singularité. Par des arguments combinatoires, nous
donnons dans cet article le lien entre les arbres limites et les discriminants
génériques des singularités minimales de surfaces normales. Les arbres
limites pondérés d’une singularité minimale de surface normale détermine
le discriminant générique de cette singularité.

Introduction

Minimal normal surface singularities are the rational surface singular-
ities with reduced fundamental cycle. These singularities were studied by
Spivakovsky [10], Theo De Jong and Van Straten [7] and recently by R.
Bondil [3], [4]. By using a result of Spivakovsky in [10], R. Bondil gives in
[3] the algebraic structure of the generic discriminants of minimal normal
surface singularities. However in their study of the deformation theory of
minimal surface singularities Theo De Jong and Van Straten introduced the
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notion of limit trees for these singularities (see [7]). It is shown in [7] that
any limit tree of a minimal surface singularity determines the dual graph
of the minimal resolution of that singularity ([7], Lemma (1.16)). In [4] R.
Bondil showed with induction arguments that the limit trees of a minimal
surface singularity are intimately bound with its generic discriminant. We
give in this article a combinatorial point of view on this relation. The in-
terest of a weighted limit tree of a minimal surface singularity is that it
determines both the generic discriminant and the dual graph (of the mini-
mal resolution) of that singularity. By using the notion of limit trees we can
give examples of different minimal surface singularities with equisingular
generic discriminants.
The generic discriminants of normal surface singularities are defined in sec-
tion 1. In section 2 we will recall a characterization of the dual graphs of
minimal surface singularities. We introduce in section 3 some new integer
invariants (cf. Notation 3.3) on the vertices of minimal graphs. We will use
them in section 5. Theorem 3.5 gives the algebraic structure of the generic
discriminants of minimal surface singularities. The limit trees of minimal
surface singularitites are defined in section 4. The main result of the article
is Theorem 5.5.

1. Generic discriminants of normal surface singularities

Let (S, 0) be a germ of normal complex surface singularity and take a
representative S embedded in CN . For any (N − 2)-dimensional subspace
D in CN , we consider the linear projection CN −→ C2 with kernel D and
denote by pD : (S, 0) −→ C2 the restriction of this projection to (S, 0).
Considering a small representative S of the germ (S, 0) and restricting to
the (N − 2)-dimensional subspaces D such that pD is finite, we define as in
[11] the polar curve C(D) of the projection pD as the closure in S of the
critical locus of the restriction of pD to S \ {0}. It is a reduced analytic
curve. It is shown in [11] that it makes sense to say that for an open dense
subset of the Grassmannian of (N − 2)-linear subspaces of CN the polar
curves C(D) are equisingular in terms of strong simultaneous resolution (cf.
[5] for this notion). It also turns out that this equisingularity class depends
only on the analytic type of the germ (S, 0) (cf. [11], page 430).

The discriminant of the finite projection pD is (the germ at 0 of) the re-
duced analytic curve of (C2, 0), image of the polar curve C(D).
We can state the following result (cf. [5], Proposition VI.2, [11], page 352,
462).
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Theorem 1.1. — There is an open dense subset W of the Grassmannian
of (N − 2)-linear subspaces of CN such that the discriminants ∆pD

, D ∈ W
obtained are equisingular (germs of) plane curves.

We refer to [5], [12], [13] for the concept of equisingularity of reduced
plane curves. As explained in [5] the equisingularity class of the discriminant
∆pD

, D ∈ W is uniquely defined by the saturation ring ÕC(D),0 of the polar
curve C(D). Also note that the equisingularity class of the discriminant
∆pD

, D ∈ W depends only on the analytic type of the germ (S, 0). We will
denote by ∆S,0 the equisingularity class of the discriminant of a generic
projection pD and call it the generic discriminant of the normal surface
singularity (S, 0).

Definition 1.2. — Let (C1, 0), (C2, 0) be two analytically irreducible
plane curve germs. The contact between (C1, 0) and (C2, 0) is defined as
the number of point blow-ups necessary to separate these two branches.

2. Minimal normal surface singularities

The class of minimal normal surface singularities can be defined as the
subclass of rational surface singularities with reduced tangent cone. The
reader can find in [8] the definition of minimal singularities in any dimension.
Let us quote the following result from [8].

Theorem 2.1. — A normal surface singularity is minimal if and only if
it is rational with reduced fundamental cycle (with the terminology of [2]).

Let (S, 0) be a normal surface singularity and π : X −→ (S, 0) a res-
olution of the singularity. We denote by Γ the dual graph associated to
the exceptional curve configuration π−1(0) = ∪n

i=1Ej in the usual way. For
rational surface singularities it is well known that all the irreducible com-
ponents of the exceptional curve are smooth rational curves and the dual
graph Γ is a tree. Also note that it takes some computation to check whether
a given weighted tree is the dual graph of a rational surface singularity (cf.
[9]). For any dual graph Γ we will denote by wi = −E2

i the weight of the
vertex i ∈ Γ (E2

i is the self-intersection of the corresponding component Ei

on X) and we will denote by vi the valence of the vertex i ∈ Γ, i.e, the
number of edges attached to i.
The following statement holds [10].

Proposition 2.2. — The graph Γ is the dual graph of a minimal normal
surface singularity if and only if, Γ is a tree and wi � vi for each vertex
i ∈ Γ.
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In this work we will mainly use the dual graphs of the minimal resolutions
of minimal normal surface singularities. We will simply say that the graph
Γ is a minimal graph.
A vertex E of a minimal graph Γ will be called a Tyurina vertex if wE = vE

(see [10], Definition 3.1). We denote by ΓTC the set of vertices E which are
not Tyurina, i.e, wE > vE . Such vertices will be called non-Tyurina.

3. Generic discriminants of minimal surface singularities

By using a result of Spivakovsky ([10], Theorem 5.4) R. Bondil gives in
[4] the algebraic structure of the generic discriminants of minimal normal
surface singularities. To state these results we introduce some further ter-
minology.
Let π : X −→ (S, o) be the minimal resolution of the minimal surface sin-
gularity (S, 0), where π−1(0) = ∪n

i=1Ei is the exceptional divisor with com-
ponents Ei. Let Γ be the corresponding minimal graph (we will frequently
abuse notation and write Ei ∈ Γ to indicate the vertex of Γ corresponding
to the component Ei). The following notions were introduced in [10].

Definition 3.1. — The depth of the vertex E is sE = 1+dist(E, ΓTC),
where dist(E, ΓTC) is the distance of E to ΓTC .
A vertex k is called a central vertex if there are at least two vertices i, j
adjacent to k such that si − 1 = sk = sj − 1.
Let i, j be two adjacent vertices of Γ. The edge (i, j) is a central arc if
si = sj.

We then define a Q-cycle on the minimal resolution X of (S, 0) by ZΩ =
Σi∈ΓsiEi− K where K is the numerically canonical Q-cycle uniquely defined
by the condition: for all i ∈ Γ, K.Ei = −2 − E2

i (since the intersection
product on ∪Ei is negative definite).
We quote Spivakovsky’s result ([10], Theorem 5.4).

Theorem 3.2. — Let (S, 0) be a minimal normal surface singularity.
There is an open dense subset V of the open set W of Theorem 1.1, such
that for all D ∈ V the strict transform C

′
(D) of the polar curve C(D) on

X:
a) is a multi-germ of curves intersecting each component Ei transversally
in exactly mi := −ZΩ.Ei points,
b) goes through the point of intersection of Ei and Ej if and only if si = sj

(point corresponding to a central arc of the minimal graph Γ). Furthermore,
the curves C

′
(D), D ∈ V do not share other common points (base points)

and these base points are simple, i.e., the curves C
′
(D) are separated when

one blows up these points once.
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We give here an explicit expression of the number mE = −ZΩ.E of the
branches of the generic polar curve strict transform which intersect the
component E (of the exceptional fibre of the minimal resolution). Let us
define first the following new integer invariants.

Notation 3.3. — We denote by nE
T (resp. nE

TC) the number of Tyurina
(resp. non-Tyurina) vertices adjacent to the vertex E.
Let E be a Tyurina vertex with depth sE . We will denote by nE

+ (resp.
nE
−) the number of vertices F adjacent to E such that sF = sE + 1 (resp.

sF = sE − 1) and nE
= will be the number of vertices F adjacent to E such

that sF = sE .

Note that if E is a Tyurina vertex with nE
− � 2 then E is a central vertex

(cf. Definition 3.1). If nE
= �= 0 then E is an endpoint of nE

= central arcs.
We state ([1], Corollary 3.1.1.).

Corollary 3.4. — The following formulas hold :
mE = 2(wE − vE − 1) + nE

TC if E is non-Tyurina and
mE = 2(nE

− − 1) + nE
= if E is Tyurina.

It follows from Theorem 3.2 that the generic polar curve has components
of multiplicity equal at most two (cf. [1], [3]). In fact the minimal resolution
of the minimal surface singularity (S, 0) is a resolution of the generic po-
lar curve (cf. Theorem 3.2). By the projection formula for the intersection
number the multiplicity e(C, 0) of any component C of the generic polar
curve is e(C, 0) = Z.C̃ where Z = Σn

i=1Ei is the fundamental cycle and C̃ is
the strict transform of the component C. By Theorem 3.2 we have Z.C̃ � 2.
We recall that an An-curve is a curve analytically isomorphic to the plane
curve defined by x2 +yn+1 = 0. Note that any reduced curve of multiplicity
equal to two is an An-curve for some n.

The generic discriminant of a minimal surface singularity with minimal
graph Γ is determined in the following way: let ζ denote the set of cen-
tral arcs and central vertices of the minimal graph Γ. For any element
x ∈ ζ we consider a set C(x) of chains c = [Ep, Eq] ⊂ Γ containing the
central element x and such that Ep, Eq are non-Tyurina vertices and the
depth function is monotonically increasing with step one on the chains
(Ep, x), (Eq, x). We denote by l(c) the number of vertices in the chain
[Ep, Eq], i.e, l(c) = dist(Ep, Eq) + 1.
Note that the set of chains C(x) depends on the number of branches (of the
generic polar curve strict transform) which intersect the central element x
(we refer to [1], [3], [4] for more details). For central elements x, y we will
denote by (x, y) the minimal chain joining them in the minimal graph Γ.

– 41 –



Eric Dago Akéké

The following theorem by R. Bondil [3], [4] gives the algebraic structure of
the generic discriminants of the minimal surface singularities with minimal
graph Γ.

Theorem 3.5. — For any non-Tyurina vertex Ei ∈ Γ we denote by δEi

a germ of curve defined by 2(wEi − vEi) − 2 distinct lines.
For any central element x ∈ ζ and c ∈ C(x) we consider an Al(c)-curve.
a) The generic discriminant of the minimal surface singularity with minimal
graph Γ is the union

∆S,0 =
⋃

δEi ∪
⋃

x∈ζ, c∈C(x)

Al(c).

The contact (cf. Definition 1.2) between any line in δEi
and any component

Al(c) is one. The contact between two distinct components Al(c) and Al(c′ )

where c ∈ C(x), c
′ ∈ C(y), x, y ∈ ζ is the minimum depth in the chain

(x, y).

This theorem gives the equisingularity class of the generic discriminant.
In fact we can obtain the multiplicity sequence (we refer to [6], page 507
for this notion) of each branch of the generic discriminant and we know
the contacts between the branches. Then we can calculate the intersection
number of any two branches by using the Max Noether’s formula (cf. [6],
page 518). It is not hard to obtain the Puiseux pairs of each branch. We
then recall [13].

Theorem 3.6. — Two germs of plane curves X = ∪i∈IXi and X
′

=
∪j∈JX

′

j are equisingular if and only if there exists a bijection ψ : I −→
I

′
between their branches which preserves Puiseux characteristic pairs and

intersection numbers.

Note that different minimal surfaces singularities can have equisingular
generic discriminants.

Example 3.7. — Let Γ1 and Γ2 be the following minimal graphs.

*
3

2

2

*
2 2 3 2 2

*

r s**
22

*

q

3

2

p
2 2 3 2

Figure 1. — Minimal graphs Γ1 and Γ2
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The corresponding graph weighted by the depth function is Γ12.

3
*

3 2 1
*

*

2

1

1 2

Figure 2. — Graph Γ12

Here p, r are central vertices and (p, q), (r, s) are central arcs.
The generic discriminant of the minimal singularities with dual graphs Γ1,
Γ2 is ∆ = δ2 ∪ A6 ∪ A5, where the contact between A6 and A5 is 3 and δ2

denotes the union of two distinct lines.

The following data was introduced in [7]. We will use it in the next
section.

Definition 3.8. — For any pair Ei, Ej of vertices of a minimal graph
Γ we denote by (Ei, Ej) the (minimal) chain of Γ joining them, i.e, the
geodesic in Γ. It is unique since the minimal graph Γ is a tree. The length
l(Ei, Ej) of the chain (Ei, Ej) is the number of vertices in the chain (Ei, Ej)
(including the endpoints). For different vertices Ei, Ej , Ek the overlap
ρ(Ei, Ej ; Ek) of the chains (Ei, Ek), (Ej , Ek) is the number of vertices in
(Ei, Ek) ∩ (Ej , Ek).

4. Definition limit trees

In [7] Theo De Jong and Duco Van Straten introduced the notion of
limit trees for minimal normal surface singularities. We point out that in [7]
limit trees were defined by using the height function (cf. [7], Definition 1.10
(c)) on vertices of dual graphs of rational surface singularities. This height
function is studied more systematically for any rational surface singularity
as “desingularization depth” in [9]. For minimal surface singularities this
height function corresponds exactly to the depth function defined above ([1],
Proposition 4.1.1). The reader should check that this height corresponds to
the number of point blow-ups necessary to make the corresponding excep-
tional component “appear”. Note that for any Tyurina vertex E ∈ Γ with
depth sE = k + 1, k � 1 there exists at least one vertex F adjacent to E
such that sF = k (cf. [1], Remark 4.0.5.).
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Definition 4.1. — Let Γ be a minimal graph. A limit equivalence rela-
tion ∼ is an equivalence relation on the vertices of Γ satisfying the following
conditions:
a) vertices E with depth sE = 1 belong to different equivalence classes.
b) for every vertex E in Γ with depth sE = 1 + k, k � 1 take exactly one
vertex F adjacent to E with sF = k and E ∼ F .
Then the tree T = Γ/ ∼ is called a limit tree associated to Γ.

The limit equivalence relation is not unique in general. A given minimal
graph can have distinct limit trees, depending on the limit equivalence cho-
sen.

Example 4.2. — Let Γ be the following minimal dual graph with the
depths for the vertices.

*
pE E1

*

4E2
2 31 2 *

q

1

EE32E

Er1

2

Es

E5

1*

Figure 3. — A minimal graph Γ weighted by the depth function

For the equivalence classes Ẽp = {Ep, E1}, Ẽq = {E2, E3, Eq}, Ẽr =
{E4, Er}, Ẽs = {E5, Es} the limit tree is T1:

E
~ E

~

* * *
srqE

~
p E

~

*
Figure 4. — Limit tree T1

And for the equivalence classes Ẽp = {Ep, E1}, Ẽq = {E3, Eq}, Ẽr =
{E2, E4, Er}, Ẽs = {E5, Er}, the limit tree is T2:

rE
~

* *

*
~
Es

~
pE

*
Eq
~

Figure 5. — Limit tree T2
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Definition 4.3. — It is clear that any equivalence class contains exactly
one vertex E of depth one (it is a non-Tyurina vertex) so that we will denote
this equivalence class as vertex Ẽ in the limit tree T .
For any adjacent vertices Ẽp, Ẽq in the limit tree T we denote lT (Ẽp, Ẽq) :=
l(Ep, Eq). For different vertices Ẽp, Ẽq, Ẽk in T such that Ẽr is adjacent
to Ẽp and Ẽq we denote ρT (Ẽp, Ẽq; Ẽr) := ρ(Ep, Eq; Er) (where l and ρ are
the functions defined in Definition 3.8, page 43). The degree dT Ẽp of any
vertex Ẽp in T is defined to be dT Ẽp = wEp

−vEp
. We will use the notation

(T, lT , ρT , dT ) to denote exactly that data and (T, lT , ρT , dT ) will be called a
weighted limit tree of the minimal surface singularity with minimal graph Γ.

Any limit tree (T, lT , ρT , dT ) of the minimal graph Γ has the following
property (cf. [7]). If (p̃, r̃) and (q̃, r̃) are adjacent edges in T then the fol-
lowing inequalities hold:
ρT (p, q; r) � ρT (q, r; p), ρT (p, q; r) � ρT (r, p; q).
We recall Lemma 1.16 of [7]:

Proposition 4.4. — The weighted limit tree (T, lT , ρT , dT ) determines
the minimal graph Γ.

5. Generic discriminants via limit trees

Let Γ = (Ei)1�i�n be a minimal graph. We may assume that for any
i, 1 � i � N the vertex Ei is non-Tyurina, i.e. wEi

> vEi
and for N + 1 �

i � n the vertex Ei is Tyurina, i.e wEi
= vEi

.

Proposition 5.1. — The multiplicity e(∆S,0, 0) of the generic discrim-
inant of the minimal surface singularity with dual graph Γ is (cf. Notation
3.3, page 41)

e(∆S,0, 0) = 2ΣN
i=1(wEi

− vEi
−1)+ΣN

i=1nEi

TC +ΣN+1
i=1 nEi

= +2Σn
N+1(n

Ei
− −1)

Proof. — The generic polar curve and the generic discriminant have the
same multiplicity at 0 (cf. [11]). Using the projection formula for the inter-
section number and Theorem 3.2, the multiplicity of the generic polar curve
C(D) is e(C(D), 0) = −ZΩ.Z where Z = Σn

i=1Ei is the fundamental cycle
and ZΩ = Σn

i=1siEi − K is as in Theorem 3.2. Then we have

e(∆S,0, 0) = −ΣN
i=1ZΩ.Ei − Σn

i=N+1ZΩ.Ei

By Corollary 3.4 we know that −ZΩ.Ei = 2(wEi − vEi − 1) + nEi

TC for any
i = 1, . . . , N and −ZΩ.Ei = 2(nEi

− − 1) + nEi
= for any i = N + 1, . . . , n.
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The term 2ΣN
i=1(wEi

−vEi
−1) in the above Proposition is the contribution

of the curves δEi
associated to non-Tyurina vertices Ei (cf. Theorem 3.5).

We now point out the following facts.
i) By the definitions of the integers nE

TC , nE
= (cf. Notation 3.3) we can easily

see that in the minimal graph Γ the number of distinct central arcs con-
necting non-Tyurina vertices (resp. Tyurina vertices) is equal to 1

2ΣN
i=1nEi

TC

(resp. 1
2Σn

i=N+1nEi
= ).

ii) If a non-Tyurina vertex Ep is limit equivalent to a Tyurina vertex Ei

then the depth function is monotonically increasing with step one in the
chain (Ep, Ei). We then have nEi

− �= 0 for any Tyurina vertex Ei.

iii) Let us take any Tyurina vertex Ei such that nEi
= �= 0 and any ver-

tex Ej adjacent to Ei with sEi
= s = sEj

so that (Ei, Ej) is a central arc.
Then there exists at least one chain (Ep, Eq) in Γ of the form shown in
Figure 6.

jEiE
.... *

12

qE
....*

1

pE

2 s s

Figure 6. — Chain A

In Figure 6 the vertices Ep, Eq are non-Tyurina and the depth function
is monotonically increasing with step one in the chains (Ep, Ei), (Eq, Ej).
Such a chain is not unique in general but for any central arc (Ei, Ej) we
will choose only one chain of type A (cf. Figure 6). We will denote it by
ch(Ei, Ej) and ch(Ei, Ej) = ch(Ej , Ei).

Note that the strict transform (by the minimal resolution) of a component of
the generic polar curve intersects components Ei, Ej and the image of such
a component by the generic projection is a curve of type A2s : x2+y2s+1 = 0.

iv) Any Tyurina vertex Ei such that nEi
− � 2 is a central vertex in Γ.

Then let us take all vertices Ei1 , . . . , Eik
, (k := nEi

− ) adjacent to Ei, with
depths equal to that of Ei minus one.
Let us fix one of them, e.g. the vertex Ei1 . For any Eij (j = 2, . . . , k) we can
find in Γ a chain of the form shown in Figure 7. Here Ep, Eq are non-Tyurina
vertices and the depth function is monotonically increasing with step one
in the chains (Ep, Eij ), (Eq, Ei1). Such a chain is not unique in general but
we will consider only one of them and denote it by ch(Ei1 , Ei, Eij ). Then
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we can define the set of chains

C(Ei1 , Ei) := {ch(Ei1 , Ei, Eij
); j = 2, . . . , nEi

− }.

Ei

21
*
pE

.... .... qE

s-1 s s-1 2 1
*

1i
EiE j

Figure 7. — Chain B

Note that Card C(Ei1 , Ei) = nEi
− −1 and let us recall again that the generic

polar curve has some components of type A2s−1 whose strict transforms (by
the minimal resolution) intersect the component Ei. There are nEi

− −1 such
components.

v) For two adjacent non-Tyurina vertices Ep, Eq we denote the arc (Ep, Eq)
by ch(Ep, Eq) and ch(Ep, Eq) = ch(Eq, Ep).

We will use the following sets:

A(ΓT ) :=
{
{i, j}; N+1 � i, j � n, i �= j; Ei is adjacent to Ej and sEi

= sEj

}

and

A(ΓTC) :=
{
{p, q}; p �= q, 1 � p, q � N, Ep is adjacent to Eq

}
.

The reader can easily see that the pairs of integers of A(ΓT ) correspond ex-
actly to the central arcs connecting Tyurina vertices and those of
A(ΓTC) correspond exactly to the central arcs connecting non-Tyurina ver-
tices. �

Proposition 5.2. — The distinct chains of the set

{
ch(Ei, Ej), {i, j} ∈ A(ΓT ); C(Ei1 , Ei), i = N + 1, . . . , n; ch(Ep, Eq),

{p, q} ∈ A(ΓTC)
}

correspond one-to-one to the edges of a limit tree Γ̃ of the minimal graph Γ.

Proof. — This is trivial if each vertex of the minimal graph Γ is non-
Tyurina.
Suppose that some vertices are Tyurina.
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For any Tyurina vertex Ei we consider nEi
= chains of type A (cf. figure

6) and nEi
− − 1 chains of type B (cf. figure 7). We can obtain the limit

equivalence classes so that in the chain ch(Ei, Ej) (cf. figure 6) all vertices
of the chain (Ep, Ei) belong to the limit equivalence class of Ep and all
vertices of (Eq, Ej) belong to the limit equivalence class of Eq. Again, we
can obtain the limit equivalence classes so that in the chain ch(Ei1 , Ei, Eij

)
(cf. figure 7) all vertices of (Ep, Ei) belong to the limit equivalence class of
Ep and all vertices of (Eq, Ei1) belong to the limit equivalence class of Eq.
Then the limit tree relative to the limit equivalence classes obtained is that
of Proposition 5.2. �

Proposition 5.3. — Assume that (p̃, r̃), (r̃, s̃), (s̃, q̃) are some edges of
the limit tree Γ̃. Let us denote by c1 (resp. c2, resp. c3) the central element
(central arc or central vertex) of the corresponding chain (p, r) (resp. (r, s),
resp. (s, q)) in the minimal graph Γ. Then the following equality holds

min
{
depth(c1, c2)

}
= min

{
depth((c1, c2) ∪ (c2, c3))

}
.

Here (ci, cj) is the (minimal) chain in Γ joining ci and cj . The set of the
vertices’ depths on (ci, cj) is denoted by depth(ci, cj).

Proof. — First note that the subgraph of Γ spanned by p, q, r and s is
of the following type ([7], page 128, fig. B):

(Here the lines in the graph do not indicate edges of Γ, but rather arbi-
trary chains, so it is a qualitative picture of the subgraph).

p a b
° °°

°

°

°r s

p

Also note that by hypothesis the case a = b is not allowed. The vertex a
necessarily belongs to the limit equivalence class of r. Then as (p̃, r̃) is an
edge of the limit tree, the central element c1 lies on the chain (p, a). Again
b belongs to the limit equivalence class of s. Then as (s̃, q̃) is an edge of
the limit tree, the central element c3 lies on the chain (b, q). The reader
can easily see that the central element c2 lies on the chain (a, b) because a
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belongs to the equivalence class of r and b belongs to the equivalence class
of s and (r̃, s̃) is an edge of the limit tree. It follows that

(c1, c3) = (c1, c2) ∪ (c2, c3). �

Remark 5.4. — i) It is not hard to show that the above Proposition re-
mains true for chains of length k in Γ̃, k � 4, namely, if p̃1, p̃2, . . . , p̃k are
vertices of the limit tree Γ̃ such that (p̃i, p̃i+1), i = 1, . . . , k − 1 is an edge
of Γ̃ then

min
{
depth(c1, ck)

}
= min{depth((c1, c2) ∪ (c2, c3) ∪ · · · ∪ (ck−1, ck))

}
.

ii) The reader can easily see that min
{
depth(c1, c2)

}
= ρT (p̃, s̃; r̃) in Propo-

sition 5.3.
iii) We can choose the chains

⋃
x∈ζ C(x) in Theorem 3.5 so that these chains

correspond one-to-one to the chains of Proposition 5.2.

The previous results lead to the following statement. We will denote by
e(T ) the set of edges of the weighted limit tree Γ̃ = (T, lT , ρT , dT ).

Theorem 5.5. — The weighted limit tree Γ̃ = (T, lT , ρT , dT ) determines
the generic discriminant of the minimal surface singularity with minimal
graph Γ. The generic discriminant ∆S,0 decomposes into:

∆S,0 = ∆ΣN
i=12(dT Ẽi−1) ∪

⋃

(p̃,q̃)∈e(T )

AlT (p̃,q̃)

where ∆ΣN
i=12(dT Ẽi−1) is ΣN

i=12(dT Ẽi−1) distinct lines in (C2, 0) and AlT (p̃,q̃)

is a curve in (C2, 0) of type AlT (p̃,q̃) : x2 + ylT (p̃,q̃)+1 = 0.
The contact between any line in ∆ΣN

i=12(dT Ẽi−1) and any branch AlT (p̃,q̃) is
one.
For each pair of adjacent edges (p̃, r̃), (r̃, q̃) the contact between AlT (p̃,r̃) and
AlT (r̃,q̃) is exactly ρT (p̃, q̃; q̃).
For non adjacent edges (p̃, r̃), (k̃, q̃) the contact between AlT (p̃,r̃) and AlT (k̃,q̃)

is the minimum of the contacts between adjacent edges on the chain joining
them (cf. Theorem 3.5 and Proposition 5.3).

This theorem gives the equisingularity class of the generic discriminant
by the same arguments as in section 3 (cf. Theorem 3.6).

Example 5.6. — Suppose that the limit tree (T, lT , ρT , dT ) is:

* *

~ ~sp~ ~q r
**
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where lT (p̃, q̃) = 5, lT (q̃, r̃) = 5, lT (r̃, s̃) = 3, ρT (p̃, r̃; q̃) = 3, ρT (q̃, s̃; r̃) = 1,
dT p̃ = 2, dT q̃ = 3, dT r̃ = 1, dT s̃ = 2.
The generic discriminant is

∆S,0 = ∆8 ∪ A5 ∪ A
′

5 ∪ A3.

The contact between A5 and A
′

5 is 3. The contact between A
′

5 and A3 is 1
and the contact between A5 and A3 is 1.

Note that the minimal graph Γ with limit tree (T, lT , ρT , dT ) is :

s

323

r

23

2

p

3 2

4 q

***

*

Note also that the following tree is a limit tree of that minimal graph :
here lT (p̃, q̃) = 5, lT (q̃, r̃) = 5, lT (r̃, s̃) = 3, ρT (p̃, s̃; r̃) = 1, ρT (p̃, q̃; r̃) =
3, ρT (q̃, s̃; r̃) = 1.

*
r~

* *s~p~

q~

3A5A

A’5
*

Remark 5.7. — a) A limit tree of a minimal graph Γ depends in general
on the limit equivalence chosen (cf. example 4.2). We point out that for
any weighted limit tree (T, lT , ρT , dT ) of a minimal graph Γ we can find the
corresponding set of chains described in Proposition 5.2. Hence any weighted
limit tree (T, lT , ρT , dT ) of a minimal surface singularity determines the
generic discriminant of that minimal surface singularity.
b) Different minimal surface singularities with the same multiplicities and
limit trees have equisingular generic discriminants.
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