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Continuity of the bending map(∗)

Cyril Lecuire(1)

ABSTRACT. — The bending map of a hyperbolic 3-manifold maps a con-
vex cocompact hyperbolic metric on a 3-manifold with boundary to its
bending measured geodesic lamination. As proved in [KeS] and [KaT], this
map is continuous. In the present paper we study the extension of this
map to the space of geometrically finite hyperbolic metrics. We introduce
a relationship on the space of measured geodesic laminations and show
that the quotient map obtained from the bending map is continuous.

RÉSUMÉ. — L’application de plissage d’une variété hyperbolique de di-
mension 3 associe à une métrique hyperbolique convexe cocompacte sur
une variété compacte à bord sa lamination géodésique mesurée de plissage.
Il a été démontré dans [KeS] et [KaT] que cette application est continue.
Dans ce texte, on étudie l’extension de cette application à l’espace des
métriques hyperboliques géométriquement finies. On introduit une rela-
tion d’équivalence dans l’espace des laminations géodésiques mesurées et
on montre que l’application quotient de l’application de plissage est con-
tinue.

Introduction

Let M be a compact, orientable 3-manifold with boundary. Assume that
M is hyperbolic, namely that the interior of M is endowed with a complete
metric σ of constant sectional curvature −1. Assume also that ∂M contains
a surface with genus greater than 1. A fundamental subset of (M,σ) is its
convex core N(σ). This core N(σ) is defined as the smallest non-empty
closed subset of the interior of M which is locally convex and homotopically
equivalent to M . Its boundary ∂N(σ) endowed with the intrinsic metric
(given by rectifiable path length) is isometric to a hyperbolic surface of
finite volume and can be embedded in a natural way into ∂M . This surface
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is bent along a geodesic lamination and the amount of bending is described
by a measured geodesic lamination called the bending measured geodesic
lamination of σ (cf. [Th] or [CEG]). This yields a bending map b which
to a complete hyperbolic metric associates its bending measured geodesic
lamination.

In [Bo2], F. Bonahon considers quasi-isometric deformations of a given
metric σ on int(M), namely hyperbolic metrics σ′ on int(M) for which there
exists a diffeomorphism (int(M), σ) → (int(M), σ′) whose differential is uni-
formly bounded. Let QD(σ) be the space of quasi-isometric deformations of
a given metric σ, where we identify two deformations
(int(M), σ) → (int(M), σ′) and (int(M), σ) → (int(M), σ′′) if they are
isotopic. The continuity of the bending map b : QD(σ) → ML(∂M) is
proved in [KaT], using ideas of Thurston. Its differentiability (in a weak
sense) is proved in [Bo2].

A complete hyperbolic metric σ on int(M) is said to be convex co-
compact if N(σ) is compact. If σ is convex cocompact, then QD(σ) is the
set of convex cocompact metrics on int(M). In this case, the continuity of
b : QD(σ) → ML(∂M) has been proved in [KeS] and its image has been
described in [BoO] and [Le1]. A complete hyperbolic metric σ on int(M)
is said to be geometrically finite if N(σ) has finite volume. When σ is a
geometrically finite metric, QD(σ) is the set of geometrically finite metrics
having the same parabolic subgroups as σ. In the present paper, we are ad-
dressing the question of the continuity of the bending map on the whole set
of geometrically finite metrics. In particular, we are interested in sequences
converging to a limit with some new parabolics.

Since we want to consider metrics which do not have the same parabolic
subgroups, we have to allow deformations which are not quasi-isometric. We
will consider the set of isotopy classes of hyperbolic metrics on the interior
of M . Two metrics σ1 and σ2 are identified if there exists a diffeomorphism
f : M → M isotopic to the identity such that σ1 = f∗σ2. We will consider
the set GF(M) of isotopy classes of geometrically finite hyperbolic metrics
which are not fuchsian. We will topologise GF(M) in the following way. Let
us choose a point x in int(M). A metric σ2 lies in a (k, r)-neighbourhood of
σ1 if there exists a diffeomorphism g : M →M isotopic to the identity such
that the restriction of g to the ball B(x, r) ⊂ (M,σ1) is a k-quasi-isometry
into its image in (M,σ2). We obtain a basis of neighbourhoods of σ1 by
letting k tend to 1 and r tend to +∞. The topology defined in this way does
not depend on the choice of the point x. For a metric σ ∈ GF(M), QD(σ)
can be viewed as a subset of GF(M). The topology of QD(σ) considered
as a subset of GF(M) coincides with the topology given by quasi-isometric
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deformations.

The bending map bGF (M) : GF(M) → ML(∂M) maps an isotopy class
of geometrically finite metrics to its bending measured geodesic lamination.
The image of bGF has been described in [BoO] and [Le1], it is the set P(M)
of measured geodesic laminations satisfying the following conditions:

– a) no closed leaf of λ has a weight greater than π;

– b) ∃η > 0 such that, for any essential annulus E, i(∂E, λ) � η;

– c) i(λ, ∂D) > 2π for any essential disc D.

Taking a careful look at the behaviour of the map bGF , we notice that it
is not a continuous map. If a metric σ lies in GF(M) but has some rank one
cusps, its bending measured geodesic lamination λ has some compact leaves
with a weight equal to π. Let us denote by λ(p) the union of the leaves of λ
which have a weight equal to π. Using the result of [BoO], it is not hard to
construct a sequence of metrics σn ∈ GF(M) with measured geodesic lam-
inations λn such that the sequence (λn) converges to a measured geodesic
lamination λ∞ which differs from λ only on λ(p) and which has some leaves
with a weight greater than π. Using some arguments of [Le1], we get that
a subsequence of (σn) converges to a geometrically finite metric σ∞. Since
λ∞ does not satisfies condition a), it is not the bending measured geodesic
lamination of σ∞. Thus we get that bGF is not continuous on any neigh-
bourhood of a metric with some rank one cusps. To overcome this difficulty,
we will quotient the space ML(∂M) of measured geodesic laminations by
the following relationship :

Let λ, µ ∈ ML(∂M) be two measured geodesic laminations and let
us denote by λ′ (resp. µ′) the measured geodesic laminations obtained by
replacing by π the weights of the leaves of λ (resp. µ) which have a weight
greater than π; we set λRµ if and only if λ′ = µ′. We denote by λ̇ the class
of λ modulo R.

Let us endow ML(∂M) with the weak∗ topology and ML(∂M)/R
with the quotient topology. From bGF (M) we obtain a quotient map bR :
GF(M) → P(M)/R. We will prove the following result :

Theorem 0.1. — The map bR from GF(M) to ML(∂M)/R is a con-
tinuous map.

In [Le2], we show the reverse of this theorem. This gives rise to a criterion
for the strong convergence of a sequence of geometrically finite representa-
tions ρn ∈ U(M).
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The paper is organised as follows. In section 1, we state some definitions
and we prove some facts about ML(∂M)/R. In section 2, we study convex
pleated surfaces and prove the continuity of the bending measured geodesic
laminations of a converging sequence of convex pleated surfaces. In section
3 we use the results of section 2 to prove the continuity of bR.

1. Definitions

Let σ be a hyperbolic metric (up to isotopy) on int(M). Given an isom-
etry from the interior of M̃ to H3, the covering transformations yield a
discrete faithful representation ρ : π1(M) → Isom(H3). The representa-
tions that appear in this way will be called representations associated to σ.
The set of representations associated to σ is the set of all representations
conjugated to ρ. The image ρ(π1(M)) is a finitely generated torsion free
Kleinian group and int(M) endowed with σ is isometric to H3/ρ(π1(M)).
The Nielsen core of H3/ρ(π1(M)) is the quotient by ρ(π1(M)) of the convex
hull C(ρ) of the limit set Lρ of ρ(π1(M)) (see [Th, chap 8] for details). This
set N(ρ) and the convex core defined in the introduction are isometric and
from now on we will identify them. The thick part, N(ρ)ep of the Nielsen
core is the complementary of the cuspidal part of H3/ρ(π1(M)) in N(ρ).
The representation ρ is geometrically finite when N(ρ)ep is compact (here
it is equivalent to say that N(ρ) has finite volume) and convex cocompact
when N(ρ) is compact.

When ρ is geometrically finite and not fuchsian, the natural retraction
from H3/ρ(π1(M)) to N(ρ) associates to σ a homeomorphism (defined up
to isotopy) h : M → N(ρ)ep. Such a homeomorphism will be said to be
associated to σ.

Let σ ∈ QD(M) be a metric whose only cusps are rank 2 cusps and let ρ
and h be respectively a representation and a homeomorphism associated to
σ. Let h̃ : M̃ → H3 be a lift of h, we will define the Floyd-Gromov compact-
ification M̃ of M̃ as being the closure of h̃(M̃) in the usual compactification
of H3 by the unit ball.

Let (σn) be a sequence of isotopy classes of complete hyperbolic met-
rics on the interior of M . The sequence (σn) converges algebraically when
there is a sequence of representations ρn : π1(M) → Isom(H3) associated
to σn (as above) that converges algebraically; namely ρn(g) converges for
any g ∈ π1(M). We obtain a new representation ρ∞ : π1(M) → Isom(H3)
defined by ρ∞(g) = limn−→∞ ρn(g) for any g ∈ π1(M). This representation
ρ∞ is discrete and faithful (cf. [Jor]). This representation defines a met-
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ric on a manifold homotopy equivalent to M . This manifold might not be
homeomorphic to M (examples are given in [AnC]).

The sequence (σn) converges geometrically if there is a sequence of
representations ρn : π1(M) → Isom(H3) associated to the σn such that
(ρn(π1(M)) converges geometrically. The sequence of groups (ρn(π1(M))
converges geometrically to a group Γ∞ ⊂ Isom(H3) if and only if :
– for any sequence an ∈ ρn(π1(M)), any accumulation point a∞ of
{an|n ∈ N} lies in Γ∞;
– any element a∞ of Γ∞ is the limit of a sequence an ∈ Γn.

The sequence ρn(π1(M)) converges strongly if there is a sequence of
representations ρn associated to σn such that (ρn) converges algebraically
to a representation ρ∞ and that (ρn(π1(M))) converges geometrically to
ρ∞(π1(M)). If (σn) converges to σ for the topology defined in the introduc-
tion, then (σn) converges strongly to σ∞ (cf. [CEG]).

2. Geodesic laminations and the relationship R

A geodesic lamination L on H2 is a closed subset which is the disjoint
union of complete geodesics. A complete geodesic lying in L is a leaf of L.

A measured geodesic lamination λ is a transverse measure for some
geodesic lamination |λ|. Any arc k ≈ [0, 1] embedded in S transversely
to |λ|, such that ∂k ⊂ S − λ, is endowed with an additive measure dλ such
that :

– the support of dλ|k is |λ| ∩ k ;

– if an arc k can be homotoped into k′ by a homotopy respecting |λ| then∫
k
dλ =

∫
k′ dλ.

We will denote by ML(H2) the space of measured geodesic lamination topol-
ogised with the topology of the weak∗ convergence.

Let S be a surface (which may not be compact) endowed with a com-
plete hyperbolic metric with finite area. A geodesic lamination in S is a
compact subset which is the disjoint union of simple complete geodesics.
Using the fact that two complete hyperbolic metrics with finite area on S
are quasi-isometric, this definition can be made independent of the chosen
metric on S (see for example [Ot1]). A measured geodesic lamination is a
transverse measure for some geodesic lamination as defined above. Let γ be
a weighted simple closed geodesic with support |γ| and weight w and let λ
be a measured geodesic lamination. The intersection number of γ and λ is
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defined by i(γ, λ) = w
∫
|γ| dλ. If |γ| is a leaf of λ, then we define the inter-

section number by i(γ, λ) = 0. The weighted simple closed curves are dense
in ML(S) and this intersection number extends continuously to a function
i : ML(S) ×ML(S) → R (cf. [Bo1]).

A measured geodesic lamination λ ∈ ML(S) is arational if for any es-
sential simple closed curve c which is not homotopic to a cusp, we have
i(c, λ) =

∫
c
dλ > 0.

Let us recall the definition of R given in the introduction.

Let λ, µ ∈ ML(S) be two measured geodesic laminations. Let us denote
by λ′ (resp. µ′) the measured geodesic lamination obtained by replacing
by π the weights of the compact leaves of λ (resp. µ) which have a weight
greater than π. We will say that λ is related to µ by the relationship R, and
we will write λRµ, if and only if λ′ = µ′. We will denote by λ̇ the class of λ
modulo R and we endow ML(S) with the quotient topology of the weak∗

topology on ML(S).

Let ∂χ<0M be the union of the connected components of ∂M with neg-
ative Euler characteristic. To simplify the notations, we will note ML(∂M)
for ML(∂χ<0M).

Let λ, µ ∈ ML(∂M) be two measured geodesic laminations. If λRµ,
then λ and µ share the same support. Thus we can define the support |λ̇|
of an element λ̇ of ML(∂M) as being the support of any representative of
λ̇.

Let (λn) be a sequence of measured geodesic laminations such that (λ̇n)
converges to λ̇ in ML(∂M)/R and let λ ∈ ML(∂M) be a representative of
λ̇. Let us denote by λ(p) the union of the compact leaves of λ with a weight
at least π. We have the following :

Claim 2.1. — Let λ ∈ ML(∂M) and let λ′ be the representative of λ̇
whose compact leaves have all a weight at most π. If k ⊂ ∂M is a simple arc
such that the points of k ∩ |λ̇| and of k ∩ |λ̇n| are transverse intersections,
then we have

∫
k
dλ′ � lim inf

∫
k
dλn. Furthermore, if k does not intersect

λ(p), then
∫
k
dλn converges to

∫
k
dλ.

Proof. — Let k ⊂ ∂M be a simple arc such that the points of k∩ |λ̇| and
of k ∩ |λ̇n| are transverse intersections. By definition of λ′, up to cutting k
into finitely many sub-arcs, we may assume that we have

∫
k
dλ′ � π. The

set Vk,ε(λ) = {γ ∈ ML(∂M)/|
∫
k
dγ −

∫
k
dλ| < ε} is a neighbourhood of

λ in ML(∂M). Since λ̇n converges to λ̇, for any ε, there is nε such that
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for any n � nε, ∃µn, αn with µnRλ, αnRλn and αn ∈ Vk,ε(µn). So, for
n � nε, we have |

∫
k
dαn −

∫
k
dµn| < ε. Since λ′ is the representative of

λ̇ whose compact leaves have all a weight at most π the measure of any
µ ∈ ML(∂M) satisfying µRλ is at least the measure of λ′, namely we have∫
k
dλ′ �

∫
k
dµ. It follows that we have

∫
k
dαn �

∫
k
dµn− ε �

∫
k
dλ′− ε. Thus

we get
∫
k
dλ′ � lim inf

∫
k
dαn.

If we have
∫
k
dλn < π, then k does not intersect any closed leaf of λn with

a weight at least π. Therefore we have
∫
k
dλn =

∫
k
dαn and the inequality∫

k
dλ′ � lim inf

∫
k
dλn follows from the paragraph above. Otherwise we have∫

k
dλn > π �

∫
k
dλ′ by assumption and the inequality is obvious.

If k does not intersect any closed leaf of λ′ with a weight equal to π,
we may assume, up to cutting k into finitely many sub-arcs that we have∫
k
dλ′ < π. Since k does not intersect any closed leaf of λ′ with a weight

equal to π, we have
∫
k
dµ =

∫
k
dλ for any µ ∈ ML(∂M) satisfying µRλ.

Especially we have
∫
k
dαn −→

∫
k
dλ′ < π. Hence we have

∫
k
dαn < π for n

large enough. It follows that k does not intersect any closed leaf of αn with
a weight at least π. So we have

∫
k
dλn =

∫
k
dαn −→

∫
k
dλ′ =

∫
k
dλ. �

An arc k is generic if it is transverse to every simple geodesic of S. Espe-
cially a generic arc is transverse to every geodesic lamination. By [BiS], the
union of all simple geodesics of S has Hausdorff dimension 1. It follows that
almost every geodesic arc is generic and that every arc can be approximated
by a generic arc.

Claim 2.2. — Let (λn) ∈ ML(∂M) be a sequence of measured geodesic
laminations such that (λ̇n) converges to λ̇ and that |λn| converges to some
geodesic lamination L in the Hausdorff topology. We have |λ̇| ⊂ L.

Proof. — Let x be a point of |λ̇|, let ε > 0 be a real number and let
k be a geodesic generic arc intersecting |λ̇|, with length ε such that x lies
in the interior of k. Since we have

∫
k
dλ′ > 0, we deduce from 2.1 that,

for n large enough, we have
∫
k
dλn �

∫
k
dλ′

2 > 0. Therefore k intersects λn
and x lies in an ε-neighbourhood of |λn|. Considering a covering of |λ̇| by
discs with radius ε and with centres lying in |λ̇|, we get that, for n large
enough, |λ̇| lies in an ε-neighbourhood of |λn|. Letting ε tend to 0, we get
|λ̇| ⊂ L. �

Claim 2.1 can also be used to prove that the quotient space ML(∂M)/R
is Hausdorff.

Lemma 2.3. — The space ML(∂M)/R is Hausdorff.
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Proof. — Let λ̇ and µ̇ be two elements of ML(∂M)/R such that any
neighbourhood of λ̇ intersects any neighbourhood of µ̇. So there is a sequence
of measured geodesic laminations λn such that λ̇n converges simultaneously
to λ̇ and to µ̇. Let us denote by λ(p) (resp. µ(p)) the union of the compact
leaves of λ (resp. µ) with a weight at least π. Let λ′ (resp. µ′) be the
representative of λ̇ (resp. µ̇) whose compact leaves have all a weight at most
π. Let k ⊂ ∂M − λ(p) be a generic arc intersecting |λ| and |µ| transversely
so that

∫
k
dλ < π. By Claim 2.1, we have

∫
k
dµ′ = lim

∫
k
dλn < π. It follows

that µ(p) ⊂ λ(p). Reversing the roles of λ and of µ, we get µ(p) = λ(p). It
follows also from Claim 2.1 that we have the equality

∫
k
dµ =

∫
k
dλ for any

arc k ⊂ ∂M − λ(p). This yields the conclusion λ̇ = µ̇. �

The following variation of Claim 2.1 will be used in the present paper.

Claim 2.4. — If c is a simple closed curve that does not intersect λ(p)

transversely, then the sequence i(c, λn) converges to i(c, λ).

Proof. — If the points of c intersects |λ̇| transversely, then by Claim 2.2,
c intersects |λ̇| transversely for n large enough. In this case, we get the
conclusion by cutting c into two arcs and by applying Claim 2.1 to these
two arcs.

Let us now consider the case where c does not intersect |λ̇| transversely.
Let λ ∈ ML(S) be a representative of λ̇. Consider a simple closed curve
c′ which is disjoint from |λ|, which is freely homotopic to c and which is
the union of 2 generic arcs. We have

∫
c′
dλ = 0. By Claim 2.1, the sequence∫

c′
dλn converges to

∫
c′
dλ = 0. Furthermore for any measured geodesic lam-

ination γ ∈ ML(S), we have i(c, γ) �
∫
c′
dγ. Thus we can conclude that

i(c, λn) converges to 0 = i(c, λ). �

3. Convex pleated surfaces

A pleated surface in a complete hyperbolic 3-manifold M is a map f :
S →M from a surface S to M with the following properties :

– the path metric obtained by pulling back the hyperbolic metric of M by
f is a hyperbolic metric s on S;

– every point of S lies in the interior of some s-geodesic arc which is mapped
into a geodesic arc in M ;
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– if c ⊂ S is a simple closed curve lying in a cusp of S and if c does not
bound a disc in S, then f(c) does not bound a disc in M .

A map f̂ : H2 → H3 is a pleated map if any point of H2 lies in the
interior of a geodesic arc which is mapped by f̂ into a geodesic arc.

The pleating locus of a pleated map is the set of points of H2 where
the map fails to be an isometry. The pleating locus of a pleated map is a
geodesic lamination (cf. [Th]).

An abstract pleated surface is a triple (f̂ ,Γ, ρ) where f̂ : H2 → H3 is a
pleated map, Γ is a lattice in Isom(H2) and ρ : Γ → Isom(H3) is a discrete
representation (which may not be faithful) such that for any a ∈ Γ, we have
f̂ ◦ a = ρ(a) ◦ f̂ and that if a ∈ Γ is a parabolic isometry then ρ(a) is also a
parabolic isometry.

Abstract pleated surfaces and pleated surfaces are related as follows :

When ρ(Γ) has no torsion, the abstract pleated surface (f̂ ,Γ, ρ) induces
a pleated surface f : S → M where S ≈ H2/Γ, M ≈ H3/ρ(Γ) and where f
is the quotient map from f̂ .

If f : S →M is a pleated surface, consider isometric covering maps H2 →
S and H3 → M . These maps yield representations r : π1(S) → Isom(H2)
and R : π1(M) → Isom(H3) and by lifting f to a map f̂ : H2 → H3 we get
an abstract pleated surface (f̂ , r(π1(S)), R ◦ f∗).

In the following we will omit the adjective abstract and assume that our
(abstract) pleated surfaces are torsion free.

We will consider the following topology on the space of abstract pleated
surfaces.

A sequence (f̂n,Γn, ρn) of pleated surfaces converge to a pleated surface
(f̂ ,Γ, ρ) if and only if :

– (Γn) converges geometrically to Γ;

– for any sequence an ∈ Γn converging to a ∈ Γ, ρn(an) converges to ρ(a);

– f̂n converges to f̂ on any compact set of H2.

Let (f̂ ,Γ, ρ) be a (abstract) pleated surface (without torsion), let L̂ ⊂ H2

be the pleating locus of f̂ and let P be a connected component of H2 − L̂.
The surface f̂(P ) lies in a geodesic plane ΠP . Given an orientation of H2,

– 101 –



Cyril Lecuire

ΠP inherits a natural orientation and we denote by H+
P (resp. H−

P ) the
half-space bounded by ΠP such that the union of a direct frame of ΠP and
of the inward normal vector to ΠP is a direct frame of H3 (resp. indirect).

A pleated surface (f̂ ,Γ, ρ) with pleating locus L̂ is a convex pleated sur-
face if :

1) there is ε ∈ {+,−} such that for any component P of H2 − L̂, f̂(H2) lies
in Hε

P ;

2) the interior of Cf̂ =
⋂
{Hε

Pi
|Pi is a connected component of H2 − L̂} is

not empty.

If a pleated surface (f̂ ,Γ, ρ) satisfies 1) but not 2), namely if Cf̂ as empty
interior, we will call it an even pleated surface.

In the following, for any convex pleated surface (f̂ ,Γ, ρ), we will choose
the orientation of H2 so that for any component P of H2 −L, f̂(H2) lies in
H+

P .

Lemma 3.1. — The set of the pleated surfaces which are either convex
or even is a closed subset of the set of pleated surfaces.

Proof. — Let (f̂n,Γn, ρn) be a sequence of convex and even pleated sur-
faces converging to (f̂∞,Γ∞, ρ∞).

Let us follow [BoO, Lemmas 20 and 21], to show that f̂∞ is either a
convex pleated surface or an even pleated surface. Let us denote by L̂n
the pleating locus of (f̂n,Γn, ρn) and let us consider a geodesic lamination
L̂∞ which is a limit point of {L̂n/n ∈ N} in the Hausdorff topology. By
[CEG] the pleating locus of f̂∞ lies in L̂∞. Let us consider a component
P∞ of H2 − L̂∞ and a component Pn of H2 − L̂n such that (Pn) tends to
P∞. Since f̂n(Pn) converges to f̂∞(P∞), up to extracting a subsequence,
H+

Pn
converges to a half-space H+

P∞
such that f̂∞(P∞) ⊂ ∂H+

P∞
. Since

f̂n(H2) converges to f̂∞(H2), we have f̂∞(H2) ⊂ H+
P∞

. Doing this for any
component of H2 − L∞, we conclude that f̂∞ satisfies 1). �

Let x̂ be a point of H2, a support plane of f̂(H2) at f̂(x̂) is a hyperbolic
plane Πf̂(x̂) containing f̂(x̂) and such that f̂(H2) lies entirely in one of the
two half-spaces bounded by Πf̂(x̂). We will denote this half-space by H+

f̂(x̂)
.

Let k̂ ⊂ H2 be a compact geodesic segment, a polygonal approximation to
f̂(k̂) is a finite family P = {(x̂i,Πf̂(x̂i)

)|i = 1, . . . , p} such that :
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– ∂k̂ = {x̂1, x̂p};

– the x̂i are ordered points of k̂;

– Πf̂(x̂i)
is a support plane at f̂(x̂i);

– Πf̂(x̂i)
∩ Πf̂(x̂i+1)

�= ∅ for any i = 1, . . . , p− 1;

– if x̂i−1 = x̂i = x̂i+1, then either Πf̂(x̂i)
= Πf̂(x̂i−1)

or Πf̂(x̂i)
= Πf̂(x̂i+1)

or
Πf̂(x̂i)

intersects the interior of H+

f̂(x̂i+1)
− H+

f̂(x̂i−1)
(the planes Πf̂(x̂i)

are
“ordered”);

– Πf̂(x̂i)
∩Πf̂(x̂i+1)

contains a geodesic d̂ such that the nearest point retrac-

tion from d̂ to f̂(H2) intersects the sub-arc of f̂(k̂) joining f̂(x̂i) to f̂(x̂i+1).

The integer p− 1 (the number of components of k̂ − {x̂i}) is the length
of the polygonal approximation. We will denote by θ(Πf̂(x̂i)

,Πf̂(x̂i+1)
) the

internal angle of H+

f̂(x̂i)
−H+

f̂(x̂i+1)
.

The existence of a polygonal approximation to any arc f̂(k̂) intersecting
at most once any leaf of f̂(L̂) is proved in [CEG].

The bending measure
∫
k̂
dλ̂ along k̂ is defined by∫

k̂
dλ̂ = infP

∑p−1
i=1 θ(Πf̂(x̂i)

,Πf̂(x̂i+1)
) where P runs over all polygonal ap-

proximations to f̂(k̂).

It is shown in [EpM, section 1.11] that this defines a transverse measure
λ̂ on the pleating locus of f̂ .

A polygonal approximation P = {(x̂i,Πi)} to a path f̂(k̂) is an (α, s)-
approximation if

– max1�i�p−1 θ(Πi,Πi+1) < α and

– max dH2(x̂i, x̂i+1) < s.

The existence of a (δ, ε)-approximation for any (δ, ε), and any arc f̂(k̂)
is shown in [EpM]. In the sequel we will need to have (δ, ε)-approximations
with bounded length. The following lemma shows their existence.

Lemma 3.2. — Let δ and ε be two positive numbers such that 0 < ε <
log 3

2 . Let (f̂ ,Γ, ρ) be a convex pleated surface and let k̂ ⊂ H2 be an arc that
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intersects the pleating locus |λ̂| transversely so that f̂(k̂) intersects at most
once any leaf of f̂(|λ̂|). Then, there is a (δ, ε)-approximation to f̂(k̂) with
length at most 4( l(k̂)

ε + 1)(πδ + 1) = B(ε, δ, l(k̂)).

Proof. — Consider the integer p satisfying p − 1 � l(k̂)
ε � p and choose

p+ 1 ordered points x̂1, . . . , x̂p+1 in k̂− |λ̂| such that we have {x̂1, x̂p+1} ⊂
∂k̂ and d(x̂i, x̂i+1) � ε for any i ∈ {1, . . . , p + 1}. Choose also a support
plane Πf̂(x̂i)

at f̂(x̂i) for each i ∈ {1, . . . , p + 1}. The first step of the
proof will be to extend this family of support planes to obtain a polygonal
approximation. There are three possible configuration for the positions of
Πf̂(x̂i)

and Πf̂(x̂i+1)
. Let k̂i be the sub-arc of k̂ joining x̂i to x̂i+1.

– First configuration : Πf̂(x̂i)
intersects Πf̂(x̂i+1)

and Πf̂(x̂i)
∩ Πf̂(x̂i+1)

con-

tains a geodesic d̂ such that the nearest point retraction from d̂ to f̂(H2) in-
tersects the arc f̂(k̂i) ⊂ f̂(k̂). In this configuration, {(x̂i,Πf̂(x̂i)

);

(x̂i+1,Πf̂(x̂i+1)
)} is already a polygonal approximation to f̂(k̂i).

– Second configuration : Πf̂(x̂i)
does not intersect Πf̂(x̂i+1)

. Let y be a point

of k̂i and let Πf̂(ŷ) be a support plane at f̂(ŷ). The 3 half-spaces H−
f̂(ŷ)

,

H−
f̂(x̂i)

and H−
f̂(x̂i+1)

intersect the ball B(f̂(ŷ), ε) � B(f̂(ŷ), log 3
2 ). By [Ga]

(see also [Br]) these 3 half-spaces are not disjoint, hence Πf̂(ŷ) intersects

either Πf̂(x̂i)
or Πf̂(x̂i+1)

. So any support plane at a point of f̂(k̂i) intersects

either Πf̂(x̂i)
or Πf̂(x̂i+1)

. The arc f̂(k̂i) can be extended to an arc into the set

of all the support planes at f̂(k̂i). Therefore there is a point ŷ ⊂ int(k̂i) and
a support plane Πf̂(ŷ) at f̂(ŷ) intersecting both Πf̂(x̂i)

and Πf̂(x̂i+1)
(cf. [KeS,

§3.4]). Furthermore when we follow this arc Π(t) in the set of support planes
joining Πf̂(x̂i)

to Πf̂(x̂i+1)
, the nearest point retraction from Π(t) ∩ Πf̂(x̂i)

(Π(t) ∩ Πf̂(x̂i)
is a geodesic for t > 0 small enough) to f̂(H2) moves from

f̂(x̂i) in the direction of f̂(x̂i+1) transversely to f̂(k̂i). It follows that the
nearest point retraction from Πf̂(x̂i)

∩Πf̂(ŷ) to f̂(H2) intersects the sub-arc of

f̂(k̂i) joining f̂(x̂i) to f̂(ŷ). With a similar argument, we get that the nearest
point retraction from Πf̂(ŷ)∩Πf̂(x̂i+1)

to f̂(H2) intersects the sub-arc of f̂(k̂i)

joining f̂(ŷ) to f̂(x̂i+1). Therefore {(x̂i,Πf̂(x̂i)
); (ŷ,Πf̂(ŷ)); (x̂i+1,Πf̂(x̂i+1)

)}
is a polygonal approximation to f̂(k̂i).

– Third configuration : Πf̂(x̂i)
intersects Πf̂(x̂i+1)

but for any geodesic d̂ ⊂
Πf̂(x̂i)

∩Πf̂(x̂i+1)
, the nearest point retraction from d̂ to f̂(H2) does not inter-
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sect f̂(k̂i). If any support plane at a point of f̂(k̂i) intersects either Πf̂(x̂i)
or

Πf̂(x̂i+1)
then we can find, as in the preceding case, a point ŷ and a support

plane Πf̂(ŷ) such that {(x̂i,Πf̂(x̂i)
); (ŷ,Πf̂(ŷ)); (x̂i+1,Πf̂(x̂i+1)

)} is a polygo-

nal approximation to f̂(k̂i). Otherwise, there is a point ŷ ∈ k̂ and a support
plane Πf̂(ŷ) at f̂(ŷ) such that Πf̂(ŷ) does not intersect Πf̂(x̂i)

nor Πf̂(x̂i+1)
.

The planes Πf̂(x̂i)
and Πf̂(ŷ) are in the second configuration, so there is a

point ẑ ⊂ k̂i between x̂i and ŷ such that {(x̂i,Πf̂(x̂i)
); (ẑ,Πf̂(ẑ)); (ŷ,Πf(ŷ))}

is a polygonal approximation to the sub-arc of k̂ joining x̂i to ŷ. Doing the
same for Πf̂(ŷ) and Πf̂(x̂i+1)

we get a polygonal approximation to f̂(k̂i).

Let us do the construction above for all the components of k̂−{x̂1, . . . , x̂p}.
In each component of k̂−{x̂1, . . . , x̂p}, we have added at most 3 points. So
the resulting polygonal approximation has a length smaller than 4p. Let us
denote by {(x̂i,Πf̂(x̂i)

)/i = 1, . . . , 4p+1} this polygonal approximation and

let us denote by k̂i ⊂ k̂ the geodesic arc joining x̂i to x̂i+1. Consider q ∈ N

satisfying q − 1 �
θ(Πf̂(x̂i)

,Πf̂(x̂i+1))

δ � q. Since θ(Πf̂(x̂i)
,Πf̂(x̂i+1)

) � π we

have q � π
δ +1. We have already seen that we can extend an arc f̂(k̂i) to an

arc in the set of all the support planes at f̂(k̂i). This implies that there are
points ŷj ∈ k̂i, 1 � j � q + 1, such that we have ŷ1 = x̂i, ŷq+1 = x̂i+1 and
θ(Πf̂(ŷj)

,Πf̂(ŷj+1)
) � δ. Choosing such points for each arc k̂i, 1 � i � 4p, we

get a (δ, ε)-approximation with length smaller than 4pq. Since p � l(k̂)
ε + 1

and q � π
δ + 1, this polygonal approximation satisfies the conclusion of

Lemma 3.2. �

The following proposition of [KeS] gives an estimate of the error which
is made when approximating the bending measure :

Proposition 3.3 (KeS, Proposition 4.8). — There is a universal con-
stant K, and a function s(α), 0 < s(α) < 1, such that if P = {(x̂i, πi)} is
an (α, s(α))-approximation to a path f̂(k̂), where α < π

2 , then we have

|
∑
P

θ(Πi,Πi+1) −
∫
k

dγ| < Kα l(k).

Now we will use this proposition to prove the continuity of the bending
measured geodesic lamination of a converging sequence of convex pleated
surfaces.

Lemma 3.4. — Let (f̂n,Γn, ρn) be a sequence of convex pleated surfaces
converging to a pleated surface (f̂∞,Γ∞, ρ∞) and let λ̂n be the bending mea-
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sured geodesic lamination of f̂n. The sequence (λ̂n) converges for the weak∗

topology to a measured geodesic lamination λ̂∞ and we have one of the fol-
lowing two situations :

– (f̂∞,Γ∞, ρ∞) is a convex pleated surface and λ̂∞ is its bending measured
geodesic lamination ;

– (f̂∞,Γ∞, ρ∞) is an even pleated surface, |λ̂∞| is the pleating locus of f̂∞
and λ̂∞ is obtained by endowing each leaf of |λ̂∞| with a Dirac mass with a
weight equal to π.

Proof. — Notice that when H3/ρ∞(π1(M)) is quasi-isometric to
H3/ρn(π1(M)) this result is a consequence of results of [Bo3]. By lemma
3.1, (f̂∞,Γ∞, ρ∞) is an even or convex pleated surface. We will show that
any subsequence of (f̂n,Γn, ρn) contains a subsequence satisfying the con-
clusions of lemma 3.4, the conclusion follows from this fact.

Let us choose a subsequence such that (|λ̂n|) converge in the Hausdorff
topology to a geodesic lamination L̂∞. By [CEG, §5.2], the pleating locus of
f̂∞ lies in L̂∞. Let k̂ ⊂ H2 be an arc intersecting L̂∞ transversely such that
f̂∞(k̂) intersects at most once any leaf of f̂∞(L̂∞). Since (f̂n(|λ̂n|)) tends to
f̂∞(L̂∞) in the Hausdorff topology and since (f̂n) converge to f̂∞, for n large
enough f̂n(k̂) intersects at most once any leaf of f̂(|λ̂n|). Fix δ < π

2 and ε <
s(δ) and choose for each n a (δ, ε)-approximation (x̂i,n,Πf̂n(x̂i,n)) to f̂n(k̂)

whose length is the number B(δ, ε, l(k̂)) appearing in Lemma 3.2. Extract a
subsequence such that for any i � B(δ, ε, l(k̂)), the sequence (x̂i,n,Πf̂n(x̂i,n))

converges and denote by (x̂i,∞,Πf̂∞(x̂i,∞)) its limit. Since f̂n converges to f̂∞
and since (x̂i,n,Πf̂n(x̂i,n)) converges to (x̂i,∞,Πf̂∞(x̂i,∞)), the nearest point

retraction from Πf̂n(x̂i,n) to f̂n(H2) converges to the nearest point retraction

from Πf̂n(x̂i,∞) to f̂∞(H2). It follows that {(x̂i,∞,Πf̂∞(x̂i,∞))} satisfies all the

requirements for being a (δ, ε)-approximation to f̂∞(k̂). Furthermore, the
length of {(x̂i,∞,Πf̂∞(x̂i,∞))} is B(δ, ε, l(k̂)).

Claim 3.5. — If (f̂∞,Γ∞, ρ∞) is a convex pleated surface, then (λ̂n)
converge to the bending measured geodesic lamination λ̂∞ of (f̂∞,Γ∞, ρ∞).

Proof. — Assume that (f̂∞,Γ∞, ρ∞) is a convex pleated surface and let
us denote by λ̂∞ its bending measured geodesic lamination. Let us recall
that λ̂n tends to λ̂∞ if for any arc k̂ ⊂ H2 transverse to |λ̂∞|, (

∫
k̂
dλ̂n) tends

to
∫
k̂
dλ̂∞.
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Let k̂ ⊂ H2 be an arc transverse to |λ̂∞| and let {(x̂i,n,Πf̂n(x̂i,n))} be
the (δ, ε)-approximations defined above. For any i � p, Πf̂n(x̂i,n) tends to
Πf̂∞(x̂i,∞). Therefore, for n large enough, we have∑p−1

i=1 |θ(Πf̂∞(x̂i,∞),Πf̂∞(x̂i+1,∞)) − θ(Πf̂n(x̂i,n),Πf̂n(x̂i+1,n))| � δ. It follows
from Proposition 3.3 that we have
|
∑p−1

i=1 θ(Πf̂n(x̂i,n),Πf̂n(x̂i+1,n))−
∫
k̂
dλ̂n| < Kδl(k̂) for any n ∈ N = N∪{∞}.

Hence we have |
∫
k̂
dλ̂∞ −

∫
k̂
dλ̂n| < 2Kδl(k̂) + δ. Letting δ tend to 0 yields∫

k̂
dλ̂n →

∫
k̂
dλ̂∞. The same is true for any arc k̂ transverse to |λ̂∞|, hence

λ̂n converges to λ̂∞. �
Next we will consider the case where (f̂∞,Γ∞, ρ∞) is an even pleated

surface. Let us first show that all the leaves of the pleating locus |λ̂∞| of
(f̂∞,Γ∞, ρ∞) are isolated leaves, namely that their projections to H2/Γ∞
are isolated leaves.

Claim 3.6. — When (f̂∞,Γ∞, ρ∞) is an even pleated surface, the pleat-
ing locus |λ̂∞| of f̂∞ contains only isolated leaves.

Proof. — Choose two distinct successive points x̂i,∞ and x̂i+1,∞ and
denote by k̂i the sub-arc of k̂ joining x̂i,∞ to x̂i+1,∞. Let ŷ be a point
of int(k̂i) and let (Πf̂n(ŷ)) be a sequence of support planes at f̂n(ŷ) con-

verging to a support plane Πf̂∞(ŷ) at f̂∞(ŷ). For n large enough, ŷ lies in

the sub-arc of k̂ joining x̂i,n to x̂i+1,n. Since {(x̂i,n,Πf̂n(x̂i,n))} is a (δ, ε)-
approximation, Πf̂n(ŷ) intersects both Πf̂n(x̂i,n) and Πf̂n(x̂i+1,n) and we have
θ(Πf̂n(x̂i,n),Πf̂n(ŷ)) � δ and θ(Πf̂n(ŷ),Πf̂n(x̂i+1,n)) � δ. Letting n tend
to ∞ yields θ(Πf̂∞(ŷ),Πf̂∞(x̂i,∞)) � δ and θ(Πf̂∞(ŷ),Πf̂∞(x̂i+1,∞)) � δ. Since

(f̂∞,Γ∞, ρ∞) is an even pleated surface, the dihedral angle between two ad-
jacent support planes lies in {0, π}. Hence we have θ(Πf̂∞(ŷ),Πf̂∞(x̂i,∞)) = 0

and θ(Πf̂∞(ŷ),Πf̂∞(x̂i+1,∞)) = 0. It follows that for any arc κ̂ ⊂ int(k̂i),
∫
κ̂
dλ̂

tends to 0. From the proof of [Bo3, Prop 27] we deduce that int(k̂i) does
not intersect the pleating locus of f̂∞.

So we have shown that the intersection between k̂ and the pleating locus
of f̂∞ lies in {x̂i| i = 1 . . . p}, in particular this intersection has a finite
cardinal. �

Endowing each leaf of |λ̂∞| with a Dirac measure whose weight is equal
to π yields a measured geodesic lamination λ̂∞.

Let r be a lower bound for the set {d(x̂1, x̂2)/x̂1 and x̂2 are two differ-
ent points of k̂ ∩ |λ̂∞|}. By the proof of Claim 3.6, we can choose r > 0.
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If {(x̂i,∞,Πf̂∞(x̂i,∞))} is a (δ, ε)-approximation satisfying ε < r, we have∑q−1
i=1 θ(Πf̂∞(x̂i,∞),Πf̂∞(x̂i+1,∞)) =

∫
k̂
dλ̂∞.

In the proof of Claim 3.5, we can use this equality instead of the inequal-
ity of proposition 3.3. Thus we get the following claim which concludes the
proof of Lemma 3.4 :

Claim 3.7. — The sequence (λ̂n) tends to λ̂∞ in ML(H2).

Let us notice that in the case where (f̂∞,Γ∞, ρ∞) is even, we did not
show that the projection of |λ̂∞| to H/Γ∞ is compact. We will see further
in the text that this is actually true.

We will now improve the description of (f̂∞,Γ∞, ρ∞) when it is an even
pleated surface.

Lemma 3.8. — Let (f̂n,Γn, ρn) be a sequence of convex pleated surfaces
converging to an even pleated surface (f̂∞,Γ∞, ρ∞). There is a surface S
with geodesic boundary, such that H2/Γ∞ is the double of S and such that
the pleating locus |λ̂∞| of f̂∞ project to ∂S ⊂ H/Γ∞. Furthermore ∂S is
compact.

Proof. — First the following claim will define S.

Claim 3.9. — All the connected components of H2−|λ̂∞| have the same
image under f̂∞.

Proof. — Recall that since f̂∞ is a pleated surface, the restriction of f̂∞
to each connected component of H2 − |λ̂∞| is one to one.

Assume that Claim 3.9 is not true. There exist two connected compo-
nents P̂ and P̂ ′ of H2 − |λ̂∞| whose closures intersect and whose images
under f̂∞ are different. There is a point ŷ lying in the boundary of the clo-
sure of P̂ such that f∞(ŷ) lies in f̂∞(P̂ ′) or a point ŷ lying in the boundary
of the closure of P̂ ′ such that f̂∞(ŷ) lies in f∞(P̂ ). This two cases are similar
and we will only deal with the first one. Let us denote by l̂ the leaf of |λ̂∞|
containing ŷ. By the proof of Claim 3.6, l̂ is an isolated leaf. Let k̂ ⊂ H2 be
a geodesic arc intersecting l̂ transversally so that k̂∩|λ̂∞| = {y}. For n ∈ N,
let (x̂i,n,Πf̂n(x̂i,n)) be the (δ, ε)-approximation to f̂n(k̂) constructed at the

beginning of the proof of Lemma 3.4 and let us denote by p = B(δ, ε, l(k̂))
its length. By Claim 3.7, the bending measure on k̂ tends to a Dirac measure
whose weight is equal to π and whose support is {y}. It follows that there
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is i such that (x̂i,n) and (x̂i+1,n) converge to ŷ and such that we have the
inequality π

p � θ(Πf̂n(x̂i,n),Πfn(x̂i+1,n)) � δ for n large enough.

Let ẑ be the point of P̂ ′ such that we have f̂∞(ẑ) = f̂∞(ŷ). For any n,
ẑ lies either in a connected component P̂ ′

n of H2 − |λ̂n| or in the closures of
two connected components of H2 − |λ̂n|, in this second case we will denote
by P̂ ′

n the interior of the union of these two closures. Let us extract a
subsequence such that P̂ ′

n converges to an open subsurface P̂ ′
∞ of P̂ ′ (for

example a subsequence such that |λ̂n| converges in the Hausdorff topology).
Since f̂n converge to f̂∞ on any compact set, the sequence f̂n(P ′

n) converges
to f̂∞(P ′

∞) ⊂ f̂∞(P ′).

The point f̂∞(ŷ) lies in f̂∞(P̂ ′
∞), in Πf̂∞(x̂i,∞) and in Πf̂∞(x̂i+1,∞) and

we have the inequality π
p � θ(Πf̂n(x̂i,n),Πf̂n(x̂i+1,n)) � δ. Therefore, for n

large enough, one plane among Πf̂n(x̂i,n) and Πf̂n(x̂i+1,n) intersects f̂n(P̂ ′
n)

transversely. This contradicts the convexity of (f̂n,Γn, ρn) and concludes
this proof. �

Next we will show that the quotient of H2 − |λ̂∞| by Γ∞ has two con-
nected components.

Let us extract a subsequence such that (|λ̂n|) converges in the Haus-
dorff topology to a geodesic lamination L̂∞ and let x̂, ŷ ⊂ H2 − L̂∞ be two
points whose images f̂∞(x̂) and f̂∞(ŷ) coincide. Denote by P̂x̂ and P̂ŷ the
connected components of H2 − |λ̂∞| containing x̂ and ŷ and assume that
H+

f̂∞(P̂x̂)
is equal to H+

f̂∞(P̂ŷ)
. We will show the existence of an element g∞

of Γ∞ such that x̂ = g∞ŷ.

The half-spaces H+

f̂n(P̂x̂)
and H+

f̂n(P̂ŷ)
converge to H+

f̂∞(P̂x̂)
and we have

f̂n(P̂ŷ) ⊂ H+

f̂n(P̂x̂)
and f̂n(P̂x̂) ⊂ H+

f̂n(P̂ŷ)
. It follows that the planes

Πf̂n(x̂) and Πf̂n(ŷ) intersect each other for n large enough and that the
sequence θ(Πf̂n(x̂),Πf̂n(ŷ)) tends to 0. This implies that the distance

d(Πf̂n(x̂)∪Πf̂n(ŷ))
(f̂n(x̂), f̂n(ŷ)) measured on Πf̂n(x̂) ∪Πf̂n(ŷ) tends to 0. Since

we have d(Πf̂n(x̂)∪Πf̂n(ŷ))
(f̂n(x̂), f̂n(ŷ)) � df̂n(H2)(f̂n(x̂), f̂n(ŷ)) and since f̂∞

is a local homeomorphism on the complementary regions of |λ̂∞|, there is,
for n large enough, an isometry an ∈ Γn such that dH2(anŷ, x̂) −→ 0. The
distance dH2(ŷ, anŷ) is bounded, hence, up to extracting a subsequence, (an)
converges to some a∞ ∈ Γ∞. We have then a∞ŷ = x̂.
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This implies that any point of f̂n(H2 −|λ̂∞|) has at most two preimages
in H2/Γ∞. Combining this with Claim 3.9, we get the existence of a surface
S such that H2/Γ∞ is the double of S and that the pleating locus |λ̂∞| of
f̂∞ projects to ∂S ⊂ H2/Γ∞.

It remains to show that ∂S is compact. Assume the contrary, then ∂S
contains two asymptotic half geodesics. Let k̂ ⊂ S be a geodesic arc joining
these two half geodesics. The double of k̂ is a simple closed curve c ⊂ H2/Γ∞
bounding a cusp of H2/Γ∞. The image of c under f∞ is f∞(k̂) covered twice.
It follows that the curve f∞(c) is homotopic to a point in H3/ρ∞(Γ∞). This
contradicts the assumption that the parabolic elements of Γ∞ are mapped
to parabolic isometries by ρ∞. �

We will conclude this section with two lemmas which will be used in the
next sections. They are proved in [Le1] (see also [Se]). We will call them
slight bending Lemmas.

Lemma 3.10. — Let (f̂ ,Γ, ρ) be a convex pleated surface, let x̂1 and x̂2 ∈
H2, let ĉ1 ⊂ H2 be the geodesic segment joining x̂1 to x̂2 and let c̃2 ⊂ H3

be the geodesic segment joining f̂(x̂1) to f̂(x̂2). If there exists ε < π
2 such

that the bending measure of f̂(ĉ1) is smaller than ε, then ∃Cε such that
l(ĉ1) � Cεl(c̃2). Furthermore limε−→0 Cε = 1 and the sum of the exterior
angles that f̂(ĉ1) and c̃2 make at their vertices is smaller than ε.

Lemma 3.11 (Slightly bent curves are quasi-geodesics). — Let (f̂ ,Γ, r)
be a convex pleated surface, let λ̂ be its bending measured geodesic lami-
nation, let c be a simple closed geodesic of H2/Γ and let c∗ be the geodesic
of H3/r(Γn) in the homotopy class of f(c). For any ε < π

2 there exists
Cε and Aε such that if i(c, λ) � ε then l(c) � Cε(l(c∗) + Aε). Moreover
limε−→0 Cε = 1, and limε−→0Aε = 0.

4. The continuity of bR

Next we will use the results of the previous section to show the continuity
of bR. But first let us precise the definition of the bending measured lamina-
tion of a geometrically finite metric σ ∈ GF(M). Let ρ : π1(M) → Isom(H3)
be a representation associated to σ and let N(ρ) be the Nielsen core of ρ.
There are a multi-curve λ(p) and a natural (relative to σ) homeomorphism
f : ∂χ<0M−λ(p) → ∂N(ρ). This homeomorphism f is constructed by using
the retraction map from the domain of discontinuity to the boundary of
the convex core of the limit set. It is well-defined up to isotopy. The sur-
face ∂N(ρ) is the image of a convex pleated surface and therefore, it has a
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bending measured lamination. Let us denote by λ ∈ ML(∂M) the image
under f−1 of this bending measured lamination. Adding the leaves of λ(p)

endowed with Dirac masses with weights equal to π we get the bending
measured geodesic lamination of σ. This measured lamination λ does not
depend on the choice of ρ (among the representations associated to σ).

Given a simple closed geodesic c and a hyperbolic metric s on ∂χ<0M , let
ls(c) be the length of the corresponding s−geodesic. If γ is a weighted simple
closed geodesic with a weight w(γ) we define ls(γ) by ls(γ) = w(γ)ls(|γ|).
This function ls extends continuously to a function ls : ML(∂M) → R.

Given a simple closed curve c ∈ ∂χ<0M , and a hyperbolic metric σ on
int(M), we denote by c∗ the closed σ-geodesic in the free homotopy class
of c and by lσ(c∗) its σ-length.

The following proposition shows the continuity of the bending map bR.
It is essentially a rephrasing of the statement of Theorem 1. Thus Theorem
1 follows from Proposition 4.1.

Proposition 4.1. — Let (σn) be a sequence of geometrically finite met-
rics on the interior of M converging to a non fuchsian geometrically fi-
nite metric σ∞ and let λn be the bending measured geodesic lamination of
σn. The sequence λ̇n converges to λ̇ ∈ P(M)/R and the bending measured
geodesic lamination of σ∞ is the representative λ′ of λ̇ that lies in P(M).

Proof. — We are going to show that any subsequence of (σn) contains a
subsequence satisfying the conclusion of the proposition. Let us begin by a
result about the curve whose length tends to 0 when n tends to ∞.

Lemma 4.2. — Let (σn) be a sequence of geometrically finite metrics on
the interior of M converging algebraically and let (sn) be the sequence of
metrics induced on ∂M by a homeomorphism hn : M → N(ρn)ep associated
to σn. Then, there is K > 0 such that if c ⊂ ∂M is a simple closed curve
that bounds an essential disc, we have lsn(c) � K.

Proof. — Let D ⊂ M be an essential disc and let e ⊂ ∂M be a simple
closed curve which does not bound an essential disc. We will say that e
intersects ∂D essentially if the ends of any lift of e to M̃ are separated by a
lift of ∂D. As in the introduction P(M) consists of the measured geodesic
laminations satisfying conditions a), b) and c).

Claim 4.3. — Let γ ⊂ P(M) be a weighted multi-curve and let D ⊂M
be an essential disc; then at least one leaf of γ intersects ∂D essentially.
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Proof. — Let ∂D̃ be a lift of ∂D to ∂M̃ . This lift separates ∂M̃ ≈ S2 into
two discs C and C ′. Let us denote by Ii, 1 � i � p (resp. I ′i, 1 � i � p′) the
connected components of p−1(γ)−∂D̃ lying in C (resp. C ′) whose endpoints
lie in ∂D̃. These arcs Ii (resp. I ′i) cut C (resp. C ′) in p+1 discs Ci, 0 � i � p
(resp. in p′ + 1 discs C ′

i, 0 � i � p′). The curves ∂Ci and ∂C ′
i ⊂ ∂M̃ bound

essential discs in M̃ . It follows from conditions a) and c) that for any i,
we have ;{∂Ci ∩ p−1(γ)} � 3 and ;{∂C ′

i ∩ p−1(γ)} � 3. If no leaf of γ
intersects ∂D essentially, then, for any i, each point of ∂Ci ∩∂D̃∩ p−1(γ) is
the endpoint of an I ′j and each point of ∂C ′

i ∩ ∂D̃ ∩ p−1(γ) is the endpoint
of an Ij . This implies that 3(p + 1) � 2p′ and that 3(p′ + 1) � 2p. We get
p+ p′ � −6. This contradiction shows that at least one leaf of γ intersects
∂D essentially. �

Let (cn) be a sequence of simple closed curves such that each cn bounds
an essential disc and that lsn(cn) −→ 0. For large n, cn is the core of a wide
Margulis tube Tn ⊂ ∂M . Let c1,n and c2,n be the boundary components
of Tn and let us choose Tn so that we have lsn

(c1,n) = lsn
(c2,n) −→ 0 and

dsn(ci,n, cn) −→ ∞. Let e be a simple closed curve supporting a transverse
measure γ ∈ P(M). By Claim 4.3, e intersects all the cn essentially. For
each n, let e∗n be the σn-geodesic in the homotopy class of e, let ẽ∗n, c̃n and
T̃n be lifts of e∗n, cn, Tn respectively. Let c̃1,n and c̃2,n be the components
of ∂T̃n. Let Π be a geodesic plane containing ẽ∗n. Let k̃n and k̃′n be the two
connected components of T̃n∩Π and let κ̃n and κ̃′n be the geodesic segment
of Π joining the endpoints of k̃n and k̃′n, see figure 1.

a

b
c

d

e

f
g h

i

Figure 1. — The section Π ∩ C(ρn)

Assume that ∂k̃n and ∂k̃′n do not lie in the preimage of λn. Let d̃n and d̃′n
be the intersections of Π and of support planes at k̃n ∩ c̃1,n and at k̃′n ∩ c̃1,n
respectively. The section C(ρn) ∩ Π lies between d̃n and d̃′n. Since ẽ∗n lies
in C(ρn), ẽ∗n does not intersect d̃n nor d̃′n. The arcs κ̃n and κ̃′n are very
close, this implies that the angle α1 between d̃n and κ̃n is small. The same
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considerations apply for the angle α2 on the other vertex of κ̃n. Let α < π
2

be an upper bound for α1 and α2 and set rn = max{d(x̃, κ̃n)|x̃ ∈ k̃n} �
max{d(x̃, ẽ∗n)/x̃ ∈ k̃n}. Any point x̃ lying in k̃n lies in a simple closed curve
c̃x,n ⊂ T̃n homotopic to c̃n such that lsn(cx,n) � lsn(c1,n). This curve c̃x,n
bounds a disc with diameter less than lsn(cx,n) which intersects ẽ∗n. It follows
that rn � lsn

(c1,n) −→ 0. A computation using Fermi coordinates (com-
pare with [Le1, Lemme A.2]) yields lσn

(k̃n) �
√

1 + tan2 α (chrn)2lσn
(κ̃n).

Since the width of Tn tends to infinity, we have lσn(k̃n) −→ ∞. So we
get lσn

(κ̃n) −→ ∞. Since any point of κn is close to the geodesic e∗n,
we have lσn(e∗n) −→ ∞. But this contradicts the algebraic convergence of
(σn). �

Since (σn) converges to σ∞, we may choose representations ρn : π1(M) →
Isom(H3) associated to σn such that (ρn) converges algebraically to a rep-
resentation ρ∞ associated to σ∞ and that (ρn(π1(M))) converges geomet-
rically to ρ∞(π1(M)). For n ∈ N, let λn be the bending measured geodesic
lamination of σn. Denote by λ(p)

n the union of the leaves of λn which have a
weight equal to π. Let Mn = H3/ρn(π1(M)) and let hn : M −λ(p)

n → N(ρn)
be a homeomorphism associated to σn.

Let x∞ be a point in ∂N(ρ∞), let ∂x∞N(ρ∞) be the connected com-
ponent of ∂N(ρ∞) containing x∞ and let S be a connected component of
∂M − λ(p)

∞ satisfying h∞(S) = ∂x∞N(ρ∞). Let x̃∞ ∈ C(ρ∞) be a lift of x∞
and let ∂x̃∞C(ρ∞) be the connected component of ∂C(ρ∞) containing x̃∞.
By [Ta], the convex hull C(ρ∞) of Lρ∞ is the limit of (C(ρn)) with respect
to the Hausdorff topology. Hence there exists x̃n ⊂ ∂C(ρn) such that (x̃n)
converges to x̃∞. Let us denote by ∂x̃n

C(ρn) the connected component of
∂C(ρn) containing x̃n and by ∂x̃n

N(ρn) its projection to N(ρn). There is
a connected component Sn of ∂M − λ

(p)
n and a pleated map gn : Sn → M

onto ∂x̃nN(ρn). Let (ĝn,Γn, rn) be the pleated surface that lifts gn, namely
the map ĝn : H2 → ∂x̃n

C(ρn) is onto, rn : Γn → ρn(π1(M)) is onto the
stabiliser of ∂x̃n

C(ρn) and the quotient map H2/ ker(rn) → ∂x̃n
C(ρn) is a

homeomorphism. By [CEG, Theorem 5.2.2] and Lemma 4.2 a subsequence
of the sequence of pleated surfaces (ĝn,Γn, rn) converges to a pleated sur-
face (ĝ∞,Γ∞, r∞).

By Lemma 3.1, (ĝ∞,Γ∞, r∞) is a convex or even pleated surface. Since
x̃∞ ∈ ĝ∞(H2), ĝ∞(H2) ⊂ ∂x̃∞C(ρ∞) and r∞(Γ∞) ⊂ ρ∞(π1(M)) is a sub-
group of the stabiliser of ∂x̃∞C(ρ∞).

Lemma 4.4. — The quotient map g∞ : H2/Γ∞ → ∂x∞N(ρ∞) is a home-
omorphism.
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Proof. — Set Cĝn
=

⋂
{Hε

Pi
/Pi is a connected component of H2 − L̂}.

For any n ∈ N, we have C(ρn) ⊂ Cĝn
. Since σn converges to σ∞, it follows

from [Ta] that C(ρn) converges to C(ρ∞) in the Hausdorff topology. So
we get C(ρ∞) ⊂ Cĝ∞ . Since ρ∞ is not fuchsian, we have int(C(ρ∞)) �= ∅.
Therefore int(Cĝ∞) �= ∅ and (ĝ∞,Γ∞, r∞) is a convex pleated surface. By
[EpM], this implies that g∞ is a covering map.

Let γ̂n be the bending geodesic lamination of ĝn. Extract a subsequence
such that (|γ̂n|) converges to some geodesic lamination L̂∞ in the Hausdorff
topology.

Assume that g∞ is not a homeomorphism. There are two points z �= y ∈
(H2− L̂∞)/r∞(Γ∞) such that g∞(z) = g∞(y). If we lift the situation to H2,
we get ẑ, ŷ ⊂ H2−L̂∞ and ρ∞(a) ∈ ρ∞(π1(M)) such that ẑ �∈ Γ∞ŷ and that
ĝ∞(ẑ) = ρ∞(a) ◦ ĝ∞(ŷ). The sequences z̃n = ĝn(ẑ) and ỹn = ρn(a) ◦ ĝn(ŷ)
converge simultaneously to ĝ∞(ẑ). Let Πz̃n

and Πỹn
be support planes of

Cn(ρn) at z̃n and ỹn. The half-spaces (H+
Πz̃n

) and (H+
Πỹn

) tend to half-spaces
H+

ẑ andH+
ŷ respectively. These two half-spacesH+

ẑ andH+
ŷ are bounded by

the support plane Πĝ∞(ẑ) at ĝ∞(ẑ). Thus we have either H+
z̃ ∩H+

ỹ = Πĝ∞(ẑ),
or H+

z̃ = H+
ỹ .

Since C(ρ∞) ⊂ Cĝ∞ ⊂ H+
z̃n

∩H+
ỹn

and since ρ∞(π1(M)) is not fuchsian,
we have H+

z̃ ∩H+
ỹ �= Πĝ∞(ẑ). So we have H+

z̃ = H+
ỹ . This implies that for

large n, if Πz̃n and Πỹn are disjoint then we have either H+
Πz̃n

� H+
Πỹn

or
H+

Πỹn
� H+

Πz̃n
. We get a contradiction with the fact that we have ỹn ⊂

C(ρn) ⊂ H+
Πz̃n

and z̃n ⊂ C(ρn) ⊂ H+
Πỹn

. We deduce that, up extracting a
subsequence, Πz̃n intersects Πỹn . It follows that, for n large enough, ĝn(H2)
intersects ρn(a) ◦ ĝn(H2). Therefore ĝn(H2) and ρn(a) ◦ ĝn(H2) coincide.
Since H+

Πỹ
is equal to H+

Πz̃
, the dihedral angle θ(Πẑn

,Πŷn
) tends to 0. This

implies that the distance between z̃n and ỹn measured on ĝn(H2) tends to
0. Since ĝ∞ is a covering map, there is a neighbourhood V(ẑ) ⊂ H2 of ẑ
such that, for n ∈ N large enough, the map ĝn|V(ẑ) : V(ẑ) → ĝn(V(ẑ)) is
a homeomorphism. For n large enough, ŷn lies in ĝn(V(ẑ)). Hence there is
ŷ′n ∈ V(ẑ) such that ĝn(ŷ′n) = ỹn. Since ĝn(ŷ′n) = ρn(a) ◦ ĝn(ŷ) and since
rn(Γn) is the stabiliser of ĝn(H2) in ρn(π1(M)), there is an ∈ Γn such that
anŷ = ŷ′n. The point ŷ′n lies in V(ẑ), so an moves ŷ a bounded distance.
Therefore there is a subsequence such that (an) converge to an isometry
a∞ ∈ Γ∞. Moreover ĝn(ŷ′n) tends to ĝ∞(ẑ), hence (ŷ′n) tend to ẑ. Thus we
get a∞ŷ = ẑ. This yields a contradiction with the assumption that ẑ �∈ Γ∞ŷ
and concludes the proof of Lemma 4.4. �
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Let F be a compact subset of S such that the connected components of
S−F are infinite annuli. Since Γn converges geometrically to Γ∞, there are
ε > 0 and maps ln : F → H2/Γn with the following properties :

– ln is a homeomorphism onto its image ;

– ln(F ) is a connected component of the ε-thick part of H2/Γn ;

– the induced representations ln∗ : π1(F ) → Γn converge to a faithful rep-
resentation l∞∗ : π1(F ) → Γ∞ ;

– g∞ ◦ l∞ coincides with h∞ on F ⊂ ∂M .

Let us show that, for large n, gn ◦ ln : F → ∂N(ρn) is isotopic to hn.
Let F̂ be the universal cover of F and let l̂n : F̂ → H2 be a lift of ln. Since
(ln∗) converges algebraically, we can choose the l̂n such that they converge
to l̂∞ on compact sets. Since (ĝn) converges to ĝ∞, the sequence (ĝn ◦ l̂n)
converges to ĝ∞ ◦ l̂∞ on compact sets.

Let x ∈ int(M). Since σn converges to σ∞, there are diffeomorphisms
un : M → M isotopic to the identity which satisfy the following : for any
k > 1 and r > 0, there exists n(k, r) such that for n � n(k, r), the restriction
of un to B(x, r) ⊂ (M,σ∞) is a k-quasi-isometry into its image in (M,σ∞).
For n ∈ N, set Mn = H3/ρn(π1(M)) and let xn ∈ Mn be the projection of
the origin o ∈ H3. For n ∈ N, the metric σn yields an identification between
(int(M), σn) and Mn such that x is identified with xn. Thus we can consider
the restriction of un to int(M) as an homeomorphism un : M∞ →Mn.

Let ũn : H3 → H3 be a lift of un such that ũn(o) = o. Since (ρn(π1(M)))
converges geometrically to ρ∞(π1(M)), ũn : H3 → H3 converges to the
identity on compact sets (see [BeP]).

Since (ĝn ◦ l̂n) converges to ĝ∞ ◦ l̂∞ on compact sets, the sequence ũ−1
n ◦

ĝn ◦ l̂n converges to ĝ∞ ◦ l̂∞ on compact sets. Furthermore, F has a compact
fundamental domain. Hence u−1

n ◦ gn ◦ ln : F →M∞ converges uniformly to
g∞ ◦ l∞ which coincides with h∞. It follows that for large n, u−1

n ◦ gn ◦ ln
is isotopic to h∞|F . Therefore gn ◦ ln is isotopic to un ◦ h∞|F . Since un is
isotopic to the identity, un ◦ h∞|F is isotopic to hn. Thus we can change ln
by an isotopy such that gn ◦ ln coincides with hn on F .

Let γ̂n be the bending measured geodesic lamination of ĝn and let
γn ∈ ML(H2/Γn) be its projection. Let k ⊂ F be an arc such that
l∞(k) is transverse to |γ∞| and let k̂ ⊂ F̂ be a lift of k. The arcs l̂n(k̂)
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converge to l̂∞(k̂). Since the convex pleated surfaces (ĝn,Γn, rn) converge
to (ĝ∞,Γ∞, r∞), Lemma 3.4 yields

∫
l̂n(k̂)

dγ̂n −→
∫
l̂∞(k̂)

dγ̂∞. Since, for
any n ∈ N, gn ◦ ln coincides with hn on F , we have

∫
k
dλn =

∫
l̂n(k̂)

dγ̂n
where λn is the bending measured geodesic lamination of σn. Thus we get∫
k
dλn −→

∫
k
dλ∞.

Doing the same for each component of ∂M − λ
(p)
∞ , we conclude that for

any arc k ⊂ ∂M − λ
(p)
∞ transverse to |λ∞|, we have

∫
k
dλn −→

∫
k
dλ∞. It

follows that any subsequence of (λ̇n) contains a subsequence converging in
ML(∂M)/R and that the limit λ̇ differs from λ̇∞ only on λ(p)

∞ , namely if λ
is a representative of λ̇ then removing from λ the closed leaves which lie in
λ

(p)
∞ yields the same measured geodesic lamination as the one obtained by

removing λ(p)
∞ from λ∞. Thus, if we show that any leaf of λ(p)

∞ is a leaf of λ
with a weight at least equal to π, we can conclude that λ̇n converges to λ̇∞.

Claim 4.5. — Let λ be a representative of λ̇; any leaf c of λ(p) is a leaf
of λ and has a weight greater than or equal to π (as a leaf of λ).

Proof. — Let c be a leaf of |λ(p)
∞ | ⊂ |λ∞|. Since λ̇n converges to λ̇ which

satisfies |λ̇| ⊂ |λ∞|, then either c is a leaf of λ and we will denote its weight
by w(c), or c is a simple closed curve disjoint from λ and we will take
w(c) = 0.

We will prove the claim by assuming that w(c) < π and by ending in a
contradiction.

Let S be a component of ∂M − λ
(p)
∞ whose closure contains c. From the

fact that rn(π1(S)) converges geometrically to r∞(π1(S)) we deduce that
lsn(c) −→ 0.

In the case where, up to extracting a subsequence, i(c, λn) is equal to 0
for all n, it follows from [BoO, Lemma 19] that c is a leaf of λ with a weight
equal to π. Now we can assume that we have i(c, λn) > 0 for any n large
enough. Especially c is not a leaf of λn.

Let η > 0 be a number such that π−η is greater than w(c). The curve c
lies in the boundaries of two surfaces F 1 and F 2 (which may coincide) such
that the following holds : c ⊂ int(F 1 ∪ F 2) and either F 1 (resp. F 2) is a
pair of pants satisfying int(F 1)∩|λ| = ∅ or there is connected component of
λ which is an arational geodesic lamination in F 1 (resp. F 2). We will only
deal with the case where F 1 and F 2 are distinct, the other case is handled
in the same way. Approximating |λ| ∩ Fi by an arc with endpoints in c, we
can construct a simple closed geodesic d that intersects c in two points and
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satisfies i(d, λ−c) � η
8 . Consider a point x1

n (respectively x2
n) of d∩F 1−λn

(respectively d ∩ F 2 − λn) lying in the thick part of (F 1, sn) (respectively
(F 2, sn)). Let k1

n and k2
n be the connected components of d− {x1

n, x
2
n}. We

have lim sup
∫
ki

n
dλn � i(d, λ− c) + w(c).

Now we want to find 2 points y1
n ⊂ k1

n and y2
n ⊂ k2

n that cut k1
n and k2

n

into 4 arcs κjn, 1 � j � 4, such that we have lim sup
∫
κj

n
dλn <

π
2 for any j.

If w(c) = 0 then we have lim sup
∫
ki

n
dλn � i(d, λ) = i(d, λ − c) � η

4 <
π
4 .

Hence any points y1
n ⊂ k1

n and y2
n ⊂ k2

n would be suitable. If we have
w(c) > 0 then c is a leaf of λ. Since we have assumed that c is not a leaf of
λn, λn spirals more and more around c. More precisely, in a neighbourhood
V(c) of c, λn ∩ V(c) is a family of compact arcs each one spiralling many
times toward c and carrying a small measure. It follows that we can find
points yjn ⊂ kjn such that if κjn, 1 � j � 4, are the closure of the components
of d − {x1

n, x
2
n, y

1
n, y

2
n} (cf. figure 2), we have w(c)

2 − η
8 � lim sup

∫
κj

n
dλn �

i(d, λ − c) + w(c)
2 + eta

8 � π
2 − η

4 . Roughly, the yjn are chosen so that λn
spirals as many time before yjn as it does after.

a bc d

e f

i

g

h

Figure 2. — Cutting d

For j ∈ {1, 2, 3, 4}, consider a lift κ̃jn ⊂ C(ρn) ⊂ H3 of κjn such that
⋃

j κ̃
j
n

is connected. Let d̃jn ⊂ H3 be the geodesic segment joining the vertices of
κ̃jn.

If there is j0 such that lsn
(κj0n ) is bounded, then κj0n is entirely contained

in the thick part of (F 1 ∪F 2, sn). Since gn(F 1) and fn(F 2) tend to pleated
surfaces whose bending measured geodesic laminations are λ∩F j , we have
the following inequality lim

∫
κ

j0
n
dλn � i(d, λ−c) � η

8 . Hence we have w(c)
2 �

η
4 . Thus we get i(d, λ) � 2w(c) + η

4 � 2η. Since d intersects c transversally,

– 117 –



Cyril Lecuire

and since lsn
(c) −→ 0, lsn

(d) tends to ∞. Taking η < π
4 , we get from the

slight bending lemmas (Lemma 3.11) that lσn
(d∗) � C2η(lsn

(d)+A5η). Thus
lσn

(d∗) tends to ∞ contradicting the algebraic convergence of ρn.

Thus we have ∀j, lsn(κjn) −→ ∞. The slight bending Lemmas (Lemma
3.10) says that there is C > 0 such that lsn(κ̃jn) � Clσn(d̃jn) and that the in-
terior angle between two adjacent segments d̃jn is greater than η

4 . Let a be the
element of π1(M) such that ρn(a) fixes d∗ and let d̃n =

⋃
i∈Z;j=1,2,3,4 a

i(κjn).
The curve d̃n is the union of long geodesic segments with interior angles
greater than η

4 . It follows from a classical result (see [Ot2] for example)
that there is K such that l(d̃n/a) is smaller than Klσn

(d∗). Thus we get
lsn(d) � Cl(d̃n/a) � CKlσn(d∗). Since lsn(d) −→ ∞, this yields a contra-
diction with the algebraic convergence of σn.

It follows that λ̇ = λ̇∞. Thus Proposition 4.1 is proved. �
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Math. 98, 739-749 (1976).

[KaT] Kamishima (Y.), Tan (S. P.). — Deformation spaces on geometric structures,
Aspects of low-dimensional manifolds, Adv. Stud. Pure Math. 20, 263-299 (1992).

– 118 –



Continuity of the bending map

[KeS] Keen (L.) and Series (C.). — Continuity of convex hull boundaries, Pac. J. Math.
127, 457-519 (1988).

[Le1] Lecuire (C.). — Plissage des variété hyperboliques de dimension 3, Inventiones
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