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On the Periodic Lorentz Gas
and the Lorentz Kinetic Equation(∗)

François Golse
(1)

ABSTRACT. — We prove that the Boltzmann-Grad limit of the Lorentz
gas with periodic distribution of scatterers cannot be described with a
linear Boltzmann equation. This is at variance with the case of a Pois-
son distribution of scatterers, for which the convergence to the linear
Boltzmann equation was proved by Gallavotti [Phys. Rev. (2) 185, 308
(1969)]. The arguments presented here complete the analysis in [Golse-
Wennberg, M2AN Modél. Math. et Anal. Numér. 34, 1151 (2000)], where
the impossibility of a kinetic description was established only in the case
of absorbing obstacles. The proof is based on estimates on the distribu-
tion of free-path lengths established in [Golse-Wennberg loc.cit.] and in
[Bourgain-Golse-Wennberg, Commun. Math. Phys. 190, 491 (1998)], and
on a classical result on the spectrum of the linear Boltzmann equation
which can be found in [Ukai-Point-Ghidouche, J. Math. Pures Appl. (9)
57, 203 (1978)].

RÉSUMÉ. — On démontre dans cet article que la limite de Boltzmann-
Grad du gaz de Lorentz dans une configuration périodique d’obstacles
ne peut être décrite par une équation de type Boltzmann linéaire. Rap-
pelons qu’au contraire, dans le cas où la configuration des obstacles est
aléatoire et suit une loi de Poisson, Gallavotti a démontré la convergence
en moyenne de la densité de particules vers la solution d’une équation de
type Boltzmann linéaire [Phys. Rev. (2) 185, 308 (1969)]. La démonstra-
tion présentée ici complète l’analyse faite dans [Golse-Wennberg, Modél.
Math. et Anal. Numér. 34, 1151 (2000)], où l’impossibilité d’une descrip-
tion cinétique est établie dans le seul cas d’obstacles absorbants. Cette
preuve est basée sur la distribution des temps de sortie démontrée dans
[Golse-Wennberg, loc. cit.] et dans [Bourgain-Golse-Wennberg, Commun.
Math. Phys. 190, 491 (1998)], ainsi que sur un résultat classique concer-
nant le spectre de l’équation de Boltzmann linéaire — voir par exemple
[Ukai-Point-Ghidouche, J. Math. Pures et Appl. (9) 57, 203 (1978)].
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1. Introduction

About 100 years ago, Lorentz [15] proposed the following linear kinetic
equation to describe the motion of electrons in a metal:

(∂t + v · ∇x +
1
m

F (t, x) · ∇v)f(t, x, v) = Natr
2
at|v|C(f(t, x, ·))(v) (1.1)

where f(t, x, v) is the (phase space) density of electrons which, at time t,
are located at x and have velocity v. In Eq. (1.1), F is the electric force
field, m the mass of the electron, while Nat and rat designate respectively
the number of metallic atoms per unit volume and the radius of each such
atom. Finally C(f) is the collision integral: it acts on the velocity variable
only, and is given, for all continuous φ ≡ φ(v) by the formula

C(φ)(v) =
∫
|ω|=1,v·ω>0

(
φ(v − 2(v · ω)ω) − φ(v)

)
cos(v, ω)dω . (1.2)

In the case where F ≡ 0, Gallavotti [11, 12] proved that Eq. (1.1) describes
the Boltzmann-Grad limit of a gas of point particles undergoing elastic
collisions on a random (Poisson) configuration of spherical obstacles. His
result was successively strengthened by Spohn [18], and by Boldrighini-
Bunimovich-Sinai [4].

In the presence of an external, non-zero electric force F and for the same
random configuration of absorbing obstacles as in [11, 12], Desvillettes-Ricci
[10] proved recently that the Boltzmann-Grad limit of a gas of point particles
leads to a non-Markovian equation — see also an earlier, similar observation
by Bobylev-Hansen-Piasecki-Hauge [2].

The case of periodic configuration of obstacles, perhaps closer to
Lorentz’s original ideas, completely differs from the random case. In the
case of absorbing obstacles, and without external force F , several results
suggest that the Boltzmann-Grad limit is non-Markovian [8, 14, 9]. How-
ever, all these results are based on explicit computations that are possible
only in the case of absorbing obstacles.

In the present note, we show that neither equation (1.1) nor any variant
thereof can describe the Boltzmann-Grad limit of the periodic Lorentz gas
with no external force (F ≡ 0) and in the case of reflecting obstacles.

The crucial observation (already made in [8, 14]) is that the distribution
of first hitting times satisfies, in the periodic case, an inequality stated
below as Theorem 2.1 that prevents these first hitting times from begin
exponentially distributed. The probabilistic representation of equation (1.1)
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by a jump process with exponentially distributed jump times plus a drift (see
for instance [16]) suggests that the Boltzmann-Grad limit of the periodic
Lorentz gas with reflecting obstacles cannot be described by (1.1).

In the present paper, we give a complete proof of this fact (see Theorem
4.1 below), which by the way does not appeal to the probabilistic repre-
sentation of (1.1). In addition, the method of proof used here provides an
explicit estimate of the difference between the single particle phase space
density for the periodic Lorentz gas in the Boltzmann-Grad limit and the
solution of the Lorentz kinetic equation (1.1) — see the inequality (4.18)
and the discussion thereafter. This result has been announced in [13]

Recently, Ricci and Wennberg [17] have considered the following inter-
esting variant of the periodic Lorentz gas studied here. Their microscopic
model consists of a gas of point particles in a periodic configuration of
obstacles that are bigger than in the Boltzmann-Grad scaling considered
in the present paper. However, some of these obstacles are removed with
a probability carefully chosen in terms of the obstacle radius so that the
mean collision time remains of order one. They proved that the expected
single-particle phase-space density so obtained converges to a solution of
the Lorentz kinetic equation (1.1). This result suggests that the failure of
(1.1) to capture the Boltzmann-Grad limit of the periodic Lorentz gas is
a very unstable phenomenon that is specific to the periodic setting and
likely to disappear whenever some amount of randomness is injected in the
microscopic system.

2. The periodic Lorentz gas

Let D ∈ N, D � 2. For each r ∈ (0,
1
2
), we consider the domain

Zr = {x ∈ RD |dist(x,ZD) > r} ,

which is usually referred to as “the billiard table”.

The Lorentz gas is the dynamical system corresponding to a cloud of
point particles that move freely in Zr — collisions between particles being
neglected — and are specularly reflected at the boundary of each obstacle
— the obstacles being the balls of radius r centered at the lattice points, i.e.
the connected components of Zc

r . Since collisions between particles are ne-
glected, one can equivalently consider a single particle whose initial position
and velocity are appropriately distributed in Yr × SD−1.

In this dynamical system, a particularly important notion is that of “free
path length”: see the review article by Bunimovich [5], pp. 221-222.
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The free path length — or “(forward) exit time” — for a particle starting
from x ∈ Zr in the direction v ∈ SD−1 is defined as

τr(x, v) = inf{t > 0 |x + tv ∈ ∂Zr} . (2.1)

The function τr is then extended by continuity a long particle paths to the
non-characteristic part of the boundary of the phase-space, i.e. to

{(x, v) ∈ ∂Zr × SD−1 | v · nx �= 0} ,

where nx designates the inward unit normal field on ∂Zr (pointing to-
ward Zr, i.e. outside of the scatterers). Because Zr is invariant under ZD-
translations, one has

τr(x + k, v) = τr(x, v) for each (x, v) ∈ Zr × SD−1 and k ∈ ZD .

Hence τr can be seen as a [0,+∞]-valued function defined on Yr × SD−1

(and a.e. on Y r × SD−1), where Yr = Zr/ZD.

r21

Figure 1. — The billiard table Zr and the punctured torus Yr
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Whenever the components of v ∈ SD−1 are rationally independent —
i.e. if k ·v �= 0 for each k ∈ ZD\{0} — each orbit of the linear flow x �→ x+tv
is dense on TD = RD/ZD, and thus τr(x, v) < +∞ for each x ∈ Zr.

On the measurable space Yr×SD−1 equipped with its Borel σ-algebra, we
define µr as the probability measure proportional to the Lebesgue measure
on Yr × SD−1: in other words1

dµr(y, v) =
dydv

|Yr||SD−1| .

Define the distribution of τr under µr by the usual formula

Φr(t) := µr

(
{(y, v) ∈ Yr × SD−1 | τr(y, v) � t

}
) .

Theorem 2.1. — Let D � 2. There exist two positive constants C1 and
C2 such that, for each r ∈ (0, 1

2 ) and each t > 1/rD−1

C1

trD−1
� Φr(t) � C2

trD−1
.

In the theorem above, the lower bound in the case D = 2 and the upper
bound for all D � 2 were proved by Bourgain-Golse-Wennberg [8]; the lower
bound was extended to the case of any D � 2 by Golse-Wennberg [14]. More
precise results concerning Φr(t/r) in space dimension D = 2 have recently
been obtained by Caglioti-Golse [9] and Boca-Zaharescu [3]; however, only
the result above (Theorem 2.1) is used in the present paper.

3. The linear Boltzmann equation

The linear Boltzmann equation for a free2 gas of particles moving at
speed 1 is

(∂t + v · ∇x)f(t, x, v) = C(f(t, x, ·))(v) (3.1)

where f ≡ f(t, x, v) is the single particle phase-space density, also known as
“distribution function”. In other words, f(t, x, v) is the density of particles
which, at time t, are located at x ∈ RD and move in the direction v ∈ SD−1.

(1) If A is a measurable d-dimensional set in RD (d � D), we denote by |A| its d-
dimensional volume. Here |Yr| is the Lebesgue measure of any fundamental domain of
the quotient space Yr, i.e. of the unit cube with a ball of radius r removed.

(2) I.e. without external force.
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The term C(f) is the collision integral; specifically, C is an integral operator
of the form

C(φ)(v) = σ

∫
SD−1

k(v, w)(φ(w) − φ(v))dw (3.2)

where σ > 0 and k ∈ C(SD−1 × SD−1) satisfies the following properties

k(v, w) = k(w, v) > 0 ,

∫
SD−1

k(v, w)dv = 1 , for all v, w ∈ SD−1 . (3.3)

Changing variables according to ω �→ w = v − 2(v · ω)ω in the Lorentz
collision integral for D = 3 shows that

1
π

∫
ω∈S2,v·ω>0

(
φ(v − 2(v · ω)ω) − φ(v)

)
cos(v, ω)dω

=
∫
S2

k(v, w)(φ(w) − φ(v))dw with k(v, w) ≡ 1
4π

.

Hence, the Lorentz kinetic model (1.1)-(1.2) is a special case of the linear
Boltzmann equation (3.1)-(3.2).

In the sequel, we shall restrict our attention to the case where the linear
Boltzmann equation is posed in a periodic box. Without loss of generality,
we assume that this periodic box has size 1, and that SD−1 is endowed with
its rotationally invariant unit measure, henceforth denoted by dv. Finally
we denote by 〈·〉 the average with respect to both variables x and v:

〈φ〉 =
∫∫

TD×SD−1
φ(x, v)dxdv . (3.4)

Consider then the unbounded operator A on L2(TD ×SD−1) defined by

(Aφ)(x, v) = −v · ∇xφ(x, v) − σφ(x, v) + σ

∫
SD−1

k(v, w)φ(x,w)dw

with domain

D(A) = {φ ∈ L2(TD × SD−1) | v · ∇xφ ∈ L2(TD × SD−1)} .

We recall the following result, originally proved in [19] for the more
complicated case of the linearization of Boltzmann’s equation at a uniform
Maxwellian state.
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Theorem 3.1. — Let σ > 0 and k ∈ C(SD−1 × SD−1) satisfy the as-
sumptions (3.3). Then the operator A generates a strongly continuous con-
traction semigroup on L2(RD × SD−1), and there exists positive constants
c and γ such that

‖etAφ− 〈φ〉‖L2(TD×SD−1) � ce−γt‖φ‖L2(TD×SD−1) , t � 0 ,

for each φ ∈ L2(TD × SD−1).

x*n

x*

X (x,v)t

(x,v)tV

v

x

Figure 2. — The billiard dynamics on Ωε

4. The non-convergence result

Throughout this section, we denote by ε the sequence (1/n)n∈N∗ . For
some given r∗ ∈ (0, 1

2 ), we set r = r∗ε
1/(D−1), and we denote by Ωε the open

subset εZr with this particular choice of r.

4.1. Reflecting vs. absorbing obstacles

First we define the billiard flow on the scaled billard table Ωε. It is a
one-parameter group on Ωε × SD−1 denoted by

Sε
t : Ωε × SD−1 � (x, v) �→ (Xε

t (x, v), V
ε
t (x, v)) ∈ Ωε × SD−1 (4.1)

and defined in the following manner:

• Sε
0(x, v) = (x, v),
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• if t is such that Xε
t (x, v) /∈ ∂Ωε, then Sε

t (x, v) is smooth in the time
variable near that particular value of t and one has

d

dt
Xε

t (x, v) = V ε
t (x, v) ,

d

dt
V ε

t (x, v) = 0 ; (4.2)

• if t is such that Xε
t (x, v) = x∗ ∈ ∂Ωε, then Sε

t (x, v) has the following
jump discontinuity (in the velocity component only)

Xε
t+0(x, v) = Xε

t−0(x, v) , V ε
t+0(x, v) = R(nx∗)V ε

t−0(x, v) , (4.3)

where R(nx∗) is the symmetry with respect to the hyperplane or-
thogonal to the inner unit normal nx∗ at x∗ ∈ ∂Ωε: in other words

R(nx∗)ξ = ξ − 2(ξ · nx∗)nx∗ , ξ ∈ RD . (4.4)

Notice that this dynamics is mechanically reversible, i.e. for all t ∈ R,
one has

Sε
−t(x, v) = Sε

t (x,−v) , (x, v) ∈ Ωε × SD−1 .

For each t ∈ R, the map Sε
t is invariant under ZD-translations, in the

following sense: for all k ∈ ZD and (x, v) ∈ Ωε × SD−1, one has

Sε
t (x + k, v) = (Xε

t (x, v) + k, V ε
t (x, v)) = Sε

t (x, v) + (k, 0) .

Hence Sε
t defines a one-parameter group — still denoted by Sε

t — on the
quotient space Υε × SD−1, where Υε = Ωε/ZD, and the restriction of the
measure dxdv (defined on TD ×SD−1) to Υε ×SD−1 is invariant under Sε

t .

Starting from the billiard flow Sε
t on Υε × SD−1, we define a unitary

group Ŝε
t on L2(Υε × SD−1, dxdv) by the formula

Ŝε
tf(x, v) = f(Sε

−t(x, v)) , (x, v) ∈ Υε × SD−1 , t ∈ R . (4.5)

Next we turn to the case of the same billiard table, but with absorbing
obstacles. By this, we mean that whenever a particle hits the boundary of
Ωε, it disappears. Equivalently, one may think of Ωε as a sieve, with particles
falling into the holes (the components of Ωc

ε).

The analogue of Ŝε
t in the case of absorbing obstacles is the contraction

semigroup T ε
t defined on L2(Υε × SD−1, dxdv) by the formula

T ε
t g(x, v) = g(x−tv, v)1τr(x/ε,−v)>t/ε , (x, v) ∈ Υε×SD−1 , t ∈ R , (4.6)

where τr is the free path length defined in (2.1) — recall that r = r∗ε
1/(D−1).
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Finally, L2(Υε×SD−1, dxdv) can be embedded in L2(TD×SD−1, dxdv),
identifying each function defined a.e. on Υε × SD−1 with its extension by 0
in the complement of Υε × SD−1.

The maps Ŝε
t and T ε

t are related by the following elementary inequality:
for each f ∈ L2(Υε × SD−1, dxdv) and each t � 0,

f � 0 a.e. implies that Ŝε
tf(x, v) � T ε

t f(x, v) a.e. (4.7)

on Υε × SD−1. Indeed, the formulas (4.6), (4.5), and (4.2) imply that

T ε
t f(x, v) = f(x− tv, v)1τr(x/ε,−v)>t/ε = f(Sε

−t(x, v))1τr(x/ε,−v)>t/ε

� f(Sε
−t(x, v)) = Ŝε

tf(x, v) .

Finally, we give the PDE interpretation of the operators Ŝε
t and T ε

t . The
function Fε(t, x, v) = Ŝε

tf(x, v) is the solution of

∂tFε + v · ∇xFε = 0 , (x, v) ∈ Υε × SD−1 ,

Fε(t, x, v) = Fε(t, x,R(nx)v) , (x, v) ∈ ∂Υε × SD−1 ,

Fε

∣∣
t=0

= f ,

(where R(nx) designates the reflection with respect to the hyperplane or-
thogonal to nx: see fla. (4.4)), while the function Gε(t, x, v) = T̂ ε

t g(x, v) is
the solution of

∂tGε + v · ∇xGε = 0 , (x, v) ∈ Υε × SD−1 ,

Gε(t, x, v) = 0 , x ∈ ∂Υε , v · nx > 0 ,

Gε

∣∣
t=0

= g .

4.2. Main result

The paper by Lorentz [15] described in the introduction suggests the fol-
lowing question, in the case of space dimension D = 3:

“Let f in ∈ L2(T3 × S2). Does Ŝε
t (f

in1Υε×S2) (or any subsequence
thereof) converge in L∞((0,+∞)×T3×S2) weak-* as ε → 0 to the solution
f of (1.1) on T3 × S2 with Nat = 1, rat = r∗, and with initial data f in?”

The answer to that question is negative, as shown by the following
theorem.

Theorem 4.1. — Assume that the space dimension satisfies D � 2.
There exist initial data f in ∈ L2(TD × SD−1) such that, for any σ > 0
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and any function k ∈ C(SD−1 × SD−1) satisfying (3.3), no subsequence of
Ŝε

t (f
in1Υε×SD−1) converges in L∞((0,+∞) × TD × SD−1) weak-* to the

solution of

(∂t + v · ∇x)f(t, x, v) = σ

∫
SD−1

k(v, w) (f(t, x, w) − f(t, x, v)) dw (4.8)

on TD × SD−1, with initial data

f
∣∣
t=0

= f in . (4.9)

4.3. Proof of Theorem 4.1.

We define
Φε(t, x, v) = 1ετr(x/ε,−v)>t .

Since 0 � Φε � 1, the sequence Φε is relatively weakly-* compact in
L∞(R+×TD×SD−1). From now on, we consider a subsequence of ε = 1/n,
denoted ε′, so that Φε′ → Φ in L∞(R+ × TD × SD−1) weak-*, and denote
r′ = r∗ε

′1/D−1. Then, the function Φ is independent of x, i.e.

Φ ≡ Φ(t, v) , (4.10)

as shown by the following classical lemma.

Lemma 4.2. — Let Z be a separable locally compact metric space, en-
dowed with a Borel measure m. Let un(x, z) ≡ Un(nx, z), where (Un)n�1 is
a bounded sequence of elements of L∞(TD × Z). Any weak-* limit point of
the sequence (un)n�1 as n → +∞ is a function of z alone (i.e. independent
of x).

We postpone the proof of Lemma 4.2 until the end of this section.

In the sequel, we consider an arbitrary initial data ρ ≡ ρ(x) ∈ L∞(TD)
that is independent of v and a.e. nonnegative. We define

fε(t, x, v) = Ŝε
t (ρ1Υε×SD−1) = ρ(Xε

−t(x, v))1Υε
(x) (4.11)

and

gε(t, x, v) = T ε
t (ρ1Υε×SD−1) = ρ(x− tv)Φε(t, x, v)1Υε(x) . (4.12)

Since 1Υε → 1 a.e. on TD × SD−1 and |1Υε | � 1, one has, by dominated
convergence,

gε′ → ρ(x− tv)Φ(t, v) in L∞(R+ × TD × SD−1) weak-* . (4.13)

– 744 –



Periodic Lorentz Gas

On the other hand, (4.11) shows that ‖fε‖L∞ � ‖ρ‖L∞ ; therefore, possibly
after extraction of a subsequence (still denoted ε′), one has fε′ → f in
L∞(R+ ×TD ×SD−1) weak-*. We recall that ρ � 0 a.e. on TD. Therefore,
because of the inequality (4.7) and of the weak-* limit (4.13), one has

f(t, x, v) � ρ(x− tv)Φ(t, v) . (4.14)

In particular,∫∫
TD×SD−1

f(t, x, v)2dxdv �
∫∫

TD×SD−1
ρ(x− tv)2Φ(t, v)2dxdv

=
∫
TD

ρ(y)2dy
∫
SD−1

Φ(t, v)2dv

� ‖ρ‖2
L2

(∫
SD−1

Φ(t, v)dv
)2

, (4.15)

where the last inequality follows from Jensen’s inequality. By assumption,
Φε′ → Φ in L∞(R+ × TD × SD−1) weak-*; because of (4.10), one has∫∫

TD×SD−1
Φε′(t, x, v)dxdv →

∫
SD−1

Φ(t, v)dv in L∞(R+) weak-*.

Furthermore, by Theorem 2.1,∫∫
TD×SD−1

Φε′(t, x, v)dxdv

= meas({(x, v) ∈ Υε′ × SD−1 | τr′(x/ε′,−v) > t/ε′})
= meas({(y, v) ∈ Yr′ × SD−1 | τr′(y,−v) > t/ε′})

� C1

t
ε′ r

′D−1
=

C1

trD−1
∗

, for all t > 1/rD−1
∗ .

Hence, the inequality (4.15) becomes
(∫∫

TD×SD−1
f(t, x, v)2dxdv

)1/2

� C1

trD−1
∗

‖ρ‖L2 , for all t > 1/rD−1
∗ . (4.16)

Assume that f is the solution of (4.8)-(4.9) with f in = ρ. By Theorem
3.1, one has∥∥∥∥f(t, ·, ·) −

∫
TD

ρ(x)dx
∥∥∥∥

L2(TD×SD−1)

� ce−γt‖ρ‖L2

for all t � 0. In particular, for all t � 0, one has
(∫∫

TD×SD−1
f(t, x, v)2dxdv

)1/2

�
∫
TD

ρ(x)dx + ce−γt‖ρ‖L2 . (4.17)

– 745 –



F. Golse

In conclusion, if f is the solution to (4.8)-(4.9), then the initial data ρ
(assuming it is not a.e. 0) must satisfy the inequality

C1

trD−1
∗

� ‖ρ‖L1

‖ρ‖L2
+ ce−γt , for all t > 1/rD−1

∗ . (4.18)

At this point, we recall that this inequality holds for any ρ ∈ L∞(TD) such
that ρ � 0 a.e.: hence the ratio ‖ρ‖L1/‖ρ‖L2 can be made arbitrarily small.
For instance, one can choose ρ as follows: pick b, a bump function on RD

satisfying

0 � b � 1 , supp(b) ⊂
[
−1

4
,
1
4

]D

.

For m ∈ N∗, define ρ to be the unique ZD-periodic function such that

ρ
∣∣
[− 1

2 , 1
2 )D : x �→ b(mx) .

Then

‖ρ‖L1(TD) = m−D‖b‖L1(RD) , ‖ρ‖L2(TD) = m−D/2‖b‖L2(RD) ,

so that
‖ρ‖L1(TD)

‖ρ‖L2(TD)

= m−D/2 → 0 as m → +∞ .

Since the ratio ‖ρ‖L1/‖ρ‖L2 can be made arbitrarily small, the inequality
(4.18) would entail

C1

trD−1
∗

� ce−γt , for all t > 1/rD−1
∗ ,

which is manifestly wrong for t large enough — specifically, larger than the
unique zero of the function t �→ C1e

γt − crD−1
∗ t, denoted by t∗(C1, c, γ, r∗).

Hence, the assumption that, for each nonnegative ρ ≡ ρ(x) ∈ L∞(TD),
there exists a subsequence of Ŝε

t (ρ1Υε×SD−1) converging in L∞ weak-* to
the solution of (4.8)-(4.9) with f in = ρ is wrong. This concludes the proof
of Theorem 4.1, once Lemma 4.2 is proved.

4.4. Proof of Lemma 4.2

Assume that

unq → u in L∞(TD × Z) weak-* as nq → +∞ .
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For each k ∈ ZD, one has

ûnq (k, z) =
∫
TD

e−i2πk·xunq (x, z)dx = Ûnq (k, z) if nq|k ,

= 0 otherwise.

Since the assumed convergence entails

ûnq (k, ·) → û(k, ·) in L∞(Z) weak-* for each k ∈ ZD ,

this shows that
û(k, ·) = 0 unless k = 0 .

Hence u is independent of x, as announced.

5. Final remarks

We have demonstrated the impossibility of representing the Boltzmann-
Grad limit of the periodic Lorentz gas by a linear Boltzmann equation.

Notice that this impossibility results solely from the lower bound on the
distribution of free path lengths in Theorem 2.1. This is in fact not too
surprising since the probabilistic representation of equation (1.1) involves
in particular exponentially distributed jump times for the velocity process.

Notice also the choice of initial data in Theorem 4.1. Since one knows
that particles moving in appropriately chosen rational directions may fail
to encounter any obstacles on the billiard table Zr, it may seem somewhat
surprising that the contradiction in Theorem 4.1 is obtained by considering
isotropic initial data (i.e. initial data that are independent of the angle vari-
able) instead of pencils of particles concentrated in phase-space on those
rational directions that avoid all obstacles. In fact, the contribution of such
rational directions is already taken into account in the lower bound in The-
orem 2.1. Besides, the case of isotropic initial densities is somewhat more
natural in the context of Theorem 4.1, as it corresponds to local equilibria
for the Lorentz kinetic model (1.1).

As for the hydrodynamic (diffusion) limit of the periodic Lorentz gas
with finite horizon, it was proved in [1] that the case of an isotropic reflec-
tion law at the surface of each obstacle can be treated by PDE techniques,
avoiding the heavy machinery from ergodic theory required to handle the
case of specular reflection and developed by Bunimovich-Sinai — see [7],
and also [6].

In the case of the Boltzmann-Grad limit however, changing the collision
process does not affect the result in Theorem 4.1, since the obstruction to
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using the linear Boltzmann equation comes from particles that travel too far
before hitting an obstacle for the first time. For such particles, the nature
of the collision process is obviously of no importance. Hence Theorem 4.1
holds verbatim if one replaces Ŝε

t (f
in1Υε×SD−1) with the solution of

∂tfε + v · ∇xfε = 0 , x ∈ Υε , v ∈ SD−1 ,

fε(t)
∣∣
Σε

+
= K(fε(t)

∣∣
Σε

−
) ,

fε

∣∣
t=0

= f in1Υε×SD−1 ,

where
Σε

± = {(x, v) ∈ ∂Υε × SD−1 | ± v · nx > 0}

and K is any linear operator from L∞(Σε
−) to L∞(Σε

+) that preserves the
cone of positive functions.

By the same token, the same result as in Theorem 4.1 holds without
change if the obstacles are not assumed to be spherical, or even identical,
but instead of arbitrary shapes, provided that they can be included in balls
of radius r = r∗ε

D/(D−1) centered at the points of εZD.
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