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Real analytic manifolds in C
n with parabolic

complex tangents along a submanifold
of codimension one

Patrick Ahern and Xianghong Gong(1)

RÉSUMÉ. — Nous classifions les sous-variétés réelles analytiques de di-
mension n dans Cn, qui ont un ensemble de points de tangence com-
plexe paraboliques de dimension réelle n−1. Ces sous variétés sont toutes
équivalentes via biholomorphisme formel. Nous montrons que les classes
d’équivalence sous changement de variables par biholomorphisme local
(convergent) forment un ’espace de modules’ de dimension infinie. Nous
montrons aussi qu’il existe une sous-variété M de dimension n dans Cn,
dont les images par les biholomorphismes (z1, . . . , zn) �→ (rz1, . . . , rzn−1,
r2zn), r > 1, ne sont pas équivalentes à M via biholomorphisme local
préservant le volume.

ABSTRACT. — We will classify n-dimensional real submanifolds in Cn

which have a set of parabolic complex tangents of real dimension n−1. All
such submanifolds are equivalent under formal biholomorphisms. We will
show that the equivalence classes under convergent local biholomorphisms
form a moduli space of infinite dimension. We will also show that there
exists an n-dimensional submanifold M in Cn such that its images under
biholomorphisms (z1, . . . , zn) �→ (rz1, . . . , rzn−1, r2zn), r > 1, are not
equivalent to M via any local volume-preserving holomorphic map.
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(1) Department of Mathematics, University of Wisconsin, Madison, WI 53706, U.S.A.

ahern@math.wisc.edu
gong@math.wisc.edu

– 1 –



Patrick Ahern and Xianghong Gong

1. Introduction

In [1], E. Bishop introduced the local study of a real analytic manifold
M of real dimension n in C

n with 0 ∈ M . If M were totally real at 0 then M
would be locally biholomorphic to R

n so he assumed that M has a complex
tangent at 0. After some non-degeneracy assumptions he was able to assign a
number γ ∈ [0,∞] to (M, 0) in such a way that γ is a holomorphic invariant,
i.e. if M1 and M2 are as described above and there is a biholomorphic map
F defined near 0 with F (M1) = M2 and F (0) = 0 then (M1, 0) and (M2, 0)
have the same invariant. Bishop was interested in polynomial hulls. He was
able to show that if M was as above and if 0 � γ < 1/2 (called the elliptic
case) then there are holomorphic mappings f defined on the closed unit
disc into C

n, taking the boundary of the disc into M but f(0) /∈ M , thereby
showing that M has a non trivial polynomial hull.

In [8], Moser and Webster returned to the class of manifolds considered
by Bishop. For 0 < γ < 1/2 they found normal forms. As is often the
case in these matters, there is a formal biholomorphic map that takes the
manifold to its normal form and then one asks if there is a convergent bi-
holomorphic map that takes the manifold to its normal form. They showed
that there is such a convergent map in the case just cited. (By the way, the
existence of holomorphic discs for the normal forms is more or less evident
in the elliptic case so this gives another way to look at Bishop’s result.) In
the hyperbolic case (γ > 1/2) and for a countable set E, they had normal
forms for γ ∈ (1/2,∞) \ E but they also found algebraic real surfaces M
which are not equivalent to their normal forms by any convergent biholo-
morphic mappings. They do this as follows: the normal forms all lie in a real
linear subspace of codimension one, and they then show that there are man-
ifolds with a hyperbolic complex tangent that can not be so holomorphically
embedded. At this point it can be asked if a manifolds with a hyperbolic
complex tangent is already contained in real codimension one subspace can
it be mapped to its normal form by a convergent mapping? In [3] it is shown
that the answer to this question is no.

We want to mention that the Moser-Webster normal form excludes the
case γ = 0. Very recently Huang and Yin [6] have constructed formal normal
forms of infinitely many invariants for this case. They also showed that two
real analytic surfaces of the same formal normal form are holomorphically
equivalent.

In this paper we consider the parabolic case, γ = 1/2. In the elliptic and
hyperbolic cases the set of all points with a complex tangent exactly has real
dimension n− 2. However in the parabolic case there is the possibility that
the set of complex tangents can have dimension n − 1. For example when

– 2 –



Parabolic complex tangents

n = 2 the quadratic surface z2 = (z1 + z1)2 has the set z1 + z1 = 0 = z2
as its set of complex tangents. (Note that when n = 2 the complex tangent
is isolated in the elliptic and hyperbolic cases.) In this paper we will let M
denote the set of parabolic manifolds M whose set of complex tangents is
a real hypersurface of M . It is also natural to consider a subclass of M.
Let ω = dz1 ∧ · · · ∧ dzn and let Mω be the set of M in M such that
Reω|M = 0. For Mω, we consider equivalence under unimodular maps, that
is ones that preserve ω. We show that there is a quadratic surface Q (an
n dimensional version of the surface defined above) such that if M ∈ M
then M is formally equivalent to Q and hence any two manifolds in M are
formally equivalent. Now there is a method called functional moduli that
can be used in some cases to show that, in a situation where the formal
theory shows that everything is equivalent, exactly the opposite is true. In
one variable it was discovered independently by Écalle and Voronin and
published in 1981; see [2] and [9]. Here is an example: let A be the set of
all germs of holomorphic functions f(z) = z + z2 + z3 + · · · where the dots
mean higher order terms and we assume the series has positive radius of
convergence. The formal theory says that for f ∈ A there is a formal series
g such that g ◦f ◦g−1 = p where p(z) = z+z2 +z3 (no dots!) and hence any
two germs in A are formally equivalent. The theory of functional moduli
says that given f ∈ A there is a way to associate to f a functional modulus
which consists of a pair of holomorphic functions of period one, one defined
on an upper half plane and the other defined on a lower half plane. There
is also an equivalence relation on the set of moduli (which is transparent).
Then there are two theorems, one says that two germs are equivalent if
and only if their moduli are equivalent and the other says that given any
potential modulus there is a germ in A that has that modulus. Since the
equivalence at the level of moduli is transparent it is very easy to construct
non equivalent moduli and hence we can see that if we pick two moduli at
random they are not equivalent and so if we pick two germs in A at random
they are not equivalent. Such a theory is useful in that it shows us the big
picture but it is not a useful way to decide if two concretely given germs
are equivalent because the correspondence between germ and modulus is
not constructive, in either direction. Voronin [10] has developed a theory of
functional moduli for certain rather special germs of mappings defined in a
neighborhood of the origin in C

n taking 0 to 0. The theory for n > 1 is in
some ways quite different from n = 1; in particular, the equivalence relation
at the level of moduli is not nearly so transparent. We will apply Voronin
theory to show that even though the formal theory shows that all manifolds
in M are equivalent the convergent theory is quite the opposite.

How do we get from an element of M, a manifold, to one of Voronin’s
germs? We use the pair of Moser-Webster involutions [8] associated to M

– 3 –



Patrick Ahern and Xianghong Gong

in M. (These involutions will be described in section 3.) In our case the
composition of these involutions is a special case of one of Voronin’s germs.
As usual in applying functional moduli theory we must identify which germs
we are using and then we must identify which moduli correspond to these
germs and finally we must show that the set of moduli is non-trivial, i.e.
that there is a large class of mutually inequivalent moduli. In the one di-
mensional Écalle-Voronin case this last step is actually trivial. In more than
one dimension it usually is not, due to the lack of transparency of the equiv-
alence relation at the level of moduli. However the theory still works as
is is supposed to: construction a large class of inequivalent moduli is still
possible and it is the only known to prove the existence of a large class
of inequivalent germs which are formally equivalent. Sections 7 and 8 are
devoted to showing the non-triviality of the set of moduli for both the case
of M and Mω.

Finally we consider the relation between holomorphic and unimodular
equivalence for elements of M. For n = 2 Webster [11] showed that if
M ∈ Mω and if there is a convergent holomorphic map taking M to the
quadric z2 = (z1 + z1)2 then M and the quadric are equivalent by conver-
gent unimodular map. Also in [4] for n = 2 and in the hyperbolic case it
is shown that if M is convergently equivalent to its Moser-Webster normal
form then it is equivalent to a normal form by a convergent unimodular
mapping. In contrast we will use our methods to show that if for r > 0 we
define Lr(z1, · · · , zn) = (rz1, · · · , rzn−1, r

2zn) then there is M ∈ Mω such
that for r �= 1 LrM is not equivalent to M by any unimodular convergent
map, but all LrM are equivalent to the quadric under unimodular formal
maps. (Of course our M is formally but not holomorphically equivalent to
the parabolic quadric.) Therefore in general there is no result that says that
convergent holomorphic equivalence plus formal unimodular equivalence im-
plies convergent unimodular equivalence.

2. Statements of main results and organization of the paper

The construction of moduli spaces uses the pair of Moser-Webster in-
volutions [8] that characterizes real n-manifolds M in C

n with a non-
vanishing Bishop invariant and Voronin’s classification of local biholomor-
phisms f(z) = (z1, z2 + z1, z3, . . . , zn) +O(2) that have constant eigenvalue
1 of multiplicity n along a complex hypersurface of fixed points [10].

Let M be a real analytic n-dimensional submanifold in C
n. Assume

that M has a non-degenerate complex tangent at 0 and the set of complex
tangents of M is a real hypersurface C of M . We will see that in suitable
local holomorphic coordinates z1, ′z

def==(z2, . . . , zn−1) = ′x+ i ′y and zn, C is
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the linear space zn = x1 = ′y = 0 and the real n-manifold has the form

M : zn = (z1 + z1)2p(z1, z1,
′x), ′y = (z1 + z1)q(z1, z1,

′x), (2.1)

where p, with p(0) = 1, is a convergent power series in z1, z1,
′x, and q, with

q(0) = 0, is a vector of real-valued convergent power series.

The main purpose of this paper is to describe a complete set of equiv-
alence classes for each of the following two problems: classify the above
mentioned real analytic submanifolds M by local change of holomorphic co-
ordinates, and classify the M satisfying the additional condition Reω|M = 0,
under unimodular holomorphic maps, i.e. the ones preserving ω = dz1∧· · ·∧
dzn.

We now describe which elements of Voronin’s moduli space are relevant
to the above-mentioned two classification problems.

Moduli space without volume-form. — Let x, y ∈ C and ζ =
(ζ2, . . . , ζn−1) ∈ C

n−2. A power series h(x, y, ζ) =
∑
k�0 hj(y, ζ)x

j is called
semi-formal in x, if all hj are holomorphic in (y, ζ) on some fixed neighbor-
hood W of the origin of C

n−1. Define semi-formal maps analogously.

We say that S = V ×W is a sectorial domain, if V is a sector of the form
Vα,β,ε = {x ∈ C: arg x ∈ (α, β), 0 < |x| < ε} and W is a neighborhood of the
origin in C

n−1, where β−α is called aperture of the domain. A semi-formal
power series G =

∑∞
k=0 Gk(y, ζ)x

k is called an asymptotic expansion of a
holomorphic function g on V ×W , denoted by g ∼ G on V ×W , if there is
a possibly smaller neighborhood W̃ of 0 ∈ C

n−1 such that for each fixed N

lim
V �x→0

|x|−N
∣∣g(x, y, ζ) − N∑

k=0

Gk(y, ζ)xk
∣∣ = 0

holds uniformly for (y, ζ) ∈ W̃ . Analogously, we say that a semi-formal map
Φ is asymptotic to a holomorphic map H on V ×W , if each component of
Φ is asymptotic to the corresponding component of H.

Put

τ̂1: (x, y, ζ) → (−x, y + 2x, ζ), ρ: (x, y, ζ) → (x,−y, ζ),
τ̂2 = ρτ̂1ρ: (x, y, ζ) → (−x, y − 2x, ζ),
σ̂ = τ̂2τ̂1: (x, y, ζ) → (x, y + 4x, ζ).

Let V1 = Vε,δ = V−ε,π2 +ε,δ. Put Vj =
√
−1

1−j
V1, ∆δ = {t ∈ C: |t| < δ}.

Assume that 0 < ε < π
4 . In particular, Sj j+1 = (Vj ∩ Vj+1) × ∆n−1

δ are
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disjoint for j = 1, 2, 3, 4. Let H be the set of H = {H1 2, H2 3, H3 4, H4 1}
satisfying the following: Hj j+1 is defined on Sj j+1 and

H−1
1 2 = ρH1 2ρ, H

−1
4 1 = ρH2 3ρ, H3 4 = τ̂jH1 2τ̂j ,

Hj j+1 ∼ id, on Sj j+1

in which the positive numbers ε and δ depend on H. Note that we define
H4 5 = H4 1, H5 6 = H1 2, etc. Throughout the paper, that an identity
holds on a sectorial domain such as Vα,β,ε × W means that it holds on
Vα+δ,β−δ,ε′ × ∆n−1

ε′ for any δ > 0 and some ε′ dependent of δ. This is
justified by Lemma 10.3.

We say that H, H̃ are equivalent and write H̃ ∼ H, if there exist a
semiformal map Ψ and biholomorphic maps Gj = Gj+4, defined on S′

j ≡
i1−jVε′,δ′ × ∆n−1

δ′ (for some positive ε′, δ′) or on S′
j+2 and satisfying

H̃j j+1 = G−1
j Hj j+1Gj+1, j = 1, . . . , 4; or

H̃j+2 j+3 = G−1
j Hj j+1Gj+1, j = 1, . . . , 4;

(2.2)

G2 = ρG1ρ, G4 = ρG3ρ, Gj+2 = τ̂kGj τ̂k; (2.3)

Gj ∼ Ψ, on S′
j or on S′

j+2; (2.4)

Ψ: (x, y, ζ) → (a(x, ζ)x, ya(x, ζ) + b(x, ζ), c(x, ζ)), (2.5)

where a, b, c are semi-formal in x, a(0) �= 0, b(0) = 0, c(0) = 0, and
ζ → c(0, ζ) is biholomorphic. Note that Ψ = ρΨρ = τ̂jΨτ̂j . In particular,
a(0) is real.

Moduli space with volume-form.. — Let Hω̂ be the set of H ∈ H
satisfying the additional condition

H∗
j j+1ω̂ = ω̂, ω̂ = xdx ∧ dy ∧ dζ2 ∧ · · · ∧ dζn−1.

For H, H̃ ∈ Hω̂, we denote H̃ ∼ H, if there are Gj ,Ψ satisfying (2.2)-
(2.5) and G∗

j ω̂ = ω̂. Note that Ψ∗ω̂ = ω̂. Denote by H/∼ and Hω̂/∼ the
corresponding sets of equivalence classes.

Recall that M is the set of real analytic n-manifolds M in C
n, of which

complex tangents form a germ of real analytic set of dimension n − 1 at
the origin, while the origin is a parabolic complex tangent of M . Denote by
Mω the set of M ∈ M satisfying Reω|M = 0. Denote by M/∼ the set of
holomorphic equivalence classes in M, and by Mω/∼ the set of equivalence
classes in Mω under unimodular holomorphic maps.

The following theorem solves the two classification problems mentioned
early in this section.
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Theorem 2.1. — Each M ∈ M is formally biholomorphic to

Q: zn = (z1 + z1)2, Imz2 = · · · = Imzn−1 = 0

and each M ∈ Mω is equivalent to Q under some formal unimodular
holomorphic map. There are one-to-one correspondence between M/∼ and
H/∼ and one-to-one correspondence between Mω/∼ and Hω̂/∼; moreover,
H/∼ and Hω̂/∼ are of infinite dimension.

Our moduli spaces, as moduli spaces given by Voronin [10], are not
explicit. However, they are useful to obtain results which are not achieved
by other approaches. For example, using our moduli spaces we obtain

Theorem 2.2. — Let n � 2 and let Lr be the dilation zj → rzj
(1 � j < n), zn → r2zn. There exists a germ M of real analytic n-
submanifold in C

n at the origin such that LrM is not equivalent to M under
any unimodular holomorphic map if r is a positive number with r �= 1, while
all LrM (r > 0) are equivalent to Q: zn = 2z1z1+z2

1 +z2
1, yj = 0 (1 < j < n)

under unimodular formal maps.

The paper is organized as follows.

In section 3, we will obtain some preliminary normalization for a real
analytic n-manifold M by flattening its set of complex tangent points of
dimension n − 1, from which a preliminary holomorphic normalization for
the pair of Moser-Webster involutions follows.

In section 4 one can find normal forms for pairs of holomorphic lin-
ear involutions τ1, τ2 in general and for special pairs τ1, τ2 = ρτ1ρ inter-
twined by an anti-holomorphic linear involution ρ, under the assumptions
that σ = τ2τ1 is not diagonalizable and fixes a hyperplane pointwise. The
linear involutions τ1, τ2, ρ discussed in section 4 are more general than those
arising from real manifolds with complex tangents.

In section 5 we will discuss the semi-formal normalization of pairs of
involutions whose linear parts are classified in section 4. In section 6, we
will identify the two classification problems formulated at the beginning of
this section with the problem on classifying pairs of involutions τ1, τ2 = ρτ1ρ
under holomorphic maps.

Section 6 also contains some results on classifying real n-manifolds M
with a parabolic complex tangent under unimodular holomorphic maps and
we will also obtain a formal normal form showing infinitely many invari-
ants. However, the results in this direction are not complete, and the main
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difficulties arise from the volume form ω which is invariant under τ1 but
not τ2.

Sections 7 and 8 are devoted to the construction of moduli spaces stated
in Theorem 2.1, by adapting Voronin’s moduli space [10]. The non-triviality
of the moduli spaces are proved in the two sections too.

Theorem 2.2 is proved in section 9. The reader could read the proof of
Theorem 2.2 first, since it also outlines the construction from the involutions
of real manifolds to the moduli spaces.

In Appendix A (section 10), for the convenience of the reader we will
give a proof for a fundamental theorem of Voronin [10]. Voronin’s proof is
for two dimensional case, which can be easily adapted to higher dimensional
case.

We would like to conclude the section with the following two open prob-
lems.

A) Classify all real analytic n-manifolds M in C
n which have a parabolic

complex tangent at the origin. Here the set of complex tangent points has
dimension less than n− 1.

B) Classify all real analytic n-manifolds M in C
n having a parabolic

complex tangent under unimodular holomorphic maps. Here Redz1 ∧ · · · ∧
dzn|M �≡ 0. The problem remains open even if the set of complex tangent
points of M has dimension n− 1.

3. Complex tangent points and a pair of Moser-Webster
involutions

We will recall the pair of Moser-Webster involutions [8].

Let M ⊂ C
n be an n-dimensional real analytic submanifold contain-

ing the origin, given by R1(z, z) = . . . = Rn(z, z) = 0 with dR1 ∧ · · · ∧
dRn �= 0, where Rj(z, z) are convergent power series and real-valued, i.e.

Rj(z, z)
def==Rj(z, z) = Rj(z, z). The complexification M c ⊂ C

n × C
n of M

is defined by R1(z, w) = . . . = Rn(z, w) = 0. Then M becomes a totally
real and real analytic submanifold of M c via the embedding z → (z, z), and
dz1 ∧ . . . ∧ dzn|M extends uniquely to a holomorphic n-form ω on M c, and
uniquely to an anti-holomorphic n-form ω2 = dw1 ∧ · · · ∧ dwn.

We say that p ∈ M is a complex tangent of M , if TpM ∩ iTpM �= {0},
i.e. if dz1 ∧ . . . ∧ dzn|M vanishes at p since M has dimension n. We assume
that 0 ∈ M is a complex tangent point so T0M ∩ iT0M is a complex space
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of positive dimension. We also assume that it has the smallest positive
dimension so it is a complex line. Hence by a change of coordinates we have
T0M = C × R

n−2 × 0. Then M is given by

zn = az1z1 + bz2
1 + cz2

1 +
∑

1<α<n

(cαz1xα + dαz1xα)

+
∑

1<α,β<n

eαβxαxβ +O(|(z1, ′x)|3),

′y = O(|(z1, ′x)|2).

Recall that ′ζ = ′x + i ′y = (z2, . . . , zn−1). Put ω = dz1 ∧ . . . ∧ dzn.
Then ω|M = Adz1 ∧ dz1 ∧ dx2 ∧ . . . ∧ dxn−1 for A = (−1)n−1(az1 + 2cz1 +∑n−1
α=2 dαxα+O(2)). We assume that M has a non-degenerate complex tan-

gent at the origin, i.e. that Dz1A or Dz1A does not vanish; equivalently
|a| + |c| �= 0. By a quadratic change of coordinates, we may achieve that

M : zn = az1z1 + bz2
1 + cz2

1 +O(3), yα = O(2), a � 0, c � 0

where γ = c/a ∈ [0,∞] is the Bishop invariant [1]. The complex tangent
point 0 ∈ M is said to be elliptic if γ < 1/2, or parabolic if γ = 1/2, or
hyperbolic if γ > 1/2. Put π1(z, w) = z and π2(z, w) = w. When γ �= 0,
πj :M c → C

n are two-to-one branched coverings, and the covering trans-
formations form a pair of holomorphic involutions τj :M c → M c satisfying
τ2 = ρτ1ρ for ρ: (z, w) → (w, z). When γ �= 1/2, the set of complex tangent
points of M is real submanifold of M of dimension n − 2, and τ1, τ2 fix a
complex submanifold of M c of dimension n− 2 when γ �= 0, 1/2.

Let us compute τ1, τ2 for our special case, and find local coordinates
such that M is given by (2.1).

We assume that C, the set of complex tangent points of M , is a real
submanifold of dimension n− 1. So we are dealing with parabolic complex
tangents. ω|Mc vanishes on the complexification Cc of C in M c, and we
will see soon that Cc is precisely the zero set of ω|Mc . First, a = 2c. By a
quadratic change of coordinates, we may achieve that

M : zn = (z1 + z1)2 +O(3), ′y = O(2). (3.1)

Now ω|M = (−1)n−1(4x1+O(2))dz1∧dz1∧dx2∧· · ·∧dxn−1. Since dimC =
n− 1, we see that C is a totally real submanifold parameterized by

z1 = a(y1,
′x) + iy1,

′z = ′x+ ib(y1,
′x), zn = c(y1,

′x),

a(y1,
′x) = O(2), b(y1,

′x) = O(2), c(y1,
′x) = O(3).
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Put

F (z1, ′z, zn) =
(
a(−iz1, ′z) + z1,

′z + ib(−iz1, ′z), zn + c(−iz1, ′z)
)
.

F−1(M) ≡ M is still of the form (3.1) and C is flattened to the linear
space x1 = zn = yα = 0. Now we can write

M ⊂ C
n:

{
zn = (z1 + z1)2 + (z1 + z1)p0(z1, z1,

′x), p0 = O(2),
′y = (z1 + z1)q(z1, z1,

′x), q(0) = 0.

Looking at the zero set of dz1∧. . .∧dzn|M , we see that x1 divides p0(x1, y1,
′x).

Thus M is given by

M ⊂ C
n: zn = (z1 + z1)2p(z1, z1,

′x), ′y = (z1 + z1)q(z1, z1,
′x)

with p(0) = 1, q(0) = 0, and q(z1, z1,
′x) = q(z1, z1,

′x). We have derived
(2.1).

The complexification of M is

M c ⊂ C
n × C

n:


zn = (z1 + w1)2p(z1, w1,

′z+ ′w
2 ),

wn = (z1 + w1)2p(w1, z1,
′z+ ′w

2 ),
′z − ′w = 2i(z1 + w1)q(z1, w1,

′z+ ′w
2 ).

One can see that the set C̃(⊂ M c): z1 + w1 = 0 is fixed pointwise by τ1, τ2
and is invariant under ρ. On M c, introduce coordinates

x
def== z1 + w1, y

def== z1 − w1, ζ
def==(z2 + w2, . . . , zn−1 + wn−1).

Then ρ|Mc : (z, w) → (w, z) becomes

ρ: (x, y, ζ) → (x,−y, ζ).

We also have

τ1:x′ = −x+ xa(x, y, ζ), y′ = y + 2x+ xb(x, y, ζ), ζ ′ = ζ + xc(x, y, ζ).

with a(0) = b(0) = c(0) = 0. Note that τ2
1 = id implies a(x, y, ζ) =

xã(x, y, ζ).

Conversely, assume that a smooth holomorphic hypersurface C̃ is fixed
pointwise by both τ1, τ2 of M , which means that ρ(C) is fixed pointwise by τj
too. We may assume that M is given by (3.1). By linearizing τ1, one sees that
C̃ is the unique smooth holomorphic hypersurface fixed by τ1 pointwise and
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hence ρ(C̃) = C̃, and that C̃ is tangent to z1+w1 = 0. Put ζα = (zα+wα)/2,
so z1, w1, ζ form coordinates of M c and ρ becomes (z1, w1, ζ) → (w1, z1, ζ).
C̃ is the zero set of R = (R1 + iR2)(z1, w1, ζ) = z1 + w1 + O(2), where
Rj(z1, w1, ζ) are real when ζ2, . . . , ζn−1 are real and w1 = z1. Now ρ(C̃) = C̃

implies that (R1 − iR2)(z1, w1, ζ) = R ◦ ρ(z1, w1, ζ) vanishes on C̃, i.e.,
that (R1 − iR2)(z1, w1, ζ) is a multiple of R(z1, w1, ζ); equivalently, R2 is a
multiple of R1. Then

ω|Mc = uR1(z1, w1, ζ)dz1 ∧ dw1 ∧ dζ2 ∧ . . . ∧ dζn−1

with u(0) �= 0. Thus ω|M vanishes when R1(z1, z1, ζ) = 0, which defines a
smooth hypersurface in M .

In summary, we proved that the complex tangent points of M form a
codimension one set in M , if and only if τ1, τ2 fix the same complex hy-
persurface pointwise. In particular, when M has a non-degenerate complex
tangent at 0 and Re dz1∧· · ·∧dzn|M = 0, the zero set of dz1∧· · ·∧dzn|M =
iIm dz1 ∧ · · · ∧ dzn|M has codimension 1 in M .

Remark. — When the dimension of the set C of complex tangent points
is less than n−1, the zero set C̃ of ωMc is still a smooth complex hypersurface
in M c, τ1 fixes C̃ pointwise, and τ2 fixes ρ(C̃) pointwise. However, C̃ ∩ρ(C̃)
is a complex analytic variety of pure dimension n− 2. The map z → (z, z)
identifies the set of complex tangent of M with a real analytic subset of C̃.

Before we state the next result, we need the notion of invariant smooth
formal holomorphic hypersurfaces. By a smooth formal holomorphic hy-
persurface passing through 0 ∈ C

n, we mean an equation u = 0, where
u is a formal power series in z ∈ C

n with u(0) = 0 and du(0) �= 0. Two
such equations u = 0 and ũ = 0 are considered to be the same if ũ = vu
for some formal power series v. The formal hypersurface u = 0 is invari-
ant under a formal biholomorphic map F if F (0) = 0 and u ◦ F = au
for some formal power series a; we say that the hypersurface is fixed by F
pointwise, if F (T (t)) = T (t) for some (and hence for all) formal holomor-
phic map t = (t1, . . . , tn−1) → T (t) satisfying u ◦ T = 0, T (0) = 0, and
rankT ′(0) = n− 1.

Proposition 3.1. — Let M ⊂ C
n be a real analytic submanifold with a

parabolic complex tangent at the origin. Let {τ1, τ2, ρ} be the Moser-Webster
involutions on M c. Then the germ of the set C of complex tangent points
of M at the origin is of real dimension n − 1, if and only if τ1, τ2 fix the
same formal smooth hypersurface pointwise, in which case under suitable
holomorphic coordinates on M c we have
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τj :


x′ = −x+ xaj(x, y, ζ),
y′ = y + (−1)j−12x+ xbj(x, y, ζ), bj(0) = 0,
ζ ′ = ζ + xcj(x, y, ζ), cj(0) = 0, j = 1, 2,

τ2 = ρτ1ρ, ρ(x, y, ζ) = (x,−y, ζ).

Proof. — τ1 is holomorphically equivalent to (x, y, ζ) → (−x, y, ζ) and
the latter fixes pointwise a unique smooth formal hypersurface containing 0,
which is actually given by x = 0. Hence the unique smooth formal holomor-
phic hypersurface fixed by τ1 pointwise is actually given by a holomorphic
function. The same argument works for τ2 also. So both τj fix the same
smooth holomorphic hypersurface pointwise. From the argument given be-
fore the previous remark, we know that the set of complex tangent points
of M has dimension n− 1. �

Before we normalize τ1, τ2, ρ under semi-formal maps, we will deal with
the linear involutions first in next section by considering a more general
situation. The semi-formal normalization for the involutions is given in sec-
tion 5.

4. Normal forms of a pair of linear involutions

We will find two normal forms: one for pairs of linear involutions τ1, τ2
on C

n of which the indicator σ = τ2τ1 is not diagonalizable and the set of
fixed points of σ is a hyperplane, and the other for distinct linear involutions
τ1, τ2 such that τ2 = ρτ1ρ for some anti-holomorphic linear involution ρ and
the set of fixed points of σ is a hyperplane. We will show that the latter σ
is not diagonalizable either.

By assumption, the set of fixed points of σ is a hyperplane, and that σ
is not diagonalizable. So in suitable linear coordinates σ = σ̂:x′ = x, y′ =
y + 4x, ζ ′ = ζ with ζ ∈ C

n−2.

We want to further normalize τ2, τ1, while σ remains unchanged. Note
that x = 0 is the set of fixed points of σ. Hence τ1 preserves x = 0 and we
can write

τ1:


x′ = −δ0x, δ0 = ±1,
y′ = δy + b2x+ c2ζ,

ζ ′ = εζ + b3x+ c3y,

where cT2 , c3, b3 are column vectors and ε is a matrix. Since τ1σ = σ−1τ1,
the ζ-components say c3 = 0 and y-components say δ0 = δ. Since τ2

1 = id
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then
c2(δI + ε) = 0, ε2 = I, (ε− δI)b3 = 0.

Obviously, ζ → εζ is an involution. By choosing a linear transformation
(x, y, ζ) → (x, y, Sζ) we may assume that ε is a diagonal matrix with di-
agonal elements εj = ±1. Since (ε − δI)b3 = 0, we can choose b̃ such that
(δI + ε)̃b + b3 = 0. Putting S(x, y, ζ) = (x, y, ζ + b̃x), we obtain b3 = 0 for
S−1τ1S. Note that c2(δI + ε) = 0 implies that c2j = 0 when εj = δ. Let
ϕ2(x, y, ζ) = (x, y + (1− δb2

2 )x− δc2
2 ζ, ζ). We obtain b2 = 2δ and c2 = 0 for

ϕ−1
2 τ1ϕ2. In other words, by a possible permutation of ζ coordinates and by

possible splitting ζ into two sets of variables, denoted by (ζ, w) by an abuse
of notation, the pair {τ1, τ2} is normalized to

τ̂1:


x′ = −δx,
y′ = δy + 2δx,
ζ ′ = ζ,

w′ = −w,

τ̂2:


x′ = −δx,
y′ = δy − 2δx,
ζ ′ = ζ,

w′ = −w.

(4.1)

Assume now that τ1, τ2 are linear involutions and that τ2 = ρτ1ρ for
some anti-holomorphic linear involution ρ. We also assume that the set of
fixed points of σ = τ2τ1 is a hyperplane. Then σ is not diagonalizable.
Otherwise, in suitable linear coordinates we have σ: z → (εz1, z2, . . . , zn).
Note that detσ = det τ1 det τ2 = ±1 and σ �= id. Hence ε = −1. Now z1 = 0
is preserved by τ1, τ2, ρ. One may assume that the first component of ρ is
z1 → z1. The first component of τ1 is z1 → ±z1, since τ2

1 = id. So the first
component of σ is the identity, which is a contradiction.

We will normalize ρ, while τ1 = τ̂1, τ2 = τ̂2 remain unchanged at each
step of coordinate changes.

Consider the case δ = 1 first.

Since σ−1 = ρσρ = τ1στ1, then ρ, τ1 preserve the set of fixed points of
σ defined by x = 0. By a change of coordinates (x, y, ζ, w) → (cx, cy, ζ, w)
we may assume that the first component of ρ(x, y, ζ, w) is x. Restricting to
x = 0, we have τ1 = ρτ1ρ. Hence ρ preserves the eigen-spaces x = y = ζ = 0
and x = w = 0 of τ1|x=0. Thus we can write

ρ:


x′ = x,

y′ = µy + px+ qζ,

ζ ′ = sζ + s′x+ s̃y,

w′ = tw + t′x.
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Since tt = id, by a linear change of coordinates of the w-space, we may
assume that t = id. Thus ρ2 = id implies that t′ is pure-imaginary. Let
S(x, y, ζ, w) = (x, y, ζ, w + 1

2 t
′x). Then S preserves τj , and for ρ ≡ S−1ρS

we get t′ = 0. The y and ζ components of ρ2 = id produce

µµ+ qs̃ = 1, (4.2)

µp+ p+ qs′ = 0, (4.3)

µq + qs = 0, (4.4)

ss+ s̃ q = id, (4.5)

ss′ + s′ + s̃ p = 0, (4.6)

ss̃+ s̃ µ = 0. (4.7)

From ρτ2 = τ1ρ, we get

p = −µ− 1, (4.8)

s′ = −s̃. (4.9)

From (4.9), (4.2)-(4.3) we get µµ+µp+p = 1, and combining with (4.8)
yields µ = −1 and p = 0. Now (4.9) and (4.6)-(4.7) imply s′ = s̃ = 0. So
(4.5) becomes ss = id. We get s = id by a change of ζ-coordinates alone.
Now (4.4) says q = q. Put ϕ(x, y, ζ, w) = (x, y + 1

2qζ, ζ, w). Then ϕ−1ρϕ
becomes

ρ:x′ = x, y′ = −y, ζ ′ = ζ, w′ = w. (4.10)

Consider now the case δ = −1, by a reduction to δ = 1. Assume that
τ̃1, τ̃2 = ρ0τ̃1ρ0 are given by (4.1) with δ = −1, and that ρ0 is a linear
anti-holomorphic involution. Put L(x, y, ζ, w) = (x, y, w, ζ), and put L = id
when one of ζ, w is absent. Then τ̂j = −Lτ̃jL are given by (4.1) with δ = 1.
Still τ̂2 = Lρ0Lτ̂1Lρ0L. By the above argument there is a linear map K
such that KLρ0LK

−1 = ρ = LρL is given by (4.10) and Kτ̂jK
−1 is still

given by (4.1) with δ = 1. Then LKLτ̃jLK
−1L = τ̃j is given by (4.1) with

δ = −1 and LKLρ0(LKL)−1 = ρ.

In summary, we proved

Proposition 4.1. — Let τ1, τ2 be two linear involutions on C
n. Assume

that the set of fixed points of σ = τ2τ1 is a hyperplane. Then we have
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(i) if σ is not diagonalizable, there is a linear transformation ϕ such that
ϕτjϕ

−1 are given by

τ̂1:


x′ = −δx,
y′ = δy + 2δx,
ζ ′ = εζ,

τ̂2:


x′ = −δx,
y′ = δy − 2δx,
ζ ′ = εζ,

where δ = ±1 and ε = diag(ε2, . . . , εn−1) is a diagonal matrix with diagonal
elements εj = ±1;

(ii) if τ2 = ρ0τ1ρ
0 for some linear anti-holomorphic involution ρ0, then

ϕ can be chosen to satisfy (i) and ϕρ0ϕ−1 = ρ: (x, y, ζ) → (x,−y, ζ).

Remark. — δ = 1 if and only if the above τ̂1, τ̂2 have the same set of
fixed points. The same conclusion holds for τ1, τ2 below.

Corollary 4.2. — Let τ0
1 , τ

0
2 be a pair of holomorphic involutions on

C
n. Assume that the set of fixed points of σ = τ0

2 τ
0
1 is a smooth hypersurface,

and that σ′(0) is not diagonalizable. There exists a biholomorphic map ϕ
such that ϕτ0

j ϕ
−1 is given by

τj :


x′ = −δx+ xaj(x, y, ζ), aj(0) = 0,
y′ = δy + (−1)j−12δx+ xbj(x, y, ζ), bj(0) = 0,
ζ ′ = εζ + xcj(x, y, ζ), c(0) = 0, j = 1, 2,

(4.11)

where δ = ±1 and ε = diag(ε2, . . . , εn−1) with εj = ±1. If τ0
2 = ρτ0

1 ρ for
some anti-holomorphic involution ρ0, we can choose ϕ to satisfy
ϕρ0ϕ−1(x, y, ζ) = (x,−y, ζ) additionally.

Proof. — We first choose a linear map ϕ0 such that the linear parts of
τ̃j = ϕ0τ

0
j ϕ

−1
0 are given by (4.1). Choose a biholomorphic map ϕ1 with

ϕ′
1(0) = id, sending the set of fixed points of τ̃2τ̃1 into x = 0. Then τ∗j =

ϕ1τ̃jϕ
−1
1 preserves x = 0 and is tangent to τ̃j . Now ϕ2 = (id + τ̃ ′1(0)τ∗1 )/2

preserves x = 0 and hence linearizes τ∗1 |x=0 = τ∗2 |x=0 into τ̃ ′1(0)|x=0 =
τ̃ ′2(0)|x=0. Thus ϕ2τ

∗
j ϕ

−1
2 are given by (4.11).

Assume now that τ0
2 = ρ0τ0

1 ρ
0. Choose linear coordinates such that τ0

j

is tangent to (4.11) and ρ0 is tangent to ρ. The above argument shows that
there is a biholomorphic map tangent to the identity, sending τ0

j into (4.11).
So ρ0 is still tangent to ρ, and we may assume that τ0

j are given by (4.11). Let
ψ = (id+ρρ0)/2. Since ρ0 preserves x = 0, the set of fixed point of τ0

2 τ
0
1 , then

ψ preserves x = 0. Restricted on x = 0 we have τ0
j = τj , so the restrictions
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are linear. Hence ψτ0
j = (τ0

j + ρτ0
j+1ρ0)/2 = (τ0′

j (0) + ρτ0′
j+1(0)ρ0)/2 =

(τ0′
j (0) + τ0′

j (0)ρρ0)/2 = τ ′j(0)(id + ρρ0)/2 = τjψ. Thus ψτ0
j ψ

−1 are still of
the form (4.11), while ψρ0ψ−1 = ρ. �

Remark 4.3. — 1) Let τ1, τ2 be given by (4.11). Computing the Jacobian
matrix shows that the eigenvalues of τ2τ1 at its fixed point (0, y, ζ) are 1
and

[1 − δa2(0, δy, εζ)][1 − δa1(0, y, ζ)].

If δ = 1 and ε = id, a direct computation from the first component of τ2
j = id

shows that aj(0, y, ζ) = 0. This turns out to be crucial in the Voronin theory.
Note that for the real analytic manifolds with a parabolic tangent we do
have δ = 1 and ε = id.

2) If δ �= 1 or ε �= id the above non-trivial eigenvalue may not be con-
stant. In particular τ2τ1 is not formally linearizable. To see an example,
let φ(x, y, ζ) = (xb(y, ζ), y, ζ), where b is a holomorphic function vanishing
nowhere. Let τ1 = φτ̂1φ

−1 and τ2 = ρτ1ρ. The non-trivial eigenvalue is

b(−y, ζ)b(δy, εζ)
b(−δy, εζ)b(y, ζ)

,

which is not constant in general.

5. Semi-formal normalization

We will normalize pairs of involutions whose indicators fix a smooth
hypersurface pointwise. The arguments follow proofs in [11] and [10]. We
will give an averaging argument, which is also useful to construct Voronin’s
module functions of other linear symmetries.

We first normalize the composition τ2τ1 by semi-formal transformations.
The proof of next result is in [10], [11], when n = 2. We include the proof
for n � 2 for the convenience of the reader.

Proposition 5.1. — Let τ1, τ2 be holomorphic involutions given by
(4.11). Assume further that τ2τ1 has constant eigenvalue 1 along its set
of fixed points, if δ �= 1 or ε �= id. There exists a unique semi-formal map

Φ:


x′ = x+ xu(x, y, ζ),
y′ = y + v(x, y, ζ),
ζ ′ = ζ + w(x, y, ζ),

(5.1)

u(x, 0, ζ) = v(x, 0, ζ) = w(x, 0, ζ) = 0, (5.2)
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(v(x, y, ζ), w(x, y, ζ)) = O(|(x, y, ζ)|2) (5.3)

such that
Φ−1τ2τ1Φ = σ̂:x′ = x, y′ = y + 4x, ζ ′ = ζ.

If τ2 = ρτ1ρ for ρ: (x, y, ζ) = (x,−y, ζ), the unique Φ satisfies Φ = ρΦρ.

Proof. — As we remarked at the end of last section, our assumptions
mean that τ2τ1 has constant eigenvalue 1 at its fixed points (given by x = 0).
Therefore, we can write

σ = τ2τ1:


x′ = x+ x2p(x, y, ζ),
y′ = y + 4x+ xq(x, y, ζ), q(0) = 0,
ζ ′ = ζ + xr(x, y, ζ), r(0) = 0.

For Φ−1σΦ = σ̂ we need

u(x, y + 4x, ζ) − u(x, y, ζ) = x(1 + u(x, y, ζ))2pΦ(x, y, ζ),
v(x, y + 4x, ζ) − v(x, y, ζ) = x(4u(x, y, ζ) + (5.4)

(1 + u(x, y, ζ))qΦ(x, y, ζ)),
w(x, y + 4x, ζ) − w(x, y, ζ) = x(1 + u(x, y, ζ))rΦ(x, y, ζ).

Let uk, vk and wαk be coefficients of expansions of u(x, y, ζ), v(x, y, ζ) and
wα(x, y, ζ) in x variable, respectively. Comparing the coefficients of x1 in
5.4, we obtain

4
∂u0

∂y
= (1 + u0)2p0(y + v0, ζ + w0),

4
∂v0

∂y
= 4u0 + (1 + u0)q0(y + v0, ζ + w0),

4
∂w0

∂y
= (1 + u0)r0(y + v0, ζ + w0).

Let u0, v0, w0 be the unique set of solutions satisfying u0(0, ζ) = v0(0, ζ) =
w0(0, ζ) = 0. For k > 0 comparing coefficients of xk+1 in (5.4) yields

4


∂uk

∂y
∂vk

∂y
∂wk

∂y

 =

 2p0 p0y p0ζ

4 + q0 q0y q0ζ
r0 r0y r0ζ

 (y + v0, ζ + w0) ·

 uk
vk
wk

 + · · · ,

where the omitted terms are polynomials in uj(y, ζ), vj(y, ζ), wj(y, ζ)
(j < k) and partial derivatives of pj , qj , rj of order less than k evaluated
at (y + v0(y, ζ), ζ + w0(y, ζ)). One readily sees that there are unique so-
lutions uk, vk, wk that are holomorphic on ∆n−1

δ and vanish for y = 0.
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Since ρσρ = σ−1, then ρΦρ linearizes σ. We have ρΦρ(x, y, ζ) = (x +
xu(x,−y, ζ), y− v(x,−y, ζ), ζ +w(x,−y, ζ)). By the uniqueness of the solu-
tions uk, vk, wk under the conditions u(x, 0, ζ) = v(x, 0, ζ) = w(x, 0, ζ) = 0,
we get ρΦρ = Φ. �

Remark. — The above proof is valid if σ, not necessary a composition
of a pair of involutions, has the form

(x, y, ζ) → (x+ x2p(x, y, ζ), y + 4x+ xq(x, y, ζ), ζ + xr(x, y, ζ))

with q(0) = 0 = r(0).

Having normalized the composition τ2τ1, we now normalize the actual
pair τ1, τ2 = ρτ1ρ.

Corollary 5.2. — Let τ1, τ2 and Φ be as in 5.1. There is a semi-formal
map

Ψ:


x′ = x+ xu(x, ζ), u(0) = 0
y′ = y + yu(x, ζ) + v(x, ζ), v = O(2)
ζ ′ = ζ + w(x, ζ), w = O(2)

such that Ψ−1Φ−1τjΦΨ are equal to

τ̂j : (x, y, ζ) → (−δx, δy + (−1)j−12δx, εζ), j = 1, 2.

If τ2 = ρτ1ρ for ρ(x, y, ζ) = (x,−y, ζ), the ΦΨ commutes with ρ.

Proof. — We prove it by an averaging argument.
Let Φ be as in Proposition 5.1. Then Φ preserves x = 0 and Φ = id +

O(2). Put τ̃j = Φ−1τjΦ = τ̂j + O(2). Note that τ̃2τ̃1 = τ̂2τ̂1 implies that

Ψ−1 def==(id+ τ̂1τ̃1)/2 = (id+ τ̂2τ̃2)/2. Since τ̂j are linear, we have τ̂jΨ−1τ̃j =
Ψ−1.

We now assume that τ2 = ρτ1ρ with ρ(x, y, ζ) = (x,−y, ζ). Let Φ = ρΦρ
be as in Proposition 5.1. We have ρτ̃1 = τ̃2ρ. Let Ψ be as above. Then
ρΨ−1 = (ρ+ ρτ̂1τ̃1)/2 = (ρ+ τ̂2τ̃2ρ)/2 = Ψ−1ρ.

To show that the above Ψ = id+O(2) has the desired form, we recall that
Φ, τj preserve x = 0. This shows that τ̃j and hence Ψ preserves x = 0 too.
Now Ψσ̂ = σ̂Ψ implies that the x, ζ components of Ψ are independent of y.
One can also verify that the y-component of Ψ has the above form. �

It is a fundamental theorem of Voronin that there exists a biholomorphic
map H on a sectorial domain such that H is asymptotic to Φ and Hτ2τ1H

−1

is linear (see section 10). Moreover, it is easy to normalize the pair τ1, τ2 on
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sector when τ2τ1 is already linear. See Proposition 7.1 in section 7. For the
moment, we will realize Ψ as an asymptotic expansion of a biholomorphic
map H on sectors by the Borel-Ritt theorem. We will require that the
holomorphic map preserves σ̂ for later purpose.

Let Ψ be as in Corollary 5.2. So

Ψ(x, y, ζ) = (x+ xu(x, ζ), y + yu(x, ζ) + v(x, ζ), ζ + w(x, ζ)),

where the formal power series expansions of u, v, w in x have coefficients
uk(ζ), vk(ζ), wk(ζ) which are holomorphic and bounded in a neighborhood
W of 0 ∈ C

n−2. Moreover u = O(1), v = O(2) and w = O(2). Let V be any
bounded sectorial domain with opening less than 2π. Fix a square root

√
x

on V and choose µ with |µ| = 1 so that eµ/
√
x tends to zero as x → 0 in V .

Then |1 − ecµ/
√
x| � c/|√x| for c > 0. Let ck be a positive sequence such

that ck sup |uk(ζ)| < 1. Then ũ ∼ u on V ×W . Construct ṽ, w̃ analogously
such that ṽ ∼ v and w̃ ∼ w on V ×W . Put

H:


x′ = x+ xũ(x, ζ),
y′ = y + yũ(x, ζ) + ṽ(x, ζ),
ζ ′ = ζ + w̃(x, ζ).

Then the semi-formal map Ψ in Corollary 5.2 is asymptotic to H and
H−1σ̂H = σ̂. We get the following.

Proposition 5.3. — Let Ψ be the semi-formal map given by Corol-
lary 5.2. Let 0 < β−α < 2π, and ε > 0 be small. There exists a biholomor-
phic map H = σ̂Hσ̂−1 such that H is asymptotic to Ψ on Vα,β,ε × ∆n−1

ε .

Next proposition gives a uniqueness condition on the semi-formal map
ΦΨ. However, Corollary 5.2 suffices for our further discussions.

Proposition 5.4. — Let τ1, τ2 be holomorphic involutions given by (4.11).
Assume further that τ2τ1 has constant eigenvalue 1 along its set of fixed
points, if δ �= 1 or ε �= id. There is a unique semi-formal map of the form

Φ:


x′ = x+ xu(x, y, ζ),
y′ = y + v(x, y, ζ),
ζ ′ = ζ + w(x, y, ζ),

u(0, 0, εζ) = −u(0, 0, ζ), v(0, 0, ζ) = w(0, 0, ζ) = 0, (5.5)
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u(x, 0, ζ) = −u(−δx, 0, εζ), v(−δx, 0, εζ) = −δv(x, 0, ζ),
w(−δx, 0, εζ) = −εw(x, 0, ζ) (5.6)

so that

ΦτjΦ−1 = τ̂j : (x, y, ζ) → (−δx, δy + (−1)j−12δx, εζ), j = 1, 2.

If τ2 = ρτ1ρ for ρ(x, y, ζ) = (x,−y, ζ), the unique Φ satisfies Φ = ρΦρ.

Proof. — We will adapt a proof in [11] to the semi-formal case. By
Proposition 5.1, there is Φ0 such that Φ−1

0 τ2τ1Φ0 = σ̂. Note that the nor-
malizing condition on Φ0, given in Proposition 5.1, is equivalent to that
Φ0 is tangent to the identify, preserves x = 0, and is the identity when
restricted to y = 0. In particular the inverse of Φ0 satisfies the normal-
izing condition also. The new normalizing conditions (5.5)-(5.6) is about
the map (x, ζ) → Φ(x, 0, ζ). Consequently, Φ satisfies the new normaliz-
ing condition if and only if ΦΦ−1

0 satisfies the same normalizing conditions.
Therefore, we may assume that τ2τ1 = σ̂. Then Φ must have the form
x′ = xp(x, ζ), y′ = yp(x, ζ) + q(x, ζ), ζ ′ = r(x, ζ).

Write τj = τ̂j +Hj . Since τ2τ1 = σ̂ = τ̂2τ̂1 and τ̂j are linear, then

τ̂2 ◦H1 +H2 ◦ τ1 = 0 = τ̂1 ◦H2 +H1 ◦ τ2.

Hence σ̂H1σ̂ = H1, i.e.,

H1(x, y, ζ) = (xa(x, ζ),−ya(x, ζ) + xb(x, ζ), xc(x, ζ)).

First we want to find a sequence of maps φk(x, y, ζ) = (x(1+pk(ζ)), y(1+
pk(ζ)), ζ), where pk(ζ) is a homogeneous polynomial of degree k in ζ, such
that the x-component of Tk+1 = φkTkφ

−1
k , denoted by −δx + xak+1(ζ) +

O(|x|2), satisfies ak+1(ζ) = O(|ζ|k+1). Moreover pk are uniquely deter-
mined, if φk ◦ · · · ◦ φ1(x, y, ζ) = (x(1 + ck(ζ)), y(1 + ck(ζ)), ζ) satisfies
ck(εζ) = −ck(ζ) + O(|ζ|k+1). We prove by induction. The assertion is
trivial for k = 0 (with p0 ≡ 0), since the linear part of T0 is tangent to
τ̂1. Assume that pk−1(ζ), k � 1, has been uniquely determined. Now the
x-component of T 2

k = id implies that (1 − δak(ζ))(1 − δak(εζ)) = 1, in
particular, ak(εζ) = −ak(ζ) + O(|ζ|k+1). The x-component of φkTkφ−1

k is
−δx+x[δpk(ζ)− δpk(εζ) + ak(ζ) +O(|ζ|k+1)] +O(|x|2). On the other hand
ck+1(ζ) = ck(ζ) + pk(ζ) +O(|ζ|k+1). Thus we need to solve the equations

pk(εζ) + ck(εζ) = −pk(ζ) − ck(ζ) +O(|ζ|k+1),

pk(ζ) − pk(εζ) + δak(ζ) = O(|ζ|k+1),

which admits a unique solution pk(ζ) because ak(ζ) + ak(εζ) = O(|ζ|k+1).
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To show the convergence of formal map

Φ0 = lim
k→∞

φk ◦ · · · ◦ φ1: (x, y, ζ) → (x(1 + p(ζ)), y(1 + p(ζ)), ζ),

we look at the x-components of Φ0T0Φ−1
0 = T∞ = limk→∞ Tk. The latter is

δx+O(|x|2), and we get

1 + p(εζ)
1 + p(ζ)

(1 − δa(0, ζ)) = 1.

Hence p(εζ)−p(ζ) = δa(0, ζ)+δp(εζ)a(0, ζ). Since p(ζ) =
∑

pαζ
α satis-

fies pα = 0 for εα = 1, then |pα| � p∗α if
∑

p∗αζ
α = p∗ satisfies 2p∗ = a∗0+p

∗a∗0
with a∗(ζ) =

∑ |a0,α|ζα. This shows that Φ0 is convergent.

Set T0 = Φ0τ1Φ−1
0 . Next, we want to find a sequence of semi-formal

maps

Φk:


x′ = x+ uk(ζ)xk+1,

y′ = y + yuk(ζ)xk + vk(ζ)xk,

ζ ′ = ζ + wk(ζ)xk

such that Tk = ΦkTk−1Φ−1
k have the form

Tk:


x′ = −δx+ xk+2Ak(x, ζ),

y′ = δy + 2δx− yxk+1Ak(x, ζ) + xk+1Bk(x, ζ),

ζ ′ = εζ + xk+1Ck(x, ζ)

(5.7)

and Φ̃k = Φk · · ·Φ2Φ1Φ0 have the form

Φ̃k:


x′ = x+ xũk(x, ζ),
y′ = y + yũk(x, ζ) + ṽk(x, ζ),
ζ ′ = ζ + w̃k(x, ζ),

ũk,0,L = 0, if εL = 1; ṽk,0,L = w̃k,0,L = 0, (5.8)
ũk,j,L = 0, if (−δ)jεL = 1 and 1 � j � k,

ṽk,j,L = 0, if (−δ)j−1εL = −1 and 1 � j � k,

w̃k,α,j,L = 0, if (−δ)jεL = εα and 1 � j � k,

(5.9)

where εL = εl21 · · · εln−1
n−1 for L = (l2, . . . , ln−1).

To achieve (5.7) and (5.9), we apply induction on k. Assume that we
have chosen Φk−1. We need to find Φk such that (5.7) and (5.9) hold. We
have
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Φ−1
k :


x′ = x− uk(ζ)xk+1 +O(|x|k+2),

y′ = y − yuk(ζ)xk − vk(ζ)xk +O(|x|k+1),

ζ ′ = ζ − wk(ζ)xk +O(|x|k+1).

Tk = ΦkTk−1Φ−1
k has the form

x′ = −δx+ xk+1(Ak−1(x, ζ) + δuk(ζ) + (−δ)k+1uk(εζ))
+O(|x|k+2),

y′ = δy + 2δx− yxk(Ak−1(x, ζ) + δuk(ζ) + (−δ)k+1uk(εζ))

+xk(Bk−1(x, ζ) − δvk(ζ) + (−δ)kvk(εζ)) +O(|x|k+1),

ζ ′ = εζ + xk(Ck−1(x, ζ) − εwk(ζ) + (−δ)kwk(εζ)) +O(|x|k+1),

which yields (5.7), provided
Ak−1(0, ζ) + δuk(ζ) + (−δ)k+1uk(εζ) = 0,

Bk−1(0, ζ) − δvk(ζ) + (−δ)kvk(εζ) = 0,

Ck−1(0, ζ) − εwk(ζ) + (−δ)kwk(εζ) = 0.

The above equations are solvable, since T 2
k−1 = id implies that

Ak−1(0, ζ) = −(−δ)kAk−1(0, εζ), Bk−1(0, ζ) = (−δ)k−1Bk−1(0, εζ),

εCk−1(0, ζ) = −(−δ)kCk−1(0, εζ).

We also have

Φ̃k = ΦkΦ̃k−1:


x′ = x+ xũk(x, ζ),
y′ = y + yũk(x, ζ) + ṽk(x, ζ),
ζ ′ = ζ + w̃k(x, ζ),

ũk(x, ζ) = ũk−1(x, ζ) + uk(ζ)xk +O(|x|k+1),

ṽk(x, ζ) = ṽk−1(x, ζ) + vk(ζ)xk +O(|x|k+1),

w̃k(x, ζ) = w̃k−1(x, ζ) + wk(ζ)xk +O(|x|k+1).

In particular
ũk(0, ζ) = ũk−1,k(0, ζ) + uk(ζ),

ṽk(0, ζ) = ṽk−1,k(0, ζ) + vk(ζ),

w̃k(0, ζ) = w̃k−1,k(0, ζ) + wk(ζ).
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This shows that there exist unique uk, vk, wk such that (5.7) and (5.9)
hold. More specifically, the solution is given by

uk(ζ) = −
∑

(−δ)kεL �=1

Ak−1,0,L

δ + (−δ)k+1εL
ζL −

∑
(−δ)kεL=1

ũk−1,k,Lζ
L,

vk(ζ) =
∑

(−δ)k−1εL �=−1

Bk−1,0,L

δ − (−δ)kεL ζ
L −

∑
(−δ)k−1εL=−1

ṽk−1,k,Lζ
L,

wk,α(ζ) =
∑

εα �=(−δ)kεL

Ck−1,α,0,L

εα − (−δ)kεL ζ
L −

∑
εα=(−δ)kεL

w̃k−1,α,k,Lζ
L.

The above formulae also say that if Ak−1(0, ζ), Bk−1(0, ζ), Ck−1(0, ζ),
uk−1(ζ), vk−1(ζ) and wk−1(ζ) are holomorphic on ∆n−2

r , then uk(ζ), vk(ζ),
wk(ζ) are holomorphic on the same polydisc.

We now assume that τ2 = ρτ1ρ with ρ(x, y, ζ) = (x,−y, ζ). Here we
take τ̂1(x, y, ζ) = (−δx, δy + 2δx, εζ). Then σ̂ = τ̂2τ̂1 and τ̂2 = ρτ̂1ρ. Note
that ρΦρ still normalizes τj and satisfies the normalizing condition. By the
uniqueness of Φ we obtain ρΦρ = ρ. �

We should remark that the normalized maps, i.e, the maps Φ satisfying
(5.5)-(5.6), do not form a (pseudo)group, even when δ = 1 and ε = id.

6. Realization of pairs of involutions and holomorphic n-forms

Let τ1, τ2 = ρτ1ρ be the pair of involutions generated by a real analytic
n-submanifold M ⊂ C

n with a parabolic complex tangent at 0. Recall that
τ1 is defined on M c ⊂ C

n × C
n � (z, w) and preserves the holomorphic

n-form ω = dz1 ∧ · · · ∧ dzn, while τ2 preserves the holomorphic n-form
ω2 = dw1 ∧ · · · ∧ dwn = ρ∗ω. When M satisfies Reω|M = 0, we have
ω = −ω2 and hence both τ1 and τ2 preserve ω.

Let L be the set of real analytic n dimensional submanifolds M ⊂ C
n

which have non-degenerate (parabolic) complex tangent point at 0 and sat-
isfy Redz1∧· · ·∧dzn|M = 0. Note that we have proved in section 3 that the
set of complex tangent points of M has real dimension n−1. Write M ∼ M̃
if they are equivalent by a biholomorphic map f preserving dz1 ∧ · · · ∧ dzn.

Next, we adapt the Moser-Webster involutions to the classification of L.

Consider the set L∗ of the following data {τ1, τ2, ρ, ω}: (i) ρ is an anti-
holomorphic involution, and τ1, τ2 = ρτ1ρ are a pair of holomorphic involu-
tions on C

n fixing the same smooth holomorphic hypersurface N pointwise.
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(ii) (τ2τ1)′(0) �= id. (iii) ω = Adw1∧dz1∧dz2∧· · ·∧dzn−1 is a holomorphic n
form on C

n vanishing on N to first order (i.e. A = 0 on N and dA �= 0) and
τ∗j ω = ω = −ρ∗ω, where z1, w1, z2, . . . , zn−1 are holomorphic coordinates
of C

n.

Write {τ1, τ2, ρ, ω} ∼ {τ̃1, τ̃2, ρ̃, ω̃} if there is a biholomorphic map f
satisfying τ̃j = fτjf

−1, ρ̃ = fρf−1, and f∗ω̃ = ω.

Note that by Proposition 4.1 the linear parts of τ1, τ2, ρ are equivalent to

τ̂1(x, y, ζ) = (−x, y + 2x, ζ), τ̂2 = ρτ̂1ρ, ρ(x, y, ζ) = (x,−y, ζ). (6.1)

(δ in Proposition 4.1 equals 1, since the above (i) (ii) imply that τ ′1(0), τ ′2(0)
have the same set of fixed points which is a hyperplane.) We may of course
assume that the ρ is of the above form by linearizing ρ first.

Proposition 6.1. — Let M, M̃ ∈ L. Then M ∼ M̃ if and only if the
corresponding {τ1, τ2, ρ, ω} are equivalent. Each {τ1, τ2, ρ, ω} ∈ L∗ is equiv-
alent to one arising from some M ∈ L.

Proof. — It is clear that if M, M̃ are equivalent by f preserving ω then
the restriction of (z, w) → (f(z), f(w)) to M c transforms the involutions
τj , ρ and ω of M c to those of M̃ c. Conversely, if F transforms the involutions
τj , ρ and n-form ω of M c to those of M̃ c. Let π1 be the projection (z, w) → z.
Then f = π1Fπ

−1
1 is well-defined and F (z, w) = (f(z), f(w)) on M c. Since

F transforms M c into M̃ c then f transforms M into M̃ . Obviously f is a
biholomorphism since F is, and f preserves dz1 ∧ · · · ∧ dzn.

We need to show the realization. Assume that τ1, τ2 = ρτ1ρ, with
(τ2τ1)′(0) �= id, are holomorphic involutions on C

n and that the common
fixed point set of τj is a smooth hypersurface N . We also assume that ω =
a(x, y, ζ)dx∧dy∧dζ2∧· · ·∧dζn−1 with a|N = 0 and da �= 0 is a holomorphic
n-form satisfying τ∗j ω = ω and ρ∗ω = −ω. We shall find an n-dimensional
real analytic manifold M in C

n, and a biholomorphic map ϕ: Cn → M c such
that ϕ−1ρϕ = ρ0 is the restriction of (z, w) → (w, z) on M c, and ϕ−1τjϕ
are the involutions on M c generated by M , and ϕ∗ω = dz1 ∧ . . . ∧ dzn|Mc .

By Proposition 4.1, we may also assume that the linear parts of τ1, τ2, ρ
are given by (6.1). By averaging, we may assume that ρ(x, y, ζ) = (x,−y, ζ).
Let ξ1 = x+y

2 , η1 = x−y
2 . Then ρ(ξ1, η1, ζ) = (η1, ξ1, ζ) and τ1(ξ1, η1, ζ) =

(ξ1,−η1 − 2ξ1, ζ) +O(2). Let

p1 =
1
2
(ξ1 + ξ1 ◦ τ1(ξ1, η1, ζ)) = ξ1 +O(2),

pα =
1
2
(ζα + ζα ◦ τ1(ξ1, η1, ζ)) = ζα +O(2),
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pn = η1 ◦ τ1(ξ1, η1, ζ) · η1 = −2ξ1η1 − η2
1 +O(3).

By linearizing τ1 alone, one can see that any holomorphic function that
is invariant under τ1 is a holomorphic function in p1, . . . , pn−1, pn. Further-
more, τ∗1ω = ω implies that ω = dp1 ∧ · · · ∧ dpn−1 ∧ dA(p1, · · · , pn−1, pn)
with A(p1, . . . , pn−1, 0) = 0. Define M ⊂ C

n by equations

zj = pj(ξ1, ξ1, t), 1 � j < n, zn = A(p1, . . . , pn−1, pn)(ξ1, ξ1, t)

with ξ1 ∈ C, t ∈ R
n−2. Since ∂A

∂pn
(0) �= 0, looking at the leading terms we

see that M is smooth and of dimension n. The complexification M c is then
parameterized by

zj = pj(ξ1, η1, T ), 1 � j < n, zn = A(p1, . . . , pn−1, pn)(ξ1, η1, T ),

wj = pj(η1, ξ1, T ), 1 � j < n, wn = A(p1, . . . , pn−1, pn)(η1, ξ1, T )

with (ξ1, η1) ∈ C
2, T ∈ C

n−2.

Obviously, M has a parabolic complex tangent at the origin, by looking
at the above expansions of pj and by using A = 0 for pn = 0 and ∂A

∂pn
�= 0.

Since p1, · · ·, pn−1, pn are invariant by τ1, then τ1 is the unique non-trivial
branched covering transformation of π:M c → C

n. Thus τ1, τ2 = ρτ1ρ are
the involution associated to M .

It is clear that ω = dp1 ∧ · · · ∧ dpn−1 ∧ dA(p1, · · · , pn−1, pn) is the com-
plexification of dz1 ∧ · · · ∧ dzn|M in M c.

Since ρ∗ω = −ω and ρ|M = id, it follows that Re dz1 ∧ · · · ∧ dzn|M = 0.
Note that the condition ρω = −ω (and τ∗2ω = ω) is used only at the last
step. �

We now consider the set V∗ of the following data {τ1, τ2, ρ, ω}, where
τ1, τ2 = ρτ1ρ, τ ′1(0) �= τ ′2(0), are holomorphic involutions on C

n, ρ is an
anti-holomorphic involution, and ω = Adx ∧ dy ∧ dζ2 · · · ∧ dζn−1 is a holo-
morphic n-form on C

n. Moreover, τ1, τ2 fix the same smooth holomorphic
hypersurface N pointwise, A vanishes to order 1 along N and τ∗1ω = ω.
Note that the latter implies that τ∗2 ρ

∗ω = ρ∗ω, which is, however, not a
constant multiple of ω in general.

Write {τ1, τ2, ρ, ω} ∼ {τ̃1, τ̃2, ρ̃, ω̃} if there is a biholomorphic map f
satisfying τ̃j = fτjf

−1, ρ̃ = fρf−1, and f∗ω̃ = ω.

Let V be the set of real analytic n dimensional submanifolds M ⊂ C
n

which have non-degenerate (parabolic) complex tangent points on a smooth

– 25 –



Patrick Ahern and Xianghong Gong

hypersurface in M . Write M ∼ M̃ if they are equivalent by a biholomorphic
map f preserving dz1 ∧ · · · ∧ dzn.

Dropping the last paragraph in the proof of the above proposition, we
have

Proposition 6.2. — Let M, M̃ ∈ V. Then M ∼ M̃ if and only if the
corresponding {τ1, τ2, ρ, ω} are equivalent. Each {τ1, τ2, ρ, ω} ∈ V∗ is equiv-
alent to one arising from some M ∈ V.

The above classification problem is of course interests in its own right.
We are unable to solve it in general in this paper. Nevertheless, we have
the following formal normal form, when n = 2 and ω is invariant under τ1
and τ2.

Proposition 6.3. — Let τ1, τ2 = ρ0τ1ρ0 be two holomorphic involutions
with ρ0 an anti-holomorphic involution on C

2. Let ω0 = xα(x, y)dx ∧ dy
with α(0) �= 0 be a holomorphic 2-form. Assume that τ1, τ2 fix x = 0
pointwise, τ ′1(0) �= τ ′2(0) and ω0 = τ∗j ω0 for j = 1, 2. There is a semi-formal
transformation ϕ satisfying

τ̂j = ϕ−1τjϕ: (x, y) → (−x, y + (−1)j−12x),

ρ = ϕ−1ρ0ϕ: (x, y) → (x,−y),

ω = ϕ∗ω0 = eiθ(x
2)xdx ∧ dy,

in which θ(x) = θ(x) with θ(0) ∈ [0, π) is unique.

Proof. — By Proposition 5.1, we can choose a semi-formal map ϕ0, which
transforms τj , ρ0 into the above τ̂j , ρ and transforms ω0 into ω1. Then any
semi-formal map ϕ1 preserving τ̂j , ρ must have the form

ϕ1: (x, y) → (xa(x), ya(x) + b(x)),

a(x) = a(x) �= 0, b(x) = −b(x).

Since σ̂∗ω1 = ω1 then ω1 = r̃(x)eiθ̃(x)xdx ∧ dy. Since τ̂∗1ω1 = ω1, then r̃, θ̃
are even formal power series. Write

ω1 = r(x2)eiθ(x
2)xdx ∧ dy,

r(x) = r(x) �= 0, θ(x) = θ(x), θ(0) ∈ [0, π).

The identity ϕ∗
1ω = ω1 is equivalent to

xa2(x)a′(x) + a3(x) = r(x2).
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Note that if a(x) = a0 +
∑
j<k/2 a2jx

2j + akx
k +O(k+ 1) and k is odd,

then the coefficient of xk of xa2(x)a′(x)+a3(x) is (k+3)a2
0ak, which must be

zero. Hence a must be even in x. For a(x) = [A(x2)]1/3, the above equation
becomes 2

3xA
′(x) +A(x) = r(x), which admits a unique solution A.

After ω1 is normalized to ω, the maps that preserve the form of ω are
given by (x, y) → (x, y+ b(x)) and they preserve ω. This shows the unique-
ness of θ. �

We can also prove the following by an averaging argument.

Proposition 6.4. — Let τ1, τ2, ρ0, ω0 be as in Proposition 6.3. If τ2τ1
is holomorphically linearizable, there exists a holomorphic map normalizing
τ1, τ2, ρ0 and ω0 simultaneously.

Proof. — We normalize τ1, τ2, ρ0 first by averaging. We may assume that
τ2τ1 is the linear map σ̂. By a linear transformation, we may assume by
Proposition 4.1 that τj , ρ0 are tangent to τ̂j , ρ respectively (for n = 2). Then
ρ0 reverses σ̂. Define g1 = (id + ρρ0)/2. Then g1σ̂ = σ̂g1 and g1ρ0 = ρg1.
So for τ̃j = g1τjg

−1
1 , we still have that τ̃2τ̃1 = σ̂ and τ̃1 reverses σ̂. Put

g2 = (id+ τ̂1τ̃1)/2. Then τ̂1g2 = g2τ̃1 and σ̂g2 = g2σ̂, and hence τ̂2g2 = g2τ̃2.
Also ρg2 = (ρ + τ̂2τ̃2ρ)/2 = g2ρ. We have therefore linearized τ1, τ2 and ρ0

by a convergent map. From now on we assume that τ1, τ2 and ρ0 are linear.

We now look at the holomorphic n-form ω0 = ω1. One readily sees that
the a in the proof of Proposition 6.3 is convergent, when r is convergent.
Using the a, we normalize the holomorphic n-form. �

The above proposition, when θ is constant, is due to Webster[11]. We
should mention that the above proposition does not mean that the equiv-
alence class of τ1, τ2, ρ0, ω0 is determined by the holomorphic equivalence
class of the indicator τ2τ1, as shown by Theorem 2.2.

We conclude this section by recalling a result of Moser-Webster, which
is needed to classifying real analytic manifolds that are formally equivalent
to the quadric.

Let C be the set of real analytic n-manifolds M in C
n such that M

has a parabolic complex tangent at 0 and its set of complex tangents is a
hypersurface in M . Let C/∼ be the set of holomorphic equivalence classes.

Let C∗ be the set of {τ1, τ2, ρ} satisfying the following: ρ is an anti-
holomorphic involution and τ1, τ2 = ρτ1ρ are holomorphic involutions on
C
n. τ1 and τ2 fix pointwise the same hypersurface, and (τ2τ1)′(0) �= id. We

say that {τ1, τ2, ρ}, {τ̃1, τ̃2, ρ̃} ∈ C∗ are equivalent if there is a biholomorphic
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map g such that gτjg−1 = τ̃j and gρg−1 = ρ̃. Denote by C∗/∼ the set of
equivalence classes.

We now recall the following result of Moser and Webster[8]:

Proposition 6.5. — There is a one-to-one correspondence between C/∼
and C∗/∼.

7. Moduli spaces without volume-form - first half of Theorem 2.1

We will first recall the moduli space of Voronin [10] on holomorphic
mappings that have

σ:x′ = x+ x2a(x, y, ζ), y′ = y + 4x+ xb(x, y, ζ), ζ ′ = ζ + xc(x, y, ζ) (7.1)

with ζ ∈ C
n−2, b(0) = cj(0) = 0. This moduli space will be adapted to our

classification problems.

Semi-formal maps and asymptotic expansions. Recall from the intro-
duction that a power series h(x, y, ζ) =

∑
k�0 hj(y, ζ)x

j is called semi-formal
in x, if all hj are holomorphic in (y, ζ) ∈ C×C

n−2 on some fixed neighbor-
hood W of the origin. Given two semi-formal maps F,G from C

n to itself,
the composition F ◦G is a well-defined semi-formal map, when G preserves
x = 0.

Recall that S = V × W is a sectorial domain, if V is a sector of the
form Vα,β,ε = {x: arg x ∈ (α, β), 0 < |x| < ε} and W is a neighborhood
of the origin in C

n−1. A semi-formal function G is called an asymptotic
expansion of a holomorphic function g on V × W , denoted by g ∼ G on
V ×W , if G(x, y, ζ) =

∑∞
k=0 Gk(y, ζ)x

k with all Gk being holomorphic on
some neighborhood W̃ of the origin and if

lim
V �x→0

|x|−N
∣∣∣g(x, y, ζ) − N∑

k=0

Gk(y, ζ)xk
∣∣∣ = 0

uniformly on W̃ for each N . Analogously, we say that a semi-formal map Φ
is asymptotic to a holomorphic map H on V ×W , if each component of Φ
is asymptotic to the corresponding component of H.

Semi-formal or sectorial normalizations. A semi-formal map Φ(x, y, ζ) =
(x + xu(x, y, ζ), y + v(x, y, ζ), ζ + w(x, y, ζ)) is normalized if it satisfies the
normalizing condition

u(x, 0, ζ) = v(x, 0, ζ) = w(x, 0, ζ) = 0.
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The normalized semi-formal maps form a (pseudo)group. By Proposition 5.1
(and its remark) there is a unique normalized semi-formal map Φ such that

σ̂ = Φ−1σΦ:x′ = x, y′ = y + 4x, ζ ′ = ζ.

Note that a semi-formal map Ψ commutes with σ̂, if and only if

Ψ:x′ = xã(x, ζ), y′ = yã(x, ζ) + b(x, ζ), ζ ′ = c(x, ζ).

Let σ be given by (7.1), and Φ be the above unique normalized semi-
formal map satisfying Φ−1σΦ = σ̂. Voronin [10] shows that for any α < β
< α+π if r > 0 is sufficiently small there is a biholomorphic map H, defined
on S = {x:α < arg x < β, |x| < r} × ∆n−1

r such that H−1σH = σ̂, while
H ∼ Φ on S.

Voronin [10] proved the result on H1 for n = 2. The same proof can be
modified easily for n > 2 (see section 10).

We need to choose the position of sectors so that no further condition is
imposed on the individual sectorial transformation H even in the presence
of the reality condition ρg = gρ, which is required to normalize σ = τ2τ1.
We should emphasize that such an arrangement may not be necessary, for
the Voronin normalizing maps Hj can always be chosen to preserve ρ, by a
possible averaging when a sector is invariant under ρ. Indeed, if σ commutes
with anti-holomorphic involution ρ and V1 is invariant under ρ, Voronin [10]
constructed directly an H1 that commutes with ρ. We are in the case that σ
is reversed by ρ and it is not clear that such an H1 can be obtained directly
from Voronin’s construction.

Proposition 7.1. — Let S1 = {x:−ε < arg x < π/2 + ε, |x| < r} ×
∆n−1
r , and Sj = i1−jS1. Let τ1, τ2 be holomorphic involutions given by

Proposition 5.1, and let σ = τ2τ1. Let µ = δε2 · · · εn−1, where εj are as
in (4.11). For each 0 < ε < π/4 there exist r > 0 and holomorphic maps Hj
on Sj∪ σ̂(Sj) such that Hj admit the same asymptotic expansion Φ of semi-
formal map on Sj ∪ σ̂(Sj), Φ′(0) = id and Φ preserves x = 0. Moreover, we
have

(i) If δ = 1, then H−1
k+2τjHk = τ̂j; if δ = −1, then H−1

k τjHk = τ̂j.

(ii) If τ2 = ρτ1ρ additionally for ρ(x, y, ζ) = (x,−y, ζ), one can choose
Hj satisfying (i) and ρH1ρ = H2, ρH3ρ = H4.

(iii) If τ∗j ω = µω, j = 1, 2 additionally and ω = a(x, y, ζ)xdx ∧ dy ∧
dζ2 ∧ · · · ∧dζn−1 is a holomorphic n-form with a(0) = 1, one can choose Hj
satisfying (i) and H∗

j ω = ω̂ = xdx ∧ dy ∧ dζ2 ∧ · · · ∧ dζn−1.
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(iv) If τj , ρ, ω are as in (i)-(iii) and ρ∗ω = −ω, one can choose Hj
satisfying (i)-(iii).

Proof. — The arguments for cases δ = 1 and δ = −1 are different. The
case δ = 1 relies on Proposition 5.3. The case δ = −1 requires only an
averaging argument.

(i) By Proposition 5.1, there is a semi-formal map Φ0 = id + O(2),
preserving x = 0 and satisfying Φ−1

0 σΦ0 = σ̂. By a theorem of Voronin, there
is a biholomorphic map H∗

1 ∼ Φ0 on some V1 ×W such that H∗−1
1 σH∗

1 = σ̂
on V1 × W . Next, we will find additional changes of coordinates, which
are composed with H∗

1 . It is understood that the composed maps will be
defined on sectorial domains by shrinking the aperture of V1 slightly and
choose a smaller radius. This is justified by Lemma 10.3, since we will use
changes of coordinates on sectorial domains which preserve x = 0 and admit
asymptotic expansions that are tangent to the identity.

Consider the case δ = 1 first. By Corollary 5.2, there is a semi-formal
map Ψ = id + (2), preserving x = 0, such that

Ψ−1σ̂Ψ = σ̂, Ψ−1Φ−1
0 τjΦ0Ψ = τ̂j .

By Proposition 5.3, there is a biholomorphic map H∗∗
1 ∼ Ψ on V1 × ∆n−1

r

such that H∗∗−1
1 σ̂H∗∗

1 = σ̂. Put H1 = H∗
1H

∗∗
1 . Construct H2 analogously

on V2 ×W . Put H3 = τ1H1τ̂1 ∼ Φ0Ψ ≡ Φ and H4 = τ1H2τ̂1 ∼ Φ. We have

H−1
k+2τjHk = τ̂j , Hk ∼ Φ0Ψ ≡ Φ = id +O(2).

For the case δ = −1, we simply use averaging. Construct H∗
2 , H

∗
3 , H

∗
4

analogously as in (i) for H∗
1 . Define τ̃1,k = H∗−1

k τ1H
∗
k . Put

H∗∗−1
k = (id + τ̂1τ̃1,k)/2 ∼ (id + τ̂1Φ−1

0 τ1Φ0)/2
def== Ψ−1.

In particular, the asymptotic expansions of H∗∗
k are independent of k. It is

clear that τ̂1H∗∗−1
k τ̃1,k = H∗∗−1

k . Since H∗−1
k τ2τ1H

∗
k = τ̂2τ̂1, we also have

H∗∗−1
k = (id + τ̂2τ̃2,k)/2 and hence τ̂2H

∗∗−1
k τ̃2,k = H∗∗−1

k . This shows that
Hk = H∗

kH
∗∗
k linearizes τ1, τ2 on a sector.

(ii) If τ2 = ρτ1ρ, we should construct H1 first for δ = ±1 and then take
H2 = ρH1ρ. When δ = 1, put H3 = τ1H1τ̂1 and H4 = ρH3ρ. When δ = −1,
construct H3 analogous to H1 and put H4 = ρH3ρ.

(iii) Next we assume that τ∗j ω = µω. We may assume that Hj are already
constructed as in (i). Put

θj = H∗
j ω = aj(x, y, ζ)x dx ∧ dy ∧ dζ2 ∧ · · · ∧ dζn−1.
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Since Hj ∼ Φ and Φ′(0) = id then aj(x, y, ζ) ∼ A(x, y, ζ) and A(0) = 1.
Put

bj(x, y, ζ) =
{∫ 1

0

3s2aj(xs, sy, ζ) ds
}1/3

=
1
x

{∫ x

0

3ξ2aj(ξ, ξy/x, ζ) dξ
}1/3

,

hj : (x, y, ζ) → (xbj(x, y, ζ), ybj(x, y, ζ), ζ),

where bj(0) = 1. Then

h∗j ω̂ =
1
2
d(xbj(x, y, ζ))2 ∧ d(ybj(x, y, ζ)) ∧ dζ2 ∧ · · · ∧ dζn−1

=
1
3
d(xbj(x, y, ζ))3 ∧ d(y/x) ∧ dζ2 ∧ · · · ∧ dζn−1 = θj ,

bj(x, y, ζ) ∼
{∫ 1

0
3s2A(xs, sy, ζ) ds

}1/3

= 1 +O(1).

Assume δ = −1 first. Since τ̂∗j θj = µθj , then ak τ̂j = ak. Then hk
commute with τ̂j . Assume that δ = 1. Then τ̂∗j θk = µθk+2, ak τ̂j = ak+2,
and hk+2τ̂j = τ̂jhk. Thus Hjh−1

j are the required maps.

(iv) Assume that Hj are already constructed as in (ii). Let hj be as
above. When ρ∗ω = −ω, we have a1ρ(x, y, ζ) = a2(x, y, ζ) and a3ρ(x, y, ζ) =
a4(x, y, ζ). So h2 = ρh1ρ and h4 = ρh3ρ. Therefore Hjh−1

j are the required
maps. �

Having constructed Hj by Proposition 7.1, we are ready to construct
two moduli spaces. This will finish the proof of Theorem 2.1.

Moduli space of real manifolds with parabolic complex tan-
gents on a codimension one submanifold. We will first construct the
moduli space for real analytic n-manifolds in C

n which have parabolic com-
plex tangents along an n − 1 dimensional submanifold. We will then show
the moduli space is infinite dimensional.

By Proposition 6.5, it suffices to construct the moduli space for C∗. Recall
that {τ1, τ2, ρ} is in C∗, if τ1, τ2 fix the same hypersurface and (τ2τ1)′(0) �= id.
Also, {τ1, τ2, ρ}, {τ̃1, τ̃2, ρ̃} ∈ C∗ are equivalent if there is a biholomorphic
map g such that gτjg−1 = τ̃j and gρg−1 = ρ̃.

Take {τ0
1 , τ

0
2 , ρ

0} ∈ C∗. By Corollary 4.2, there exists a biholomorphic
map ϕ such that τj = ϕτ0

j ϕ
−1 fix x = 0 pointwise and are tangent to

τ̂j : (x, y, ζ) → (−x, y + (−1)j−12x, ζ) and such that ρ = ϕρ0ϕ−1 is given by
(x, y, ζ) → (x,−y, ζ). By Proposition 7.1 for each ε ∈ (0, π/4) there exists
r > 0 such that for

Sj = Sj(ε, r) = i1−j{x:−ε < arg x < π/2 + ε, |x| < r} × ∆n−1
r (7.2)
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there are Hj defined on Sj ∪ σ̂(Sj) and a semi-formal map Φ satisfying

H−1
j+2τkHj = τ̂k, ρH1ρ = H2, ρH3ρ = H4 (7.3)

Hj ∼ Φ = id +O(2), on Sj ∪ σ̂(Sj), j = 1, . . . , 4, (7.4)

and moreover Φ preserves x = 0. Put

Hj j+1 = H−1
j Hj+1. (7.5)

We have

H−1
1 2 = ρH1 2ρ, H

−1
4 1 = ρH2 3ρ, Hk+2 k+3 = τ̂jHk k+1τ̂j , (7.6)

Hj j+1 ∼ id, on Sj ∪ σ̂(Sj). (7.7)

We shall call {Hj j+1} a moduli function of {τ0
1 , τ

0
2 , ρ

0}, if Hj j+1 satisfies
(7.3)-(7.7). Denote by H the set of moduli functions {Hj j+1} satisfying
(7.6)-(7.7) for some positive ε and δ

Remark. — As remarked in section 2, our biholomorphic maps Hj j+1 are
defined on sectorial domains and admit asymptotic expansions. Therefore,
we will have good controls on the domains and ranges of inverse or compo-
sition maps. One can see this by applying Lemma 10.3. Sometimes we need
to shrink a sectorial domain, but this is done in terms the radius of the sc-
torial domain. The aperture of the sectorial domain is only shrunk slightly.
In particular, Hj j+1 = H−1

j Hj+1 is defined on Sj ∩ Sj+1 ∪ σ̂(Sj ∩ Sj+1)
which is non-empty.

Of course, Hj,j+1 depend on the choices of initial coordinate map ϕ and
Hj . Let us first determine how moduli functions change for different ϕ and
Hj . Assume that ϕ̃ is another choice such that τ̃j = ϕ̃τ0

j ϕ̃
−1 fix x = 0

pointwise and are tangent to τ̂j and such that ρ = ϕ̃ρ0ϕ̃−1. Assume that Φ̃
and H̃j satisfy

H̃−1
j+2τ̃kH̃j = τ̂k, k = 1, 2, H̃j ∼ Φ̃, j = 1, . . . , 4;

ρH̃1ρ = H̃2, ρH̃3ρ = H̃4.

Recall that Hj and H̃j are defined on domains of the form (7.2). Choose
small ε, r such that they are both defined on Sj(ε, r). For a possibly smaller
r, we can put g = ϕϕ̃−1. Then τ̃j = g−1τjg with gρ = ρg and the first
component of g(x, y, ζ) is µx(1 +O(1)) with µ �= 0 a real number. If µ > 0,
putGj = H−1

j gH̃j , which is defined on Sj when ε and r are sufficiently small;
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if µ < 0, put Gj = H−1
j gH̃j−2. Put Ψ = Φ−1gΦ̃. Then H̃j = g−1HjGj for

µ > 0 and H̃j−2 = g−1HjGj for µ < 0. Also

G−1
j Hj j+1Gj+1 =

{
H̃j j+1, c > 0,

H̃j+2 j+3, c < 0;
(7.8)

G2 = ρG1ρ, G4 = ρG3ρ, Gk+2 = τ̂jGk τ̂j ; (7.9)

Gj ∼ Ψ = ρΨρ = τ̂1Ψτ̂1, on Sj or on Sj−2. (7.10)

Since Ψ′(0) = g′(0) is biholomorphic and Ψ commutes with σ̂ then

Ψ: (x, y, ζ) → (a(x, ζ)x, ya(x, ζ) + b(x, ζ), c(x, ζ)), (7.11)

where a, b, c are semi-formal in x, a(0) �= 0, b(0) = 0, c(0) = 0, and ζ →
c(0, ζ) is biholomorphic. Note that a(0) = µ. The above asymptotic expan-
sion implies that

Gj : sign(µ) i1−jV−ε,π/2+ε,(1−ε)δ × ∆n−1
(1−ε)δ →

i1−jV−2ε,π/2+2ε,c0(1+ε)δ × ∆n−1
c0(1+ε)δ

,

where c0 is a positive number independent of ε, δ. Conversely, assume that
there are semi-formal map Ψ and biholomorphisms Gj such that {τ1, τ2, ρ},
{τ̃1, τ̃2, ρ} have moduli functions Hj,j+1 and H̃j,j+1 satisfying (7.8)-(7.11).
If the first case in (7.8) occurs then g = HjGjH̃

−1
j , j = 1, . . . , 4 agree on the

overlap. Hence g is well-defined on ∆nδ′ ∩C
∗×C

n−1, if δ′ is sufficiently small,
and g extends to a holomorphic map defined near the origin. On a sectorial
domain, we know that g ∼ ΦΨΦ̃−1. Thus g′(0) = Ψ′(0), which implies that
g is a biholomorphic map. Now g−1τ1g = H̃3G

−1
3 H−1

3 τ1H1G1H̃
−1
1 = τ̃1 and

g−1ρg = H̃2G
−1
2 H−1

2 ρH1G1H̃
−1
1 = ρ. Hence g−1τ2g = τ̃2. If the second case

in (7.8) occurs, define g = HjGjH̃
−1
j+2. Then g−1τ1g = τ̃1 and g−1ρg = ρ.

Conversely, assume that we are given moduli functions Hj j+1 satisfy-
ing (7.6)-(7.7), where Hj j+1 are defined on Sj j+1(ε0, r0) = Sj(ε0, r0) ∩
Sj+1(ε0, r0) and Sj(ε0, r0) with 0 < ε0 < π/4 are given by (7.2). Following
Malgrange [7], we shall construct the corresponding pairs τ1, τ2 = ρτ1ρ as
follows.

Let A1 = {x: | arg x− π/2| < 2ε, |x| < 2r}×∆n−1
2r , B1 = {x: ε < arg x <

π/2− ε, |x| < r}×∆n−1
r . Put Aj = i1−jA1 and Bj = i1−jB1. Choose small

and positive ε, r so that Hj j+1 are asymptotic to identity on Aj+1 and so
that the first component hj j+1 of Hj j+1 satisfies 4/5 < | 1xhj j+1(x, y, ζ)|
< 5/4 and | arg{ 1

xhj j+1(x, y, ζ)}| < ε/4 on Aj . We may assume the first
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component of H−1
j j+1 satisfies the same estimates. Then Hj j+1 is a biholo-

morphic map from Aj+1 onto C̃j = Hj j+1(Aj+1). Let Sj = Aj∪Bj∪C̃j . Let
X0 be the disjoint union �4

j=1Sj . We identify p ∈ Aj+1 with Hj j+1(p) ∈ C̃j ,
which defines an equivalence relation on X0 since C̃j does not intersect Ak
for k �= j, j + 1, j − 2. Let X be the quotient space of X0 by the equiv-
alence relation, and π:X0 → X be the projection. So U ⊂ X is open if
and only if π−1(U) ∩ Sj are open for all j; in particular, if V is open in Sj
then π−1(π(V )) = V ∪Hj−1 j(V ∩Aj) ∪H−1

j j+1(V ∩ C̃j) is open and hence
π(V ) is open. We need to show that X is Hausdorff. Let p, q be in X0 with
π(p) �= π(q). If p, q are in the same Sj , take disjoint open sets Up � p, Uq � q
in Sj . Since Hj j+1 is one-to-one then π(Up), π(Uq) are also disjoint open
sets. If p is in Sj and q is in Sk for k �= j, j−1, j+1, then π(Sj), π(Sk) sepa-
rate p and q. Finally it remains to check the case that p ∈ Sj and q ∈ Sj+1.
If q ∈ Aj+1, then p and Hj j+1(q) are both in Sj , which is reduced to a pre-
vious case. The same argument applies if p ∈ C̃j . Assume now that p is in
Sj \ C̃j and q is in Sj+1 \Aj+1. In particular | arg(p/q)| < ε/2 does not hold.
Choose open sets Up � p and Uq � q such that | arg(p̃/Hj j+1(q̃))| < ε/4
does not hold for p̃ ∈ Up and q̃ ∈ Uq ∩ Aj+1. Therefore, π(Up) ∩ π(Uq) is
empty and X is Hausdorff.

Now X is a complex manifold with the coordinates π−1
j = (xj , yj , ζj)

defined on π(Sj) and with value in Sj ⊂ C
n, and we also have its inverse

πj :Sj ↪→ X0π→X. Note that Hj j+1 = π−1
j πj+1 on Aj+1. On π(X0/4), we

define

τ̃k: (xj , yj , ζj) → (xj+2, yj+2, ζj+2) = (−xj , yj + (−1)k−12xj , ζj),

ρ̃:

{
(x1, y1, ζ1) → (x2, y2, ζ2) = (x1,−y1, ζ1),

(x3, y3, ζ3) → (x4, y4, ζ4) = (x3,−y3, ζ3).

Take smooth non-negative functions χj(x, y, ζ) ≡ χj(x/|x|) such that
χj equals 1 for arg x ∈ (ε/2 + (1 − j)π/2,−ε/2 + (2 − j)π/2) and 0 for
arg x �∈ (−ε/2+(1−j)π/2, ε/2+(2−j)π/2), and such that χ1+ · · ·+χ4 = 1.
Define

K(p) =
4∑
j=1

χj(xj(p))(xj(p), yj(p), ζj(p)).

Since Hj j+1 ∼ id then K(X) = D ∩ (C∗ × C
n−1), where D is an open

neighborhood of the origin in C
n. Note that K is a biholomorphism when the

complex structure on K(X) is defined by Kj∗Dx,Kj∗Dy,Kj∗Dζ and Kj ◦
π−1
j =K on π(Sj). Note that π−1

k (p)=Hk jπ
−1
j (p) when χk(π−1

k (p))χj(π−1
j (p))

�= 0. Thus
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Kj(t) =
4∑
k=1

χk(Hk j(t))Hk j(t) ∼
4∑
k=1

χk(t)Hk j(t)

∼
4∑
k=1

χk(t)t = t, t = π−1
j (p) ∈ Sj .

Hence the complex structure extends to D and agrees with the standard
one along x = 0 to infinitely order. By the Newlander-Nirenberg theorem,
there is a diffeomorphism ψ: D̃ → Ω ⊂ C

n with ψ(0) = 0 such that ψK
is biholomorphic. Since ψ({x = 0} ∩ D̃) is a holomorphic hypersurface in
(the standard Euclidean space) C

n, by a holomorphic change of coordinates
(and by shrinking D̃ if necessary), one may assume that ψ preserves x = 0.
Now the inverse ψ−1, expanded as a formal power series in x, x, is a formal
power series in x only and has coefficients holomorphic in y, ζ in a fixed
domain. Using a finite order Taylor expansion of ψ−1 (in x) if necessary,
one may also assume that ψ(x, y, ζ) = (x, y, ζ) + O(|x|2). On Ω ∩ (C∗ ×
C
n−1) define τ0

j = ψKτ̃jK
−1ψ−1 and ρ0 = ψKρ̃K−1ψ−1. Again, since

Hj,j+1 ∼ id then τ0
j , ρ

0 extends to Ω with τ0
j (x, y, ζ) = τ̂j(x, y, ζ) +O(|x|2)

and ρ0(x, y, ζ) = ρ(x, y, ζ) + O(|x|2). We need to show that {τ0
j , ρ

0} is the
required realization. Let ϕ0 = (id+ρρ0)/2. Then ϕ0 is tangent to the identity
and fixes x = 0 pointwise, and ρϕ0 = ϕ0ρ0. Take Hj = ϕ0ψKj = ϕ0ψKπj .
Then H−1

j Hj+1 = Hj,j+1. On Sj we have

Hj(t) = ϕ0ψKj(t) ∼ ϕ0ψ̂(t) ≡ Φ(t) = id +O(2), t = (xj , yj , ζj),

where ψ̂(x, y, ζ) is the Taylor series expansion of ψ(x, y, ζ) in x, x. Since
ϕ0 and ψ preserve x = 0, Φ preserves x = 0 too. As mentioned above,
ψ̂(x, y, ζ) is actually a formal (holomorphic) power series in x whose coeffi-
cients are holomorphic in y, ζ in a fixed domain. This finishes the proof of
the realization.

To deal with mappings defined on a sectorial domain S = V × ∆n−1
r

that commute with σ̂(x, y, ζ) = (x, y + 4x, ζ), it is convenient to consider
the quotient space S/σ̂ by the projection (x, t, ζ) = π(x, y, ζ) = (x, e

πiy
2x , ζ).

More specifically, if H commutes with σ̂ then it has the form H(x, y, ζ) =
(xa(x, y, ζ), ya(x, y, ζ)+b(x, y, ζ), c(x, y, ζ)) with aσ̂ = a, bσ̂ = b and cσ̂ = c,
which yields a mapping in (x, t, ζ)-space defined for x ∈ V , e−

πr
2|x| < |t| <

e
πr
2|x| and ζ ∈ ∆n−2

r , given by

H̃:x′ = xã(x, t, ζ), t′ = tλ(x, t, ζ), ζ ′ = c̃(x, t, ζ),

ã = aπ−1, c̃ = cπ−1, π−1(x, t, ζ) = (x,
x log t
πi

, ζ),
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λ = ed, d(x, t, ζ) =
πibπ−1(x, t, ζ)
2xaπ−1(x, t, ζ)

.

When H is asymptotic to the identity on the sectorial domain V × ∆n−1
r ,

such as a mapping Hj j+1 in {Hj j+1}, we have |a(x, y, ζ) − 1| < c0|x| and
|y(a(x, y, ζ) − 1) + b(x, y, ζ)| < c0|x|2 for x ∈ V ∩ ∆δ and (y, ζ) ∈ ∆n−1

ε ,
which implies that

|d(x, t, ζ)| � πc0|x| + πc0|y| < π

for |x|, |y|, |ζ| sufficiently small. Hence H̃ determines H uniquely. We will
also consider mappings G, such as a mapping Gj appearing in the equiva-
lence relation of moduli space. The G is defined on a sectorial domain V ×
∆n−1
r , commutes with σ̂ and admits an asymptotic expansion Ψ(x, y, ζ) =

(xA(x, y, ζ), yA(x, y, ζ) + B(x, y, ζ)) with A(0) �= 0, B(0) = 0 = C(0). Note
that the semi-formal map Ψ still commutes with σ̂, so Aσ̂ = A and Bσ = B.
However, G is not uniquely determined by G̃; G̃ = G̃′ if and only if

A′ = A, C ′ = C, B′(x, y, ζ) = B(x, y, ζ) + 4kxA(x, y, ζ), k ∈ Z,

i.e. G′ = σ̂kG. Therefore, the asymptotic expansion of G determines k; in
particular, the equivalence class of {Hj j+1} is determined by its equivalence
class in the (x, t, ζ)-space.

In (x, t, ζ)-space, define τ̂1(x, t, ζ) = τ̂2(x, t, ζ) = (−x,−t−1, ζ), and
ρ(x, t, ζ) = (x, t, ζ). Then moduli functions Hj j+1, j = 1, . . . , 4 will still sat-
isfy the conditions (7.6) (with the new τ̂1 and ρ). The Gj in the equivalence
relation still satisfy (7.8)-(7.10). Moreover, the asymptotic expansion of Gj
becomes Ψ = (xa(x, ζ), tλ(x, ζ), c(x, ζ)). On the (x, t, ζ)-space the moduli
functions Hj j+1 and mappings Gj are required to satisfy asymptotic ex-
pansion conditions, and by definition the asymptotic expansion conditions
mean the conditions described in the (x, y, ζ)-space.

Next we want to show the non-triviality of the moduli space.
Define

H1 2(x, y, ζ) = (x, y + r(x, t), ζ), (7.12)

H3 4(x, y, ζ) = (x, y + r(−x,−t−1), ζ), H2 3 = H4 1 = id, (7.13)

r(x, t) =
2x
πi

log
1 + (1 − t−1)cp(x)
1 − (1 − t)cp(x)

, (7.14)

t = e
iπy
2x , cp(x) = e−1/xp(x), p(x) = p(−x), p(0) �= 0, (7.15)

where p(x) is holomorphic near the origin. Put H2 3 = H4 1 = id. We have
H3 4 = τ̂1H1 2τ̂1 and σ̂Hj j+1σ̂

−1 = Hj j+1 ∼ id when |y| < δ < 1/2.
Note that
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H−1
1 2 (x, y, ζ) = (x, y + r̃(x, t), ζ),

r̃(x, t) =
2x
πi

log
1 − (1 − t−1)cp(x)
1 + (1 − t)cp(x)

.

Thus ρH1 2ρ = H−1
1 2 holds, if and only if p(x) = −p(x).

By a result of Voronin (Lemma 16 in [10]), if H̃j,j+1 are of the form
(7.12)-(7.15) with p replaced by p̃, and if H̃j,j+1, Hj,j+1 are equivalent under
mapping Gj ∼ Ψ satisfying (7.8) and (2.5), then p̃ = p.

The above argument shows the moduli space is infinitely dimensional
when n = 2. The higher dimension case can be obtained by trivial extensions
as follows.

Proposition 7.2. — Let M1,M2 be two real analytic surfaces in C
2

with a non-degenerate complex tangent at the origin. Define M∗
j = Mj

× R
n−2 ⊂ C

2 × C
n−2. Then M1,M2 are holomorphically equivalent, if and

only if M∗
1 ,M

∗
2 are holomorphically equivalent.

Proof. — By two local changes of holomorphic coordinates in C
2 one may

assume that Mj are given by z2 = ajz
2
1+bjz1z1+cjz

2
1+Ej(z1, z1) with Ej =

O(3) and |bj | + |cj | �= 0. Assume that f = (f1, . . . , fn): Cn → C
n is a local

biholomorphism such that f(M∗
1 ) = M∗

2 . Since T0M
∗
j ∩ iT0M

∗
j is spanned

by z1-axis, then f ′(0) preserves the z1-axis. So f1(z1, 0) = µz1 +O(2) with
µ �= 0. Since f(M∗

1 ) = M∗
2 , we have f2(z) = a2f

2
1 (z) + b2f1(z)f1(z) +

c2f2
1 (z) + E2(f1(z), f1(z)) for z ∈ M∗

1 . Let gj(z1, z2) = fj(z1, z2, 0) for
j = 1, 2. We get

g2(w) = a2g
2
1(w) + b2g1(w)g1(w) + c2g2

1(w) + E2(g1(w), g1(w)) (7.16)
w2 = a1w

2
1 + b1w1w1 + c1w

2
1 + E1(w1, w1).

Write g2(w1, w2) = αw1 + βw2 + O(2). Comparing coefficients of w1w1

and w2
1 in (7.16), we see that βb1 = b2µµ and βc1 = c2µ

2. Since µ �= 0
and |b2| + |c2| �= 0, then β �= 0. This shows that (z1, z2) → g(z1, z2) is a
biholomorphism sending M1 into M2. �

8. Moduli spaces with the volume-form - Second half
of Theorem 2.1

The second half of the proof of Theorem 2.1 involves a volume-form.

We will now construct the moduli space for real analytic n-manifolds
in C

n on which Redz1 ∧ · · · ∧ dzn vanishes and which have parabolic com-
plex tangents along an n − 1 dimensional submanifold. We will then show
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the moduli space is infinite dimensional. This will finish the proof of Theo-
rem 2.1.

Along the lines of the second half of the proof of Theorem 2.1, we will
also prepare some results for Theorem 2.2.

The proof is very similar to the part in the previous section. We will be
brief and emphasize the needed changes.

By Proposition 6.1, it suffices to construct the moduli space for L∗.
Recall that {τ1, τ2, ρ, ω} is in L∗, if ρ is an anti-holomorphic involution, and
τ1, τ2 = ρτ1ρ are a pair of holomorphic involutions on C

n fixing a smooth
holomorphic hypersurface N pointwise. The set of fixed points of σ′(0) is
a hyperplane. ω = Adz1 ∧ dz1 ∧ dz2 ∧ · · · ∧ dzn−1 is a holomorphic n-form
on C

n vanishing on N to first order (i.e. A = 0 on N and dA �= 0) and
τ∗j ω = ω = −ρ∗ω.

Take {τ0
1 , τ

0
2 , ρ

0, ω0} ∈ L∗.

By Corollary 4.2, there exists a biholomorphic map ϕ such that τj =
ϕτ0
j ϕ

−1 fix x = 0 pointwise and are tangent to τ̂j : (x, y, ζ) → (−x, y +
(−1)j−12x, ζ) and such that ρ = ϕρ0ϕ−1 is given by (x, y, ζ) → (x,−y, ζ).
Write ω = ϕ∗ω0 = A(x, y, ζ)x dx ∧ dy ∧ dζ2 ∧ · · · ∧ dζn−1. Since ρ∗ω =
−ω, then A(0) is real. By a change of coordinates (x, y, ζ) → (cx, cy, ζ)
with c ∈ R, we may assume that A(0) = 1. By Proposition 7.1 there exist
V1 = Vε,δ = {x ∈ C: 0 < |x| < δ, arg x ∈ (−ε, π/2 + ε)} with 0 < ε < π/4,
Vj = i1−jV1, and Hj defined on Vj ×∆n−1

δ (δ > 0) and semi-formal map Φ
satisfying

H−1
j+2τkHj = τ̂k, ρH1ρ = H2, ρH3ρ = H4 (8.1)

Hj ∼ Φ = id +O(2), on Vj × ∆n−1
δ , j = 1, . . . , 4, (8.2)

where Φ preserves x = 0. Also

H∗
j ω = ω̂, ω̂ = xdx ∧ dy ∧ dζ2 ∧ · · · ∧ dζn−1. (8.3)

Put Hj,j+1 = H−1
j Hj+1. We have

H−1
1 2 = ρH1 2ρ, H

−1
4 1 = ρH2 3ρ, Hk+2 k+3 = τ̂jHk k+1τ̂j , (8.4)

Hj j+1 ∼ id, on i1−jV−ε,ε,δ × ∆n−1
δ (8.5)

for possibly smaller ε, δ > 0. Also

H∗
j j+1ω̂ = ω̂. (8.6)
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We shall call {Hj,j+1} a moduli function of {τ1, τ2, ρ, ω}, ifHj j+1 = H−1
j Hj+1

satisfy (8.1)-(8.6). Denote by H the set of moduli functions {Hj j+1} satis-
fying (8.4)-(8.6) for some positive ε and δ.

Let us determine how moduli functions change for different ϕ and Hj .
Assume that ϕ̃ is another choice such that τ̃j = ϕ̃τ0

j ϕ̃
−1 fix x = 0 point-

wise and are tangent to τ̂j and such that ρ = ϕ̃ρ0ϕ̃−1 and ω̃ = ϕ∗ω0 =
Ã(x, y, ζ)xdx ∧ dy ∧ dζ2 ∧ · · · ∧ dζn−1, Ã(0) = 1. Assume that Φ̃ and H̃j
satisfy H̃−1

j+2τ̃kH̃j = τ̂k, H̃j ∼ Φ̃, ρH̃1ρ = H̃2, ρH̃3ρ = H̃4, and H̃∗
j ω̂ = ω.

Then τ̃j = g−1τjg with gρ = ρg and the first component of g(x, y, ζ) is
cx(1 +O(|x|)) with c being real and non-zero. If c > 0, put Gj = H−1

j gH̃j ;
if c < 0, put Gj = H−1

j gH̃j+2. Put Ψ = Φ−1gΦ̃. Then H̃j = g−1HjGj for
c > 0 and H̃j+2 = g−1HjGj for c < 0. So

G−1
j Hj j+1Gj+1 =

{
H̃j j+1, c > 0,

H̃j+2 j+3, c < 0;
(8.7)

G2 = ρG1ρ, G4 = ρG3ρ, Gk+2 = τ̂jGk τ̂j , G∗
j ω̂ = ω̂; (8.8)

Gj ∼ Ψ, on Vj × ∆n−1
δ or on Vj−2 × ∆n−1

δ , det Ψ′(0) �= 0. (8.9)

Note that G∗
j ω̂ = ω̂ implies that Ψ∗ω̂ = ω̂. In particular, Ψ preserves x =

0. Conversely, assume that there are Gj such that {τ1, τ2, ρ}, {τ̃1, τ̃2, ρ} have
moduli functions Hj,j+1 and H̃j,j+1 satisfying (8.7)-(8.9). If the first case in
(8.7) occurs then HjGjH̃

−1
j , j = 1, . . . , 4 agree on the overlap, which extend

to a biholomorphic map g defined near the origin. As before g−1τ1g = τ̃1
and g−1ρg = ρ. Hence g−1τ2g = τ̃2. If the second case in (8.7) occurs, define
g = HjGjH̃

−1
j+2. Then g−1τ1g = τ̃1 and g−1ρg = ρ. In both cases, we have

g∗ω = ω̃.

Conversely, assume that we are given moduli functions Hj j+1 satisfying
(8.4)-(8.6). We already constructed τ0

1 , τ
0
2 = ρ0τ0

1 ρ
0 which realize Hj j+1:

Recall that Hj j+1 = π−1
j πj+1 are the transition functions on X. Hence

H∗
j j+1ω̂ = ω̂ implies that there is a well-defined holomorphic n-form ω̃ on

X such that π∗
j ω̃ = ω̂. Let ω0 = (ψK)−1∗ω̃. From ω0 = (ψKπj)−1∗ω̂, one

sees that ω0 extends to a holomorphic n-form vanishing precisely on x = 0
to first order. Recall that x = 0 is also the set of fixed points of τ0

j . Since
τ̂∗j ω̂ = ω̂ = −ρ∗ω̂, then τ∗j ω

0 = ω0 = −ρ∗ω. Therefore, {τ0
j , ρ

0, ω0} is a
realization of Hj j+1.

We need to show the moduli space is infinite-dimensional.
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Case n = 2. It is convenient to choose coordinates such that the map-
pings commuting with σ̂ corresponds to maps without any restriction in
new coordinates. We will use coordinates (x, t) with

t = e
iπy
2x .

Each map H, defined on Vj ×R, that commute with σ̂ gives arise a map
(still denoted by H) defined on Vj × R̂, where R is a domain defined by
e−δ/|x| < |t| < eδ/|x| for some constant δ > 0 (see section 7 on equivalence
relations in (x, y, ζ) and (x, t, ζ) spaces). Although τj and ρ do not commute
with σ̂, we define τ̂1 = τ̂2, ρ and the n-form ω̂ as follows

τ̂1(x, t) = (−x,−1/t), ρ(x, t) = (x, t), ω̂ = dx3 ∧ d log t.

We will define H1 2 = ρKρK−1. Using the local generating function
x3 log t̂+ t̂x3p(x3)e−

1
x3 with a holomorphic function p(x) vanishing at 0, we

want to define (x̂, t̂) = K(x, t) by the identity

log t dx3 + x̂3 d log t̂ = d{x3 log t̂+ t̂x3p(x3)e−1/x3}.
SoK (and henceH1 2) preserves dx3∧d log t, ifK defines a biholomorphic

map. Thus we want to find where K and K−1 are defined and estimate them
for later purpose.

We first rewrite the above identity as

x̂ = x(1 + t̂p(x3)e−
1

x3 )1/3, p(0) = 0, (8.10)

t̂ = te−t̂p̃(x
3)e

− 1
x3
, p̃(x) = xp′(x) + p(x) +

p(x)
x

. (8.11)

We need to check that K and K−1 are defined on {(x, y): 0 < |x| <
r, | arg x| < π/9, e−

δ
|x| < |t| < e

δ
|x| } for some positive constants δ and r,

when r, δ are sufficiently small.

Let us start with equation (8.11). By the contraction map theorem, for
some small r > 0 the equation T = e−wT admits a unique solution T = T (w)
which is holomorphic in w for |w| < r, by requiring |T | < 4. Note that

T = T (w) = 1 − w +O(w2), (8.12)

|T (w) − 1| = |e−wT (w) − 1| < 4|wT (w)|
1 − 4|wT (w)| < 1/2.

Hence (8.11) admits a unique solution t̂ = tT (tp̃(x3)e−
1

x3 ) with | t̂t − 1|
< 1/2. Substituting tT (tp̃(x3)e−

1
x3 ) for t̂ in (8.10), we see that K is defined

on a desired domain.
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From (8.11)-(8.12) we get

t̂ = t(1 − p̃(x3)e−1/x3
t+O((te−1/x3

)2)), | arg x̂| < π

9

for |t| < e
δ

|x| , where O((te−1/x3
)2) has absolute value bounded by c|te−1/x3 |2

and its Laurent series (and hence Taylor series) expansion in t has no tk

terms for k < 2. Now (8.10) says that

x̂ = x
(
1 +

1
3
p(x3)e−1/x3

t+O((te−1/x3
)2)

)
.

To find where K−1 is defined, we start with (8.10). Replace x3, x̂3 by
x, x̂ respectively first and then set x(1 + u) = x̂. We are led to a simpler
equation

u = t̂p
( x̂

1 + u

)
e−

1+u
x̂ . (8.13)

First, a contraction argument shows that for |t̂| < e
δ

|x̂| , | arg x̂| < π/3 and
0 < |x̂| < r with small r, there is a unique solution u = u(x̂, t̂) that is
holomorphic in x̂, t̂ and satisfies |u| < |e− 1

2x̂ |. Substituting x̂
1+u(x̂,t̂)

for x in
(8.11), we see that K−1 is defined on a desired domain.

To estimate K−1, we use (8.13) and get |u| � |t̂||e− 1
2x̂ | and

|u(x̂, t̂) − t̂p(x̂)e−
1
x̂ | � |t̂(p( x̂

1 + u
) − p(x̂))e−

1
x̂ | + |t̂p( x̂

1 + u
)e−

1
x̂ (e−

u
x̂ − 1)|.

Thus
u(x̂, t̂) = t̂p(x̂)e−

1
x̂ +O(|t̂e− 1

2x̂ |2). (8.14)

Returning to the original equation (8.10), by p(0) = 0 we get
x = x̂(1 + u(x̂3, xt̂))−1/3. Hence

x = x̂
(
1 − 1

3
t̂p(x̂3)e−1/x̂3

+O(|t̂e− 1
2x̂3 |2)

)
. (8.15)

Solve (8.11) for t by substituting (8.15) for x. To get an estimate for the
expansion of t, note that

e−(1+u(x̂3,t̂))3/x̂3
= e−1/x̂3

(1 +O(
u(x̂3, t̂)
x̂3

)) = e−1/x̂3
(1 +O(|t̂e−1/x̂3 |))

by (8.14) and p(0) = 0. Combining the above, (8.11) and (8.15), we get

t = t̂
(
1 + p̃(x̂3)t̂e−1/x̂3

+O(|t̂2e−1/x̂3 |)
)
.
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Recall that K preserves ω̂ = dx3 ∧ d log t. From the above computation
we obtain expression

H1 2 = ρKρK−1:

{
x̂ = x

(
1 − 1

3 t(p− p)(x3)e−1/x3
+O(t2e−1/x3

)
)
,

t̂ = t
(
1 + t(p̃− p̃)(x3)e−1/x3

+O(t2e−1/x3
)
)
.

Define H41 = H23 = id, H34 = τ̂1H1 2τ̂1. Let H∗
j j+1 be of the same

form with p replaced by p∗. Assume that τ∗2 τ
∗
1 and τ2τ1 are holomorphi-

cally equivalent. Then H∗ and H are equivalent by Gj . By [10], we have
G1(x, y) = G4(x, y) = (a(x), a(x)y/x + b(x)). Put a(x) = xα(x). By as-
sumptions, Gj preserves ω̂ and admits an asymptotic expansion. Hence
x3α3(x) =

∫ x
0
d[x3α3(x)]

dx dx = x3, i.e. α3 = 1. Since Gj commutes with
ρ, then a(x) = x. In (x, t)-space, we get Gj(x, t) = (x, tλj(x)) with λ1 = λ4

and λ2 = λ3. Recall that Gj have the same asymptotic expansion. Hence
λj(x) are asymptotic to the same formal power series Λ(x).

In (x, t)-space, we haveG−1
1 H1 2G2 = H∗

1 2. The x-component ofG−1
1 H1 2G2

is
x
(
1 − 1

3
t(p− p)(x3)λ2(x)e−1/x3

+O(t2e−1/x3
)
)
.

On (V1 ∩ V2) × {t ∈ C: 1 − δ < |t| < 1 + δ} the coefficient of t1 of the
Laurent series expansion of the x-component of G−1

1 H1 2G2 = H∗
1 2 gives us

(p− p)(x3)λ2(x) = (p∗ − p∗)(x3). (8.16)

In particular, λ2 is meromorphic near the origin (assuming p−p �≡ 0). Since
λ2 admits the asymptotic expansion Λ, then λ2 = Λ is holomorphic near the
origin and we must have (p − p)(x3)Λ(x) = (p∗ − p∗)(x3) as formal power
series in x. Since τ̂1G4τ̂1 = G2 = ρG1ρ, we have Λ(x) = Λ(x) = Λ(−x)−1.
Hence Λ(iy)Λ(iy) = 1 as formal power series in the real variable y. So

(p− p)(−iy3)(p− p)(iy3) = (p∗ − p∗)(−iy3)(p∗ − p∗)(iy3)

as holomorphic functions in y ∈ C.

We now consider the family of holomorphic functions p �≡ 0 satisfying

p(−ζ) = p(ζ) = −p(ζ), p(0) = 0.

If p and p∗ are in the above family and if the corresponding moduli functions
are equivalent, then p∗ = ±p. In particular, the above result shows that the
moduli space is of infinite dimension. This finishes the proof of Theorem 2.1
for n = 2.
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For the proof of Theorem 2.2, we need to show that for the above Hj, j+1

with
p(x) − p(x) �≡ 0, p(0) = 0

and for distinct positive numbers r, the moduli functions {D−1
r Hj j+1Dr}

are not equivalent under Gj preserving ω̂, where

Dr(x, t, ζ) = (rx, t, rζ) (Dr(x, t) = (rx, t)).

This is quite easy to see. First we know that Gj(x, t) = (xaj(x), tλj(x))
with G1 = G4, G2 = G3. Since Gj preserve dx3 ∧ d log t, then aj = 1. The x
component of D−1

r H1 2Dr is given by

x
(
1 − 1

3
t(p− p)(r3x3)e−

1
r3x3

)
+O(t2e−

1
r3x3 ).

The x component of D−1
r H3 4Dr is given by

x
(
1 +

1
3
t−1(p− p)(r3x3)e−

1
r3x3

)
+O(e

1
r3x3 ).

Since Gj(x, t) = (x, tλj(x)) and λj ∼ Λ, the asymptotic expansion alone
shows that {D−1

r1 Hj j+1Dr1} and {D−1
r2 Hj j+1Dr2} are not equivalent, as

long as p(x) − p(x) �≡ 0 and r1, r2 are distinct positive numbers.

For later purpose we remark that the only Gj , in the (x, t)-space, that
preserves dx3 ∧ d log t and Hj j+1 is the identity, by (8.16). In the (x, y)-
space, the {Gj} that preserve Hj j+1 must be Gj = σ̂k, where k is the same
for all j. Since τ̂j reverses σ̂ then Gj+2 = τ̂jGj τ̂j imply that k = 0, i.e.
Gj = id in the (x, y)-space too.

Case n > 2. Put ′ζ = (ζ3, . . . , ζn−1) for n > 3 and ζ = (ζ2, . . . , ζn−1).
Recall that

τ̂1(x, t, ζ) = (−x,−1/t, ζ), ρ(x, t, ζ) = (x, t, ζ),

ω̂ = dx3 ∧ d log t ∧ dζ2 ∧ · · · ∧ dζn−1.

Let K be a map of the form
x̂ = x,

t̂ = t+ p(x)e−1/x def== tq1(x, t),

ζ̂2 = ζ2q1(x, t), ′ζ̂ = ′ζ

with

p(x) =
∞∑
k=1

2ick
(k − 1)!(k2x2 + 1)

, c2k = 1, 1 < c2k+1 < 2. (8.17)
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Note that p(x) is meromorphic on C
∗ with simple poles at 1

ki , and that its
residues at 1

ki decay rapidly as |k| → ∞. One can verify that K preserves
dx3 ∧ d log t ∧ dζ2 ∧ · · · ∧ dζn−1, and that the s-th iterate of K is given by

Ks: x̂ = x, t̂ = t+ sp(x)e−1/x def== tqs(x, t), ζ̂2 = ζ2qs(x, t), ′ζ̂ = ′ζ.

Put H1 2 = ρKρK−1. Since p(x) = −p(x), we get ρKρ = K−1 and H1 2 =
K−2. Define H4 1 = H2 3 = id and H3 4 = τ̂1H1 2τ̂1. Let {H∗

j j+1} be another
set of moduli functions, defined as above with p being replaced by p∗. We
still assume that p∗ has the same form (8.17) with ck being replaced by
c∗k ∈ (1, 2). Denote the corresponding qs by q∗s .

We will prove that if p and p∗ are distinct, then {Hj j+1} and {H∗
j j+1}

are not equivalent by Gj satisfying G2 = ρG1ρ and G3 = τ̂1G1τ̂1 = ρG4ρ,
without assuming G∗

j ω̂ = ω̂. In other words, the corresponding M , M∗,
satisfying Re dz1 ∧ · · · ∧ dzn|M = Re dz1 ∧ · · · ∧ dzn|M∗ = 0, are not even
holomorphically equivalent.

Assume that G1H
∗
1 2 = H1 2G2. We know that G1 = G4 and G2 = G3

with Gj :x′ = xaj(x, ζ), t′ = tλj(x, ζ), ζ ′ = cj(x, ζ). The x, t components of
G1H

∗
1 2(x, t, ζ) are

x′ = xa1(x, ζ2q∗−2(x, t),
′ζ), t′ = tq∗−2(x, t)λ1(x, ζ2q∗−2(x, t),

′ζ).

The x, t components of H1 2G2(x, t, ζ) are

x′ = xa2(x, ζ), t′ = tλ2(x, ζ)q−2(xa2(x, ζ), tλ2(x, ζ)).

Set ζ = 0 and equate the two x and t components respectively. We get

a1(x, 0) = a2(x, 0),

q∗−2(x, t)λ1(x, 0) = λ2(x, 0)q−2(xa2(x, 0), tλ2(x, 0)). (8.18)

Both sides of the second identity are polynomials in t−1 and their coeffi-
cients say that λ2(x, 0) = λ1(x, 0) on V1 ∩ V2. Since Gj τ̂1 = τ̂1Gj+2 then
λj(−x, ζ) = λj+2(x, ζ)−1 and aj(−x, ζ) = aj+2(x, ζ). Hence λ2(x, 0) =
λ1(x, 0) and a1(x, 0) = a2(x, 0) on V3 ∩ V4. Thus we can define a(x) =
aj(x, 0) and λ(x) = λj(x, 0), which are holomorphic near x = 0, with
λ(0) �= 0 �= a(0). Now (8.18) becomes

p∗(x) = λ(x)−1p(xa(x))e
1
x− 1

xa(x) . (8.19)

The last identity holds on a small sector in the x plane, and hence in
a punctured neighborhood of the origin. For 0 < x < 1 and for some
positive constant c0, we have c0 < |p(x)| < 1/c0. So (8.19) implies that
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a(0) = 1. All meromorphic functions p given by (8.17) have a simple pole at
± i
k , k = 1, 2, . . . , with residue ± ck

k! . Now (8.19) says that if an integer k is
sufficiently large, then i

ka(
i
k ) = i

k′ for some integer k′ > 0. Since x → xa(x)
is biholomorphic near the origin and a(0) > 0, then k/c2 < k′ < c2k for
some constant c2. Therefore, the residue bk′ of the right-hand side of (8.19)
at i/k′ satisfying 1/(c3k′!) < |bk′ | < c3/k

′!. The residue b′k of the left-hand
side of (8.19) at i/k satisfies 1/k! � |b′k| � 2/k!. We conclude that k′ = k.
Therefore a(i/k) = 1, λ( i2k ) = 1 and p∗ = p.

Assume now that G1H
∗
1 2 = H3 4G2. We have

H3 4(x, t, ζ) = τ̂1H1 2(−x,−t−1, ζ)

= τ̂1(−x,−t−1q−2(−x,−t−1), ζ2q−2(−x,−t−1), ′ζ)

= (x, tq−2(−x,−t−1)−1, ζ2q−2(−x,−t−1), ′ζ).

The t-component of H3 4G2(x, t, ζ) is

t′ = tλ2(x, ζ)q−2(−xa2(x, ζ),−(tλ2(x, ζ))−1)−1.

Again, the t-components of both sides of G1H
∗
1 2(x, t, 0) = H3 4G2(x, t, 0)

say that

q∗−2(x, t)λ1(x, 0) = λ2(x, 0)q−2(−xa2(x, 0),−(tλ2(x, 0))−1)−1,

which never holds since the left-hand side is a polynomial in t−1 of degree
1 while the right-hand side is not.

Case n > 2 - another family. Let ζ = (ζ2, . . . , ζn−1) and ′ζ = (ζ3, . . . , ζn−1).
The above family cannot be used for the proof of Theorem 2.2 for n > 2,
since for {D−1

r Hj j+1Dr}, whereDr(x, t, ζ) = (rx, t, rζ), are obviously equiv-
alent for all r > 0. We need another construction. Put v(ζ) = ζ2

2 + ζ2 for
n = 3, and put

v(ζ) = ζn2 + ζn−1
2 + ζ2 +

n−1∑
j=3

ζjζ
j−1
2

for n > 3. Using the equation

log tdζ2 + ζ̂2d log t̂ = dlog t̂,ζ2
{ζ2 log t̂+ t̂v(ζ)p(x)e−1/x},

we define a map (x̂, t̂, ζ̂) = K(x, t, ζ), preserving dx3 ∧ d log t ∧ dζ2 ∧ · · · ∧
dζn−1, by 

x̂ = x, ′ζ̂ = ′ζ,

t̂ = te−t̂vζ2 (ζ)p(x)e−1/x

,

ζ̂2 = ζ2 + t̂v(ζ)p(x)e−1/x,
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where p still has the form (8.17). As above K,K−1 are defined on the desired
domains. We write components of K and K−1 as Laurent series expansion
in t and get

K:


t̂ = t− t2vζ2(ζ)p(x)e−1/x +O(t3),

ζ̂2 = ζ2 + tv(ζ)p(x)e−1/x +O(t2),

x̂ = x, ′ζ̂ = ′ζ,

where by O(t2) we mean a Laurent series expansion in t (e−
δ

|x| < |t| < e
δ

|x| )
containing no terms tk for k = 1, 0,−1, . . .. Also

K−1:


t′ = t+ t2vζ2(ζ)p(x)e−1/x +O(t3),

ζ ′2 = ζ2 − tv(ζ)p(x)e−1/x +O(t2),
x′ = x, ′ζ ′ = ′ζ.

Define H1 2 = ρKρK−1. Recall that p = −p. We get

H1 2:


t′ = t+ 2t2vζ2(ζ)p(x)e−1/x +O(t3),

ζ ′2 = ζ2 − 2tv(ζ)p(x)e−1/x +O(t2),
x′ = x, ′ζ ′ = ′ζ.

Put H4 1 = H2 3 = id, and H3 4 = τ̂1H1 2τ̂1.

For r > 0 put H∗
j j+1 = D−1

r Hj j+1Dr with Dr(x, t, ζ) = (rx, t, rζ). We
get

H∗
1 2:


t′ = t+ 2t2vζ2(rζ)p(rx)e−

1
rx +O(t3),

ζ ′2 = ζ2 − 2r−1tv(rζ)p(rx)e−
1

rx +O(t2),
x′ = x, ′ζ ′ = ′ζ.

Assume that H and H∗ are equivalent by some Gj satisfying G∗
j ω̂ = ω̂ and

other conditions. So we have G1 = G4, G3 = τ̂1G1τ̂1 = ρG4ρ and Gj :x′ =
xaj(x, ζ), t′ = tλj(x, ζ), ζ ′ = cj(x, ζ). Also d(xaj(x, ζ))3 ∧ dcj2(x, ζ) ∧ · · · ∧
dcj n−1(x, ζ) = dx3 ∧ dζ2 ∧ · · · ∧ dζn−1.

Assume that G1H1 2 = H∗
1 2G2. The x-component of G1H1 2 = H∗

1 2G2

says that a1 ◦H1 2(x, t, ζ) = a2(x, ζ) on (V1∩V2)×{t: e−
δ

|x| < |t| < e−
δ

|x| }×
∆n−2
δ . In particular a1(x, ζ) is independent of ζ2 since p(x)v(ζ) �≡ 0, and

a1(x, ζ) = a2(x, ζ) on (V1∩V2)×∆n−2
δ and hence on (V3∩V4)×∆n−2

δ because

τ̂1Gj = Gj+2τ̂1. Now a(x, ′ζ) def== aj(x, ζ) is holomorphic near 0 ∈ C
n−1. The

t-component of G1H1 2 = H∗
1 2G2 says that
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(1 + 2tvζ2(ζ)p(x)e−1/x)λ1(x, ζ2 − 2tv(ζ)p(x)e−1/x, ′ζ)
= λ2(x, ζ){1 + 2tλ2(x, ζ)vζ2(rc2(x, ζ))p(rxa(x,

′ζ))e−
1

rxa(x, ′ζ) } +O(t2).
(8.20)

Comparing the constant terms in the expansion in t, we get λ1(x, ζ) =
λ2(x, ζ) on (V1∩V2)×∆n−2

δ and hence on (V3∩V4)×∆n−2
δ by τ̂1Gj = Gj+2τ̂1.

Write λj = λ. The coefficients of t in (8.20) say that

(vζ2(ζ)λ(x, ζ) − λζ2(x, ζ)v(ζ))p(x)
= λ(x, ζ)2vζ2(rc2(x, ζ))p(rxa(x,

′ζ))e
1
x− 1

rxa(x, ′ζ) .
(8.21)

Recall that by the definition of Gj , λ(x, ζ) admits an asymptotic expansion
vanishes nowhere. As x > 0 tends to zero, the left hand side of (8.21), by
setting ζ = 0, is λ(0, 0) �= 0 since vζ2(0) �= 0 = v(0), while the right-hand
side, after removing e

1
x− 1

rxa(x, ′ζ) , admits an asymptotic expansion which is
not identically zero too. Note that a(x, 0) is real-valued when x is real.
Hence ra(0) = 1. Note that the identity (8.21) holds for Im x < 0 and small
|x|. The location of the poles of p(x) indicates that a(x, ′ζ) is independent
of ′ζ. Set ′ζ = 0 and let x → 0+. When j is large and ζ is small, we have
|a(0)|/2 < |a(xj , ′ζ)| < 2|a(0)|. As before the magnitudes of the residues on
both sides of (8.21) indicate that

ra(x, ′ζ) = 1.

The ζ-component of G1H1 2 = H∗
1 2G2 says that on (V1 ∩ V2) × ∆n−2

δ

c1 2 ◦H1 2(x, t, ζ) = c2 2(x, ζ) − 2r−1tλ(x, ζ)v(rc2(x, ζ))p(x)e−
1
x +O(t2),

c1 j ◦H1 2(x, t, ζ) = c2 j(x, ζ), 2 < j < n.
(8.22)

The last identity implies that c1 j(x, ζ) are independent of ζ2 and c1 j = c2 j
for j > 2. In the first identity above, the constant terms of the Laurent series
expansion in t say that c1 2 = c2 2. We obtain c1 = c2 on (V1 ∩ V2) × ∆n−2

δ

and hence on (V3 ∩V4)×∆n−2
δ by τ̂1Gj = Gj+2τ̂1, and we can write cj = c.

Put c = (c2, . . . , cn−1) by abuse of notation. From d(r−1x)3 ∧ dc2(x, ζ) ∧
· · ·∧dcn−1(x, ζ) = dx3∧dζ2∧· · ·∧dζn−1, we see that for ′ζ = (ζ3, . . . , ζn−1)

c2(x, ζ) = α(x, ′ζ)z2 + β(x, ′ζ), cj(ζ) = cj( ′ζ) (j = 3, . . . , n− 1), (8.23)

r3α−1 = det
∂(c3, . . . , cn−1)
∂(ζ3, . . . , ζn−1)

, (8.24)

in which the right-hand side of (8.24) is 1 when n = 3. The coefficients of t
in (8.22) say that

c2ζ2(x, ζ)v(ζ) = r−1λ(x, ζ)v(rc(x, ζ)). (8.25)

– 47 –



Patrick Ahern and Xianghong Gong

Looking at the vanishing order of both sides, we see that c2ζ2(0) �= 0.

So far we have not used the particular form of v(ζ), except that vζ2
�= 0 = v(0).

Assume n > 3 first. Now we use the definition of v(ζ). Comparing the
Weierstrass polynomials in ζ2 of both sides of (8.25) and recalling that
c3, . . . , cn−1 are independent of ζ2, we obtain

(rαζ2 + rβ)n + (rαζ2 + rβ)n−1 + rαζ2 + rβ +
n−1∑
j=3

rcj(x, ζ)(rαζ2 + rβ)j−1

= (rα)n(ζn2 + ζn−1
2 + ζ3ζ2 + · · · + ζn−1ζ

n−2
2 + ζ2).

(8.26)
Since β(0) = 0 and cj(0) = 0, comparing the coefficients of ζ0

2 , ζ
1
2 , . . . yields

β = 0 and
rα(x, ′ζ) = 1, rcj(x, ζ) = ζj , j > 2.

Now (8.24) implies that r = 1 = α since r > 0. And (8.25) implies λ = 1.
When n = 3, it is straightforward that r = α = λ = 1 and β = 0.

Assume that G1H1 2 = H∗
3 4G2 for

H∗
3 4 = τ̂1H

∗
1 2τ̂1:


t′ = t+ 2vζ2(rζ)p(−rx)e

1
rx +O(t−1),

ζ ′2 = ζ2 + 2r−1t−1v(rζ)p(−rx)e
1

rx +O(t−2),
x′ = x, ′ζ ′ = ′ζ,

where by O(t−k) with k > 0 we mean a Laurent series expansion in t (for
e−

δ
|x| < |t| < e

δ
|x| ) containing no terms tl for l = −k + 1,−k + 2, . . .. Since

Gj is given by x′ = xaj(x, ζ), t′ = tλj(x, ζ), ζ ′ = cj(x, ζ)), it is clear that
the ζ2-component of H∗

3 4G2(x, t, ζ) has a non-zero coefficient for t−1. But
the ζ2-component of G1H1 2(x, t, ζ) has zero coefficient for t−1. Therefore
G1H1 2 = H∗

3 4G2 never occurs.

We just proved that {D−1
r Hj j+1Dr} is not equivalent to {Hj j+1} by

Gj preserving ω̂, if r > 0 and r �= 1.

We have finished the proof of Theorem 2.1.

One can also conclude that different positive r values correspond to
different equivalent classes too. For if D−1

r1 Hj j+1Dr1 and D−1
r2 Hj j+1Dr2

are equivalent by Gj . Then Hj j+1 and D−1

r2r
−1
1
Hj j+1Dr2r−1

1
are equivalent

by Dr1GjD
−1
r1 .

Remark 8.1. — The above proof also shows that in the (x, t, ζ)-space
{Hj j+1} is equivalent to itself by Gj = id only. In the (x, y, ζ)-space,
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this means that Gj = σ̂k. Now the reality condition on {Gj} implies that
Gj = id.

9. Proof of Theorem 2.2

Put ′x = (x2, . . . , xn−1), ζ = (ζ2, . . . , ζn−1), ω0 = dz1 ∧ · · · ∧ dzn and
ω̂ = xdx ∧ dy ∧ dζ2 ∧ · · · ∧ dζn−1. Consider a real analytic manifold

M :

{
zn = (z1 + z1)2 + E(z1, z1,

′x), E(z1, z1,
′x) = O(3),

yα = Fα(z1, z1,
′x), Fα(z1, z1,

′x) = O(2), 1 < α < n

with Re ω0|M = 0.

Consider the linear map

f = L−1
r : z → (r−1z1, · · · , r−1zn−1, r

−2zn), r > 0.

Then M̃ = f(M) is given by

M̃ :

{
zn = (z1 + z1)2 + Ẽ(z1, z1), E(z1, z1,

′x) = O(3),

yα = F̃α(z1, z1,
′x), F̃α(z1, z1,

′x) = O(2), 1 < α < n

with Reω0|M̃ = 0. The complexification of f is

F : (z, w) → (f(z), f(w)).

Let M c ⊂ C
n×C

n be the complexification of M . Let τ0
1 , τ

0
2 be the branched-

covering transformations of projections M c to z and w spaces, respectively.
Define τ̃0

1 , τ̃
0
2 analogously for M̃ c.

Then Fτ0
j = τ̃0

j F and Fρ0 = ρ0F .

Now we apply Proposition 7.1. The first part of requirements on moduli
functions is the existence of a biholomorphism ϕ: Cn → M c, ϕ(0) = (0, 0)
satisfying

ϕ−1τ0
j ϕ = τj : (x, y, ζ) → (−x, y + (−1)j−12x, ζ) + x ·O(1),

ω
def==ϕ∗ω0|Mc = A(x, y, ζ)ω̂, A(0) = 1.

The second part of requirements on moduli function {Hj j+1} of M is the
followings

H−1
j+2τkHj = τ̂k: (x, y, ζ) → (−x, y + (−1)j−12x, ζ),
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ρH1ρ = H2, ρH3ρ = H4, ρ: (x, y, ζ) → (x,−y, ζ),

H∗
j ω = ω̂ = x dx ∧ dy ∧ dζ2 ∧ · · · ∧ dζn−1,

Hj ∼ Φ: (x, y, ζ) → (xa(x, y, ζ), y + b(x, y, ζ), ′z + c(x, y, ζ)) on Vj × ∆n−1
r

Hj j+1 = H−1
j Hj+1, (Vj ∩ Vj+1) × ∆n−1

r ,

where Vj = i1−j{x:−ε < arg x < π/2 + ε, 0 < |x| < r}, ∆r = {y ∈ C: |y| <
r}, and a(x, y, ζ) with a(0) = 1 and (b(x, y, ζ), c(x, y, ζ)) = O(2), are formal
power series whose coefficients are holomorphic in y, ζ in a neighborhood of
the origin.

Next, we assume that a set of moduli function Hj j+1 of M has been
given. Then we want to find moduli functions for M̃ , by using those of M .

For a positive number r put

Dr: (x, y, ζ) → (rx, ry, rζ),

ϕ̃ = FϕDr: Cn → M c
r , ϕ̃(0) = (0, 0).

Then we have

ϕ̃−1τ̃0
k ϕ̃ = (FϕDr)−1Fτ0

kF
−1(FϕDr) = D−1

r τkDr
def== τ̃k: (x, y, ζ) → (−x, y + (−1)j−12x, ζ) + x ·O(1),

ϕ̃−1ρ0ϕ̃ = (FϕDr)−1Fρ0F−1(FϕDr) = ρ, r ∈ R.

Also

ω̃
def== ϕ̃∗dz1 ∧ · · · ∧ dzn|M̃c = (FϕDr)∗dz1 ∧ · · · ∧ dzn|M̃c

=
1

rn+1
D∗
rϕ

∗dz1 ∧ · · · ∧ dzn|Mc

=
1

rn+1
D∗
rω = A(rx, ry, rζ)x dx ∧ dy ∧ dζ2 ∧ · · · ∧ dζn−1

def== Ã(x, y, ζ)x dx ∧ dy ∧ dζ2 ∧ · · · ∧ dζn−1, Ã(0) = 1.

(9.1)

Remark. — The equation (9.1), and hence Ã(0) = 1, is the only place
where we used the non-isotropic dilation f = L−1

r . All other computations
remain true for any biholomorphism f .

We still need to find a set of moduli functions for M̃ . Put H̃j = D−1
r HjDr.

We have
H̃j j+1

def== H̃j+1H̃j = D−1
r Hj j+1Dr,
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H̃j+2τ̃kH̃j = D−1
r H−1

j+2τkHjDr = τ̂k,

ρH̃1ρ = ρD−1
r H1Drρ = H̃2, ρH̃3ρ = H̃4,

H̃∗
j ω̃ = (D−1

r HjDr)∗(
1

rn+1
D∗
rω) = ω̂,

H̃j ∼ D−1
r ΦDr:x → xa(rx, ry, rζ), y → y +

1
r
b(rx, ry, rζ),

ζ → 1
r
c(rx, ry, rζ).

Therefore D−1
r Hj j+1Dr form a set of moduli functions of M̃ . The theorem

is proved by choosing Hj j+1 such that D−1
r Hj j+1Dr and Hj j+1 are not

equivalent if r > 0 and r �= 1. The existence of such an {Hj j+1} has been
constructed in previous two sections.

This finishes the proof of Theorem 2.2.

Given a germ of real manifoldM in C
n at the origin, denote by Autvol(M)

the germs of holomorphic maps ϕ on C
n such that ϕ(0) = 0, ϕ(M) = M ,

and ϕ∗dz1 ∧ · · · ∧ dzn = dz1 ∧ · · · ∧ dzn. The proof of Theorem 2.1 can be
modified to yield some real analytic manifolds M with a parabolic complex
tangent of which Autvol(M) is finite.

Proposition 9.1. — Let n � 2, and let k = 1 for n = 2 and k = 2j for
some integer 0 � j � n−2. There exists a real analytic manifold M which is
equivalent to zn = (z1 + z1)2, Imz2 = · · · = Imzn−1 = 0 under some formal
unimodular holomorphic map such that Autvol(M) has exactly k elements.

Proof. — Let us recall the correspondence between M and its moduli
functions. For a real analytic manifold M which has parabolic complex
tangents along a hypersurface in M . We have a totally real and real ana-
lytic embedding ∆:M → M c ⊂ C

2n. Two branched coverings from M c to
C
n yields two involutions τj . There are holomorphic maps Hj defined on

sectorial domains such that H−1
j+2τkHj = τ̂k and H∗

j dz1 ∧ · · · ∧ dzn|Mc =
xdx∧dy∧dζ2∧· · ·∧dζn−1. We have Hj j+1 = H−1

j Hj+1. Thus if a unimodu-
lar holomorphic map ϕ preserves M then Gj = H−1

j ϕHj or Gj = H−1
j+2ϕHj

preserves the moduli functions Hj j+1 and xdx ∧ dy ∧ dζ2 ∧ · · · ∧ dζn−1.
Clearly, distinct maps ϕ correspond to distinct sets of {Gj}.

Now the proof of Theorem 2.2 yields examples of M with
|Autvol(M)| = 1.
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Let n > 2 and k = 2j for some integer 1 � j � n − 1. Let p be defined
by (8.17). For j = 1 put v(ζ) = ζ2n−1

2 + ζ2n−3
2 + ζ2 +

∑n−1
k=3 ζkζ

2k−3
2 . For

1 < j � n− 2 put

v(ζ) = ζ2n−1
2 + ζ2n−3

2 + ζ2 +
j+1∑
k=3

ζ2
kζ

2k−3
2 +

n−1∑
k=j+2

ζkζ
2k−3
2 .

If GjHj j+1G
−1
j+1 = Hj j+1, then (8.26), which is obtained from (8.25), is

just v(c(x, ζ)) = α2n−1(x, ζ)v(ζ). By (8.23) we obtain β = 0 and

α2 = 1, c23 = · · · = c2j+1 = 1 = cj+2 = · · · = cn−1.

One can also show that GjHj,j+1G
−1
j+1 = Hj+2 j+3 is impossible. Therefore,

in the (x, y, ζ)-space, {Hj j+1} is preserved byGj(x, y, ζ) = (αx, αy, c2ζ2, . . . ,
cn−1ζn−1) and σ̂mGj . For the latter we must have m = 0, since Gj+2 =
τ̂1Gj τ̂1. This shows that Autvol(M) has exactly 2j elements. �

10. Appendix A – Normalization on sectorial domains

We now recall the following fundamental theorem of Varonin[10].

We change the notation slightly. Let z = (z3, · · · , zn) and

f̂(x, y, z) = (x, y + x, z), f̂∗(x, y) = (x, y + x).

Theorem 10.1. — Let (x, y, z) be the coordinates of C
n. Let f be a holo-

morphic map on C
n of the form

(x, y, z) → (x+ x2p(x, y, z), y + x+ xq(x, y, z), z + xs(x, y, z))

where q(0) = 0 = s(0). Let α < β < α+π. There exist r depending on α, β,
and a holomorphic map B defined on {x:α < arg x < β, |x| < r} × ∆n−1

r

such that on {x:α < arg x < β, |x| < r}×∆n−1
r , B−1fB = f̂ and B admits

the asymptotic expansion Φ which preserves x = 0 and satisfies Φ′(0) = id
and Φ|y=0 = id.

Proof. — Voronin gave a proof for n = 2. For the convenience of the
reader only, we modify it for n > 2.

Applying (x, y, z) → (ax, ay, z), we may assume that the sector is

Vε,α ⊂ C: | arg x| < π

2
− α, 0 < |x| < ε sin 2α.
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In the y-plane consider the rhombus V̂ε,α with vertices

0, A = εei(
π
2 −α), A, B = 2ε sinα.

V̂ε,α is the smallest rhombus that contains the sector Vε,α and has the origin
as one of vertices. All sides of V̂ε,α have length ε. Let Rε,α be the smallest
rhombus centered at the origin and has four sides parallel to sides of V̂ε,α.
The vertices of Rε,α are

B, −B, C = i2ε cosα, −C.

We also need to consider rhombuses which are contained in Rε,α. We start
with rhombus

R(1−θ)ε,(1+ θ
π )α ⊂ C, 0 < θ < 1/2, (1 +

θ

π
)α <

π

2
.

Its vertices are

B′ = 2(1 − θ)ε sin(1 +
θ

π
)α, −B′, C ′ = i2(1 − θ)ε cos(1 +

θ

π
)α, −C ′.

Let us first verify that R(1−θ)ε,(1+ θ
π )α ⊂ Rε,α. Indeed, using sinx � 2

πx for
0 � x � π/2 we obtain

1
2ε

(B −B′) = sinα− (1 − θ) sin(1 +
θ

π
)α � θ

2α
π

− (1 − θ)
θα

π
� θα

π
.

We also have

1
2εi (C − C ′) = cosα− (1 − θ) cos(1 +

θ

π
)α

� θ cosα + (1 − θ) sinα sin θα
π

� min{ θ√
2
,

θ

4
√

2π
} =

θ

4
√

2π

Note that 1
2ε (B − B′) � θα and 1

2εi (C − C ′) � 2θ. Denote [B,C] the
line segment connecting B to C. It is so oriented if needed. The boundary
Γ = Γε,α of Rε,α is the union of

Γ+ = [C,−B] ∪ [−B,−C], Γ− = [−C,B] ∪ [B,C].

We will orient Γ+,Γ− counterclockwise as above when an orientation is
needed. We have dist(Γε,α,Γ(1−θ)ε,(1+ θ

π )α) = dist([B,C], [B′, C ′]) and by
cosα > cos π

2(1+ θ
π )

= sin θ
2(1+ θ

π )
� θ

2π we get
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dist([B,C], [B′, C ′]) = min((B −B′) cosα, |C − C ′| sinα) � 4εθα,

dist([B,C], [B′, C ′]) � 2εmin(
θα cosα

π
,

θα

2
√

2π2
) � εθ2α

π2
.

(10.1)

For x ∈ V(1−θ)ε,(1+ θ
π )α, we have dist(x,C \ Vε,α) � min(|x| sin θα

π , θε).
Hence

dist(x,C \ Vε,α) � αθ|x|/8, x ∈ V(1−θ)ε,(1+ θ
πα). (10.2)

Let ϕ be a holomorphic function on S with

S = Sε,α = Vε,α ×Rε,α × ∆n−2
ε .

Let y0 = −C and

ϕ+(x, y, z) =
∫

Γ+

ϕ(x, t, z)
2πi

[
1

t− y
− 1
y0 − y

]dt,

ϕ−(x, y, z) =
∫

Γ−

ϕ(x, t, z)
2πi

[
1

t− y
− 1
y0 − y

]dt.

Then on S we have ϕ = ϕ+ + ϕ−. Let

h+(x, y, z) =
∞∑
k=0

ϕ+(x, y + kx, z), h−(x, y, z) =
−∞∑
k=−1

ϕ−(x, y + kx, z).

Put h̃ = h+ + h− and h(x, y, z) = h̃(x, y, z) − h̃(x, 0, z). Note that h+, h−
are defined on U = S ∪ f̂(S), and that on S

h(x, y, z) − h(x, y + x, z) = ϕ(x, y, z), h(x, 0, z) = 0.

We can write

h±(x, y, z) =
∫

Γ±
ϕ(x, t, z)E±(t, x, y, y0)dt

with E(t, x, y, y0) = 1
2πixG±(y0−tx , y−tx ) for

G+(a, b) =
∞∑
k=0

(
1

k + a
− 1
k + b

), G−(a, b) =
−∞∑
k=−1

(
1

k + a
− 1
k + b

).

If | arg a| < π−γ, 0 < γ < π/2 and k � 0, then |a+k| � |a| sin γ � 2|a|γ/π.
In particular, |a + k| � kγ/π for k � |a|/2. Assume that 0 < |a| � |b|, and
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| arg a|, | arg b| are less than π− γ. Then 1
|b−a| |G+(a, b)| is less than the sum

of 1
|a||b| and 4 partial sums:∑

1�k�|a|/2

1
|a||b| sin2 γ

<
c′0

|b|γ2
,

∑
|a|/2<k�2|a|

π

|b|kγ sin γ
<

c′0
|b|γ2

,

∑
2|a|<k�2|b|

2
k|b| sin γ <

c′0
|a|γ ,

∑
k>2|b|

4
k2

<
c′0
|b| .

Thus for 0 < γ < π/2

1
|b− a| |G+(a, b)| � c′′0

|a||b|+
c′′0

γ2 min(|a|, |b|) , | arg a| < π−γ, | arg b| < π−γ.

Recall that f̂∗(x, y) = (x, y + x) and denote S∗
j = V(1−jθ)ε,(1+ jθ

π )α ×
R(1−jθ)ε,(1+ jθ

π )α. When t ∈ Γ+
ε,δ and (x, y) ∈ S

∗
1, we have | arg(y − t)| <

| arg(−B + C)| = π
2 + α and | arg x| < π

2 − (1 + θ
π )α. So

| arg
y − t

x
| � | arg(y − t)| + | arg x| � π − θα

π
.

Also |y−tx | � θ2αε
π2|x| by (10.1) and |y−tx − y0−t

x | � 2ε
|x| . One gets

|E±(t, x, y, y0)| � c0
4θ4α3|x| , (x, y) ∈ S∗

1 ∪ f̂∗(S∗
1 ), t ∈ Γ±

ε,α.

(The estimate for E− on f̂∗S∗
1 is analogous to that of E+ on S1.) Fix

z ∈ ∆n−2
ε . We have

|h±(x, y, z)| � c0ε

|x|θ4α3
sup
y∈Γε,α

|ϕ(x, y, z)|, (x, y) ∈ S∗
1 ∪ f̂∗(S∗

1 ).

The above is for a solution h to h − hf̂ = ϕ when ϕ is a function. We
want to apply the solution to the mapping case.

We need a lemma on mappings defined on sectorial domains.

For a mapping ψ = (ψ1, . . . , ψn) defined on Sε,α it is convenient to use
norm

[ψ]N,ε,α = sup
Sε,α

{| ψ1

xN+1
|, | ψ2

xN
|, . . . |ψn

xN
|}.

Recall Sε,α = Vε,α ×Rε,α × ∆n−2
ε . In brief, put Vj = V(1−jθ)ε,(1+ jθ

π )α, Sj =
S(1−jθ)ε,(1+ jθ

π )α, and [ψ]N,j = [ψ]N,(1−jθ)ε,(1+ jθ
π )α, etc. For a matrix A =

(ai,j)n×n, we denote |A| = maxi
∑
j |ai,j |.

– 55 –



Patrick Ahern and Xianghong Gong

Lemma 10.2. — Let k,N be positive integers. Let 0 < ε < 1/4 and
0 < θ < 1

2k , and 0 < (1 + kθ
π )α < π

2 . Let H = id + h:Sε,α → C
n be

holomorphic. There exist constant c1 > 1, ck,n > 1, independent of N,h, θ, ε,
such that if

[h]N,ε,α � c−1
k,nθ

2α

then H is injective on S1, and H, H−1 = id + h̃ satisfy

H:Sj → Sj−1, j = 1, 2, . . . , k, (10.3)

[h̃]N,2 � 2[h]N,ε,α, (10.4)

H−1:Sj+1 → Sj , j = 1, 2, . . . , k. (10.5)

Moreover, HH−1 = id on S2 and H−1H = id on S3. In particular, H(Sj)
⊃ Sj+1 and H−1(Sj+1) ⊃ Sj+2 for j = 1, . . . , k.

In the above lemma if we assume additionally that [hf̂ ]N,ε,α � c−1
k,nθ

2α, then
H is injective on S1 ∪ f̂S1 by choosing a possibly large constant ck,n. (See
the proof of the lemma.) Consequently, H−1 is well-defined on Sj+1∪ f̂Sj+1

(and map it into Sj ∪ f̂Sj) for j = 1, . . . , k.

Let us postpone the proof of the lemma and continue the proof of the
theorem. For the rest of proof of the theorem, all constants c̃1, c2, c′2, . . . may
depend only on n but not on other quantities and they are all larger than 1.

Write H = id+h with h = (h1, . . . , hn), f = f̂+ϕ with ϕ = (ϕ1, . . . , ϕn).
Then HfH−1 = f̂ becomes ϕ + hf = f̂h. Voronin solved the equation
through a sequence of approximations. The linearized equation is ϕ+ hf̂ =
f̂h, and in components it becomes

h1(x, y, z) − h1(x, y + x, z) = ϕ1(x, y, z),

h2(x, y, z) − h2(x, y + x, z) = ϕ2(x, y, z) − h1(x, y, z),

hj(x, y, z) − hj(x, y + x, z) = ϕj(x, y, z), j = 3, . . . , n.

Solve the first and third equations with estimates on S∗
(1− θ

2 )ε,(1+ θ
2π )α

and
then the second equation on S∗

(1−θ)ε,(1+ θ
π )α

. For (x, y) ∈ S∗
(1−θ)ε,(1+ θ

π )α
∪

f̂∗(S∗
(1−θ)ε,(1+ θ

π )α
) we have

|hj(x, y, z)| � c̃1ε

|x|θ4α3
sup
Γε,α

|ϕj(x, y, z)|, j �= 2,

|h2(x, y, z)| � c̃1ε

|x|θ4α3
sup
Γε,α

|ϕ2(x, y, z)| +
c̃21ε

2

|x|2θ8α6
sup
Γε,α

|ϕ1(x, y, z)|.
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The above estimates imply

[h]N−1,1 � c2ε

θ8α6
[ϕ]N,ε,α, [h ◦ f̂ ]N−1,1 � c2ε

θ8α6
[ϕ]N,ε,α. (10.6)

Write HfH−1 = f̂ + ϕ̃. We need to estimate ϕ̃. Roughly, we want to bound
the norm [ϕ̃] (on a shrunk sectorial domain) by [ϕ]2. We will apply Lemma
10.2 several times. We need to keep track the domains and ranges of map-
pings. We now take k = 20 in Lemma 10.2, which will suffice our purpose.
(So we assume that 0 < θ < 1

40 and (1+ 20θ
π )α < π

2 .) And denote c20,n = c∗.

Assume that

[ϕ] def==[ϕ]N,ε,α � θ10α7

2c∗c2
. (10.7)

We then have [f̂−1ϕ]N,0 � 2[ϕ] � θ10α7

c∗c2
. Hence f(Sj) ⊂ f̂(Sj−1), f−1(Sj+1)

⊂ f̂−1(Sj) for j = 1, . . . , 20.

Both [h]N−1,1 and [hf̂ ]N−1,1 are less than θ2α
2c∗

. We have [f̂−1hf̂ ]N−1,1 �
θ2α
c∗

. To apply Lemma 10.2 to f̂−1Hf̂ = id + f̂−1hf̂ , in which ε, α are
replaced by (1 − θ)ε, (1 + θ

π )α we let

S′
j = S(1−jθ)(1−θ)ε,(1+ jθ

π )(1+ θ
π )α.

We obtain H(f̂(S′
1)) ⊂ f̂(S′

0) = f̂(S1). Since Sj+2 ⊂ S′
j ⊂ Sj for 1 �

j � 20, then H(f̂(S3)) ⊂ f̂(S1). Applying Lemma 10.2 to f̂−1f , we get
f(S4) ⊂ f̂(S3). Applying Lemma 10.2 to H, we obtain H−1(S′

5) ⊂ S′
4 ⊂ S4.

Therefore, f̃ = HfH−1 maps S′
5 into f̂(S1).

Note that
H(S′

j) ⊂ S′
j−1, H(f̂S′

j) ⊂ f̂S′
j−1,

H−1(S′
j+1) ⊂ S′

j , H−1(f̂S′
j+1) ⊂ f̂S′

j , j = 1, . . . , 20.

Also HH−1 = id on S′
2 ∪ f̂S′

2 and H−1H = id on S′
3 ∪ f̂S′

3.

The domains f̂(Sj) are not product domains, which cause difficulties
in estimating derivatives. So we will pull all maps back on Sj . Set g =

f̂−1f = id +ψ. We have [ψ] def==[ψ]N,ε,α � 2[ϕ]. Recall that ϕ̃ = HfH−1 − f̂

is defined on S′
5. From the linearized equation ϕ = f̂h − hf̂ , which holds

on S1(⊃ H−1S′
5), we get ϕ̃H = hf − hf̂ on H−1S′

5. The latter is actually
defined on S4, for which we first estimate. We write hf̂ = p. So

hf − hf̂ = (p1g − p1, p2g − p2, . . . , png − pn).
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Write p = (xNp′1, x
N−1p′2, . . . , x

N−1p′n) and ψ = (xN+1ψ′
1, x

Nψ′
2, . . . , x

Nψ′
n).

Note that g(S4) = f̂−1f(S4) ⊂ S3. Next, we estimate the derivatives of pj .
For 0 � t � 1, put xt = x + txN+1ψ′

1(x, y, z), yt = y + txNψ′
2(x, y, z) and

zt = z + txN (ψ′
3, . . . , ψ

′
n)(x, y, z) we have

∂p1

∂x
(xt, yt, zt) = NxN−1

t p′1(xt, yt, zt) + xNt
∂p′1
∂x

(xt, yt, zt).

Since |x| < ε < 1/2 and |ψ′
1| < 1/2 by (10.7) we have

|(x+ txN+1ψ′
1)
N−1| � |x|N−1e(N−1)|x|N ||ψ′

1| < 2|x|N−1.

Note that (xt, yt, zt) = tg(x, y, z) + (1 − t)(x, y, z) and it is in the convex
domain S3; consequently

|p′1(xt, yt, zt)| � sup
S3

|p′1| � [p]N−1,1 = [hf̂ ]N−1,1.

Also |txN+1ψ′
1(x, y, z)| < |x|[ϕ] < |x|/2. By (10.2) we have dist(xt,C\V1) �

θα|xt|/8 and hence |∂p
′
1

∂x (xt, yt, zt)| � 8
θα|xt| supS1

|p′1| � c3
θ9α7|x| [ϕ], by (10.6).

Also

|∂p
′
1

∂y
(xt, yt, zt)| � c′3

θ2αε
sup
S1

|p′1| � c2c
′
3

θ10α7
[ϕ], |∂p

′
1

∂zj
(xt, yt, zt)| � c2c

′
3

θ9α7
[ϕ].

Recall that on S4 we have |ψ′
j | � [ψ] � 2[ϕ]. By using a line integral, we

conclude

|(p1g − p1)(x, y, z)|= |p1(x+xN+1ψ′
1, y+xNψ′

2,. . . , zn + xNψ′
n) − p1(x, y, z)|

� c4N

θ10α7
|x|2N [ϕ]2N,ε,α, (x, y, z) ∈ S4.

Analogously, we obtain

|(pjg − pj)(x, y, z)|= |pj(x+xN+1ψ′
1, y+xNψ′

2,. . . , zn + xNψ′
n) − pj(x, y, z)|

� c′4N

θ10α7
|x|2N−1[ϕ]2N,ε,α, (x, y, z) ∈ S4, 1 < j � n.

Hence for f̃ = HfH−1 = id+ ϕ̃ on S′
5, we have

|ϕ̃1|
|x ◦H−1|2N � c5N

θ10α7
[ϕ]2N,ε,α,

|ϕ̃j |
|x ◦H−1|2N−1

� c5N

θ10α7
[ϕ]2N,ε,α, j > 1.

By Lemma 10.2 we have [h̃]N−1,6 � 2[h]N−1,1, and by (10.6) and (10.7) we
get |x1 ◦H−1|k = |x + xN h̃1(x, y, z)|k � |x|k(1 − kεN−1[h̃]N−1,6) � |x|k/2
for k = 2N, 2N − 1. Hence

[ϕ̃]2N−1,(1−5θ)(1−θ)ε,(1+ 5θ
π )(1+ θ

π )α � c6N

θ10α7
[ϕ]2N,ε,α.
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We now linearize f by a sequence of mappings. We change notations. If
we are given fk = f̂ + ϕk on Sk = Sεk,αk

we can find Hk+1 = id + hk+1 on
Sk+1 = Sεk+1,αk+1 with εk+1 = (1−5θk)(1−θk)εk and αk+1 = (1+ 5θk

π )(1+
θk

π )αk, such that fk+1 = Hk+1fkH
−1
k+1 = f̂ + ϕk+1 is defined on Sk+1 and

[hk+1]
def== max

{
[hk+1f̂ ]

Nk−1,(1−θk)εk,(1+
θk
π )αk

, [hk+1]Nk−1,(1−θk)εk,(1+
θk
π )αk

}
� c2εk

θ8
kα

6
k

[ϕk],

[ϕk+1]
def==[ϕk+1]Nk+1,εk+1,αk+1 � c7Nk

θ10
k α7

k

[ϕk]2

(10.8)
for Nk+1 = 2Nk − 1, provided

[ϕk] = [ϕk]Nk,εk,αk
� θ10

k α7
k

2c2c∗
def== 8n(k + 1)2c3bk. (10.9)

Note that by Lemma 10.2 and (10.9) we have

fk(Sk,j) ⊂ f̂(Sk,j−1), j = 2, . . . , 20

for Sk,j = S
(1−jθk)εk,(1+

jθk
π )αk

. Set S′
k,j

def==S
(1−jθk)(1−θk)εk,(1+

jθk
π )(1+

θk
π )αk

.
For Hk+1 = id + hk+1, using (10.8) and Lemma 10.2, we obtain

Hk+1(S′
k,j) ⊂ S′

k,j−1, H−1
k+1(S

′
k,j+1) ⊂ S′

k,j , j = 1, . . . , 20,

Hk+1(f̂S′
j) ⊂ f̂S′

j−1, H−1
k+1(f̂S

′
j+1) ⊂ f̂S′

j , j = 1, . . . , 20. (10.10)

Also Hk+1H
−1
k+1 = id on S′

k,2 ∪ f̂S′
k,2 and H−1

k+1Hk+1 = id on S′
k,3 ∪ f̂S′

k,3.

Take N0 = 3. So Nk = 2k+1 +1. We are given α0 ∈ (0, π2 ). Take θk = β
2k ,

and fix β > 0 such that θ0 < 1
40 and α∞ = limk→∞ αk < π/2. Set ε∞ =

limk→∞ εk and S∞ = Sε∞,a∞ . It remains to choose an ε0 ∈ (0, 1/4). Let
a0 = [ϕ0], which depends only on ε0 (and f), and let

ak+1 =
c7Nk
θ10
k α7

k

a2
k.

We may assume that a0 �= 0. Then ak+1
ak

� 210( ak

ak−1
)2 for k � 1. With bk

being defined in (10.9), bk+1
bk

� 1
4 ( θk+1

θk
)10 = 1

212 . By the semi-formal theory,
we can find a holomorphic map

B0(x, y, z) = (x+ xB′
0, y +B′′

0 , z +B′′′
0 ), B0 = id +O(2)
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such that f ≡ B0fB
−1
0 = f̂ + O(|x|4). We choose ε0 ∈ (0, 1/4) such that

[ϕ0] � b0 (in particular (10.9) holds for k = 0) and

a1

a0
=

c7N0

θ10
0 α7

0

[ϕ0] <
1

212
.

For induction, we assume that ak � bk and ak+1
ak

< 1
212 . Then ak+1 �

212( ak

ak−1
)2ak � 1

212 ak � 1
212 bk � bk+1 and ak+2

ak+1
� 212(ak+1

ak
)2 < 1

212 . There-
fore ak � bk for all k. We have [ϕ1] � a1 � b1. So we can find H1. By
induction, we can show that the sequence Hk is well-defined for all k and
[ϕk] � ak � bk for all k.

Next, we want to find a domain on which Ak = HkHk−1 · · ·H1 is defined.
Recall that θk = β

2k . For i = 14, we have

Hk+1(S(1−iθk)(1−θk)εk,(1+
iθk
π )(1+

θk
π )αk

)
⊂ S

(1−(i−1)θk)(1−θk)εk,(1+
(i−1)θk

π )(1+
θk
π )αk

(by 10.3)

⊂ S
(1−iθk+1)(1−θk+1)εk+1,(1+

iθk+1
π )(1+

θk+1
π )αk+1

def==S′
k+1,i.

(For the last inclusion to hold, we might need to choose a smaller β,
and hence a smaller ε0. However, the inclusion remains true regardless the
choice of ε0 . We will also adjust β a few times.) Hence Ak(S′

0,14) ⊂ S′
k,14.

Also Ak(f̂S′
0,14) ⊂ f̂S′

k,14. From Hkfk−1H
−1
k = fk we want to conclude that

Akfk = f0Ak holds on S′
0,17. The statement is trivial for k = 1. Assume

it holds for k = m. First, we have f0(S′
0,17) ⊂ f0(S0,17) ⊂ f̂(S0,16) ⊂

f̂(S′
0,14), where the last inclusion is obtained by choosing a possibly smaller

β. Thus on S′
0,17, Am+1f0 is well-defined, and it equals Hm+1(Amf0) =

Hm+1fmAm. By definition Hm+1fm = fm+1Hm+1 holds on H−1
m+1(Sm+1).

Since Am(S′
0,17) ⊂ Am(S′

0,14) ⊂ S′
m,14 ⊂ H−1

m+1(S
′
m,5) = H−1

m+1(Sm+1), then
Hm+1fmAm = fm+1Hm+1Am holds on S′

0,17. This shows that Akf0 = fkAk
on S′

0,17.

Next, we want to show that Ak converges to a holomorphic map A∞ on
S′

0,14∪f̂S′
0,14. Write hk(x, y, z) = (x+xNkh′k(x, y, z), y+x

Nk−1h′′k(x, y, z), z+
xNk−1h′′′k (x, y, z)), where h′′k = (hk,2 . . . , hk,n), and Ak(x, y, z) = (x + xN1

A′
k(x, y, z), y+xN1−1A′′

k(x, y, z), z+xN1−1A′′
k(x, y, z)). We have A′

1 = h′1, A
′′
1

= h′′1 , A
′′′
1 = h′′′1 . Hence on S′

0,14 ∪ f̂S′
0,14 we have

max{|A′
1|, |A′′

1 |, |A′′′
1 |} � [h1] < 1.
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Assume that on S′
0,14 ∪ f̂S′

0,14 we have |A′
k| � 1 + · · · + 1

(k−1)2 . Then

Ak+1


x′ = x+ xN1A′

k + (x+ xN1A′
k)
Nk+1h′k+1(Ak),

y′ = y + xN1−1A′′
k + (x+ xN1A′

k)
Nk+1−1h′′k+1(Ak),

z′ = z + xN1−1A′′′
k + (x+ xN1A′

k)
Nk+1−1h′′′k+1(Ak).

Since |x| < 1/4 then

|A′
k+1 −A′

k| = |x|Nk+1−N1 |(1 + xN1−1A′
k)
Nk+1h′k+1(Ak)|

� |x|Nk+1−N1(1 + |x|N1−1|A′
k|)Nk+1 |h′k+1(Ak)|

� 4Nk |x|Nk |h′k+1(Ak)| � 1
k2 , by (10.8)-(10.9).

By the same argument, we obtain |A′′
k+1 −A′′

k | < 1
k2 and |A′′′

k+1 −A′′′
k | < 1

k2 .
Therefore, Ak converges to A∞ = (x+xN0H ′, y+xN0−1H ′′, z+xN0−1H ′′′)
uniformly on S′

0,14 ∪ f̂S′
0,14. Note that the sup norm of (H ′, H ′′, H ′′′) on

S′
0,14 ∪ f̂S′

0,14 is less than 3. By definition, Hk+1fkH
−1
k+1 = fk+1 on Sk+1.

Hence Hk+1fk = fk+1Hk+1 on H−1
k+1Sk+1. Since H−1

k+1Sk+1 ⊂ Sk then
Hk+1Hkfk−1H

−1
k = fk+1Hk+1 still holds on H−1

k+1Sk+1. Now Hk+1Hkfk−1

= fk+1Hk+1Hk holds on H−1
k H−1

k+1Sk+1. In general, we have Ak+1f0 =
fk+1Ak+1 on H−1

1 · · ·H−1
k+1Sk+1. Using

H−1
k+1(S(1−jθk)(1−θk) εk, (1 + jθk

π )(1 + θk

π )αk)
⊃ S

(1−(j+1)θk)(1−θk)εk,(1+
(j+1)θk

π )(1+
θk
π )αk

and by a computation as above, we can verify that H−1
1 · · ·H−1

k+1Sk+1

⊃ S′
0,13. This shows that Ak+1f0 = fk+1Ak+1 on S′

0,13. Taking limits, we
get A∞f0 = f̂A∞ on S′

0,17.

We want to show that A∞ admits an asymptotic expansion. By Lemma
8 in [10] and by Hj |y=0 = id, we know that each Hj admits an asymptotic
expansion. As above we can verify that H̃k = limj→∞Hj · · ·Hk+1 = (x +
xNkC ′, y + xNk−1C ′′

k , z + xNk−1C ′′′
k ) satisfies max{|C ′

k|, |C ′′
k |, |C ′′′

k |} < 3 on
S′
k−1,14. In particular |H̃k(x, y, z)− (x, y, z)| < 2|x|Nk−1. One sees that A∞

admits an asymptotic expansion. Finally, we can set B = A−1
∞ , defined on

(S′
0,14 ∪ f̂S′

0,14) ∩ ∆nr for some r > 0. Choosing a smaller r if necessary, we
conclude that B−1fB = f̂ holds on S′

0,18 ∩ ∆nr . The asymptotic expansion
Φ̃ of B must be Φ since Φ̃ = id + O(2), Φ̃|y=0 = id, and Φ̃ normalizes f .
�

Proof of Lemma 10.2. — Recall that H = id+h. For h = (xN+1h′1, x
Nh′2,

. . . , xNh′n), we define [h]N,ε,α = supSε,α
{|h′j(x, y, z)|}. Let r = [h]N,ε,α
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< c−1
k,nθ

2α with ck,n = c > 1 to be determined. Recall that 1 � k < 1
2θ ,

0 < ε < 1/4 and (1+kθ
π )α < π/2. Fix 1 � j � k. Denote Sj = S(1−jθ)ε,(1+ jθ

π )α,
Rj = R(1−jθ)ε,(1+ jθ

π )α, etc. Note that

R(1−jθ)ε,(1+ jθ
π )α ⊂ R

(1− θ
2 )(1−(j−1)θ)ε,(1+ θ

2π )(1+
(j−1)θ

π )α

since (j−1)θ
π < 1. By (10.1) the distance between boundaries of Rj and Rj−1,

denoted by dist(bRj−1, bRj), is larger than ( θ2 )2(1− (j − 1)θ)ε(1 + (j−1)θ
π )α

> θ2αε
c1

(for c1 = 16).

Fix (x, y, z) ∈ Sj . We want to show that if max{|w1|, . . . , |wn|} < θ2α
π2c1

then (x′, y′, z′) = (x + xN+1w1, y + xNw2, . . . , zn + xNwn) ∈ Sj−1. (i) We
have y′ = y + xNw2 ∈ Rj−1, since |xNw2| < ε θ

2α
π2c1

< dist(bRj−1, bRj). (ii)
We have x′ = x+xN+1w1 ∈ Vj−1. First, since | arg(1+ξ)| � π

2 |ξ| for |ξ| < 1
then | arg(1 + xNw1)| � π

2 |w1| < θα
π . Also |xN+1w1| � εθ. (iii) We have

z′j = zj+xNwj ∈ ∆(1−(j−1)θ)ε, since |xNh′j(x, y, z)| � εθ. By (i)-(iii), (10.3)
holds when c > π2c1.

To show that H is injective, we need to estimate the derivatives of h. For
x ∈ V1, the disc centered at x with radius θ|x|α/8 (� min{|x| sin αθ

π , θε}) is
contained in V0. Hence for (x, y, z) ∈ S1, we have∣∣∣∂(xN+1h1(x, y, z))

∂x

∣∣∣ � 8|2x|N+1r

θ|x|α � 16|x|Nr
θα

<
1
n

if c > 16n. For c > 2nc1 we can also obtain |∂(x
Nhj(x,y,z))
∂y | < 2c1|x|N−1

θ2α r

< 1/n and |∂(x
Nhj(x,y,z))
∂zk

| < 2
θ |x|N−1r < 1/n on S1, from which we conclude

that H is injective on S1.

We need to find H−1 = id + h̃. Let h̃1(x, y, z) = xN+1u1(x, y, z) and
h̃j(x, y, z) = xNuj(x, y, z) for j > 1 For HH−1 = id on S2, we need

u1 = −(1 + xNu1)N+1h′1(x+ xN+1u1, y + xNu2, . . . , zn + xNun),

uj = −(1 + xNu1)Nh′j(x+ xN+1u1, y + xNu2, . . . , zn + xNun)

for j = 2, . . . , n. Rewriting (10.4) in sup norm, we want to get

|u|(1−2θ)ε,(1+ 2θ
π )α � 2r.

Fix (x, y, z) ∈ S(1−2θ)ε,(1+ 2θ
π )α. Write (10.11) as u = Tu. By (i)-(iii), T is

defined on ∆n2r, assuming 2r � εθ2α
π2c1

. We can also have

2(N + 1)εNr < 4r < ln 2.
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By (1 + 2|x|Nr)N+1 � e2(N+1)|x|Nr < 2, we get T (∆n2r) ⊂ ∆n2r.

We also need T to be a contraction. By (i)-(iii) we see that (x′, y′, z′) =
(x + xN+1u1, y + xNu2, . . . , zn + xNun) is in S1 for u ∈ ∆n2r (and (x, y, z)

∈ S2). Hence |∂h
′
j

∂x (x′, y′, z′)| � 8 supS0
|h′

j |
θ|x|α , |∂h

′
j

∂y (x′, y′, z′)| � c1 supS0
|h′

j |
εθ2α , and

|∂h
′
j

∂zk
(x′, y′, z′)| � c1 supS0

|h′
j |

εθ . Now we get

|∂Tju
∂u1

| � (N + 1)e2Nε
Nr|x|Nr + e2(N+1)εNr 8|x|Nr

θα
,

|∂Tju
∂uk

| � 2Nre2(N+1)εNr c1|x|N−1

θ2α
, k > 1.

Obviously, T : ∆n2r → ∆n2r is a contraction map, if r � θ2α
c and c is sufficiently

large. We have shown that H−1 is defined on S2 and satisfies (10.4). Then
(10.5) follows from (10.3) (by applying it to H−1 and by choosing a possibly
larger cn,k).

We have HH−1 = id on S2 and HH−1H = H on S3. Since H is injective
on S1, we get H−1H = id on S3. Finally, we have Sj = HH−1(Sj) ⊂
H(Sj−1) and Sj+1 = H−1H(Sj+1) ⊂ H−1(Sj) for j = 2, . . . , k.

Assume now that [hf̂ ]N,ε,α � c−1
k,nθ

2α also holds. We know that H is
injective on S1 and on f̂S1. We want to show that it is also injective on the
union of S2 ∪ f̂S2. Assume that distinct (x, y, z) ∈ S2 and (x′, y′, z′) ∈ f̂S2

satisfy H(x, y, z) = H(x′, y′, z′). Then (x′, y′, z′) is not in S′
1. Note that

S2∩ f̂S2 contains S2∩∆nε/4. Then (x, y, z), (x′, y′, z′) are not in ∆nε/4. Hence
|(x′, y′, z′) − (x, y, z)| > cεθα2 for some constant c. Now |H(x′, y′, z′) −
H(x, y, z)| � cεθα2 − 2ε

∑ |h′j(x′, y′, z′)| + |h′j(x, y, z)| > 0, by choosing a
larger ck,n. This shows that H is injective on S2 ∪ f̂S2. We can obtain the
injectivity on S1∪ f̂S1, by applying the result to the case where θ is replaced
with θ/2. �

Lemma 10.2 is mainely used in the proof of Theorem 10.1. We also have
the following lemma, which has been used throughout the paper.

Lemma 10.3. — Let 0 < α < π. Let H be a holomorphic mapping de-
fined on Wα,r = {x: | argw| < π−α}∩∆nr0 . Assume that H admits an asymp-
totic expansion Φ of semi-formal map. Assume that Φ preserves x = 0, i.e.
the x-component of Φ has the form xa(x, y, z). Suppose that Φ′(0) is biholo-
morphic. Let a(0) = |a(0)|µ. Let 0 < ε1 < ε2 < π − α. There exist r1, r2
with 0 < r2 < r1 < r0 such that H:Wα+ε1,r1 → W̃ is biholomorphic and
W̃ ⊃ µWα+ε2,r2 .

– 63 –



Patrick Ahern and Xianghong Gong

Proof. — Write Φ(x, y, z) =
∑∞
k=0(x

k+1Ak(y, z), xkBk(y, z), xkCk(y, z)).
Let Φ1(x, y, z) =

∑3
k=0(x

k+1Ak(y, z), xkBk(y, z), xkCk(y, z)). Then Φ1 is
biholomorphic near the origin of C

n. Writing H̃(x, y, z) = (xa(x, y, z),
b(x, y, z), c(x, y, z)), one can obtain the conclusions directly from Lemma 10.2
by considering the map

(x, y, z) → (x(a(tx4, ty, tz))
1
4 , t−1b(tx4, ty, tz), t−1c(tx4, ty, tz))

for some small positive t. �
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