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Real analytic manifolds in C* with parabolic
complex tangents along a submanifold
of codimension one

PATRICK AHERN AND XIANGHONG Gong®

RESUME. — Nous classifions les sous-variétés réelles analytiques de di-
mension n dans C™, qui ont un ensemble de points de tangence com-
plexe paraboliques de dimension réelle n — 1. Ces sous variétés sont toutes
équivalentes via biholomorphisme formel. Nous montrons que les classes
d’équivalence sous changement de variables par biholomorphisme local
(convergent) forment un ’espace de modules’ de dimension infinie. Nous
montrons aussi qu’il existe une sous-variété M de dimension n dans C”,
dont les images par les biholomorphismes (z1,...,2n) — (T21,...,72n—1,
r22p), r > 1, ne sont pas équivalentes & M via biholomorphisme local
préservant le volume.

ABSTRACT. — We will classify n-dimensional real submanifolds in C”
which have a set of parabolic complex tangents of real dimension n—1. All
such submanifolds are equivalent under formal biholomorphisms. We will
show that the equivalence classes under convergent local biholomorphisms
form a moduli space of infinite dimension. We will also show that there
exists an n-dimensional submanifold M in C™ such that its images under
biholomorphisms (z1,...,2n) +— (721,...,72n—1,722,), 7 > 1, are not
equivalent to M via any local volume-preserving holomorphic map.
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1. Introduction

In [1], E. Bishop introduced the local study of a real analytic manifold
M of real dimension n in C™ with 0 € M. If M were totally real at 0 then M
would be locally biholomorphic to R™ so he assumed that M has a complex
tangent at 0. After some non-degeneracy assumptions he was able to assign a
number v € [0, o0] to (M, 0) in such a way that « is a holomorphic invariant,
i.e. if M7 and M> are as described above and there is a biholomorphic map
F defined near 0 with F(M;) = My and F(0) = 0 then (M7,0) and (Ms,0)
have the same invariant. Bishop was interested in polynomial hulls. He was
able to show that if M was as above and if 0 < v < 1/2 (called the elliptic
case) then there are holomorphic mappings f defined on the closed unit
disc into C™, taking the boundary of the disc into M but f(0) ¢ M, thereby
showing that M has a non trivial polynomial hull.

In [8], Moser and Webster returned to the class of manifolds considered
by Bishop. For 0 < v < 1/2 they found normal forms. As is often the
case in these matters, there is a formal biholomorphic map that takes the
manifold to its normal form and then one asks if there is a convergent bi-
holomorphic map that takes the manifold to its normal form. They showed
that there is such a convergent map in the case just cited. (By the way, the
existence of holomorphic discs for the normal forms is more or less evident
in the elliptic case so this gives another way to look at Bishop’s result.) In
the hyperbolic case (v > 1/2) and for a countable set E, they had normal
forms for v € (1/2,00) \ E but they also found algebraic real surfaces M
which are not equivalent to their normal forms by any convergent biholo-
morphic mappings. They do this as follows: the normal forms all lie in a real
linear subspace of codimension one, and they then show that there are man-
ifolds with a hyperbolic complex tangent that can not be so holomorphically
embedded. At this point it can be asked if a manifolds with a hyperbolic
complex tangent is already contained in real codimension one subspace can
it be mapped to its normal form by a convergent mapping? In [3] it is shown
that the answer to this question is no.

We want to mention that the Moser-Webster normal form excludes the
case v = 0. Very recently Huang and Yin [6] have constructed formal normal
forms of infinitely many invariants for this case. They also showed that two
real analytic surfaces of the same formal normal form are holomorphically
equivalent.

In this paper we consider the parabolic case, v = 1/2. In the elliptic and
hyperbolic cases the set of all points with a complex tangent exactly has real
dimension n — 2. However in the parabolic case there is the possibility that
the set of complex tangents can have dimension n — 1. For example when
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Parabolic complex tangents

n = 2 the quadratic surface zo = (21 + 2z1)? has the set 21 +2z; = 0 = 2
as its set of complex tangents. (Note that when n = 2 the complex tangent
is isolated in the elliptic and hyperbolic cases.) In this paper we will let M
denote the set of parabolic manifolds M whose set of complex tangents is
a real hypersurface of M. It is also natural to consider a subclass of M.
Let w = dzy A -+ Adz, and let M, be the set of M in M such that
Rew|y = 0. For M,,, we consider equivalence under unimodular maps, that
is ones that preserve w. We show that there is a quadratic surface @ (an
n dimensional version of the surface defined above) such that if M € M
then M is formally equivalent to @) and hence any two manifolds in M are
formally equivalent. Now there is a method called functional moduli that
can be used in some cases to show that, in a situation where the formal
theory shows that everything is equivalent, exactly the opposite is true. In
one variable it was discovered independently by Ecalle and Voronin and
published in 1981; see [2] and [9]. Here is an example: let A be the set of
all germs of holomorphic functions f(z) = z + 2% + 23 + - - - where the dots
mean higher order terms and we assume the series has positive radius of
convergence. The formal theory says that for f € A there is a formal series
g such that go fog~! = p where p(z) = 2+ 2%+ 23 (no dots!) and hence any
two germs in A are formally equivalent. The theory of functional moduli
says that given f € A there is a way to associate to f a functional modulus
which consists of a pair of holomorphic functions of period one, one defined
on an upper half plane and the other defined on a lower half plane. There
is also an equivalence relation on the set of moduli (which is transparent).
Then there are two theorems, one says that two germs are equivalent if
and only if their moduli are equivalent and the other says that given any
potential modulus there is a germ in A that has that modulus. Since the
equivalence at the level of moduli is transparent it is very easy to construct
non equivalent moduli and hence we can see that if we pick two moduli at
random they are not equivalent and so if we pick two germs in A at random
they are not equivalent. Such a theory is useful in that it shows us the big
picture but it is not a useful way to decide if two concretely given germs
are equivalent because the correspondence between germ and modulus is
not constructive, in either direction. Voronin [10] has developed a theory of
functional moduli for certain rather special germs of mappings defined in a
neighborhood of the origin in C" taking 0 to 0. The theory for n > 1 is in
some ways quite different from n = 1; in particular, the equivalence relation
at the level of moduli is not nearly so transparent. We will apply Voronin
theory to show that even though the formal theory shows that all manifolds
in M are equivalent the convergent theory is quite the opposite.

How do we get from an element of M, a manifold, to one of Voronin’s
germs? We use the pair of Moser-Webster involutions [8] associated to M
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in M. (These involutions will be described in section 3.) In our case the
composition of these involutions is a special case of one of Voronin’s germs.
As usual in applying functional moduli theory we must identify which germs
we are using and then we must identify which moduli correspond to these
germs and finally we must show that the set of moduli is non-trivial, i.e.
that there is a large class of mutually inequivalent moduli. In the one di-
mensional Ecalle-Voronin case this last step is actually trivial. In more than
one dimension it usually is not, due to the lack of transparency of the equiv-
alence relation at the level of moduli. However the theory still works as
is is supposed to: construction a large class of inequivalent moduli is still
possible and it is the only known to prove the existence of a large class
of inequivalent germs which are formally equivalent. Sections 7 and 8 are
devoted to showing the non-triviality of the set of moduli for both the case

of M and M,,.

Finally we consider the relation between holomorphic and unimodular
equivalence for elements of M. For n = 2 Webster [11] showed that if
M € M,, and if there is a convergent holomorphic map taking M to the
quadric 2o = (21 + 21)? then M and the quadric are equivalent by conver-
gent unimodular map. Also in [4] for n = 2 and in the hyperbolic case it
is shown that if M is convergently equivalent to its Moser-Webster normal
form then it is equivalent to a normal form by a convergent unimodular
mapping. In contrast we will use our methods to show that if for r > 0 we
define L, (21, -, 2,) = (rz1,-,72,_1,7%2,) then there is M € M, such
that for » # 1 L,.M is not equivalent to M by any unimodular convergent
map, but all L,.M are equivalent to the quadric under unimodular formal
maps. (Of course our M is formally but not holomorphically equivalent to
the parabolic quadric.) Therefore in general there is no result that says that
convergent holomorphic equivalence plus formal unimodular equivalence im-
plies convergent unimodular equivalence.

2. Statements of main results and organization of the paper

The construction of moduli spaces uses the pair of Moser-Webster in-
volutions [8] that characterizes real m-manifolds M in C™ with a non-
vanishing Bishop invariant and Voronin’s classification of local biholomor-
phisms f(z) = (21,22 + 21,23, . . ., 2n,) + O(2) that have constant eigenvalue
1 of multiplicity n along a complex hypersurface of fixed points [10].

Let M be a real analytic n-dimensional submanifold in C". Assume
that M has a non-degenerate complex tangent at 0 and the set of complex
tangents of M is a real hypersurface C of M. We will see that in suitable

. . def . .
local holomorphic coordinates z1, 2 =(z2,...,2p—1) = *+i% and z,, C is
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Parabolic complex tangents

the linear space z, = 1 = y = 0 and the real n-manifold has the form
M:z, = (21 +21)*p(21, 21, &), 'y = (21 + Z1)q(21, 21, T), (2.1)

where p, with p(0) = 1, is a convergent power series in 21,71, 'z, and ¢, with
q(0) = 0, is a vector of real-valued convergent power series.

The main purpose of this paper is to describe a complete set of equiv-
alence classes for each of the following two problems: classify the above
mentioned real analytic submanifolds M by local change of holomorphic co-
ordinates, and classify the M satisfying the additional condition Rew|a; = 0,
under unimodular holomorphic maps, i.e. the ones preserving w = dz; A+ - - A
dzy,.

We now describe which elements of Voronin’s moduli space are relevant
to the above-mentioned two classification problems.

Moduli space without volume-form.— Let z,y € C and ( =
(2,1 ¢n1) € €72, A power series h(z,y,¢) = D40 by, ()2’ is called
semi-formal in x, if all h; are holomorphic in (y, {) on some fixed neighbor-
hood W of the origin of C*~!. Define semi-formal maps analogously.

We say that S = V x W is a sectorial domain, if V' is a sector of the form
Vage={r € Ciargz € (o, 3),0 < |z| < €} and W is a neighborhood of the
origin in C*~!, where 8 — « is called aperture of the domain. A semi-formal
power series G = Y 1 Gi(y,¢)z"* is called an asymptotic expansion of a
holomorphic function g on V' x W, denoted by g ~ G on V' x W, if there is
a possibly smaller neighborhood W of 0 € C*~! such that for each fixed N

N
lim || N|g(z,y.¢) = Y Gil(y,Q)z*| =0
k=0

V3x—0

holds uniformly for (y, () € w. Analogously, we say that a semi-formal map
® is asymptotic to a holomorphic map H on V x W, if each component of
® is asymptotic to the corresponding component of H.

Put

7A-lz (l',y,C) - (—x,y + 2xaC)7 p: (x7y7C) - (_a _yvz)v
’712 = P7A'1P: (x7ya<) - (—(E,y - 21’,C)7
0= 7A-27A—1: (m7yaC) - (x,y+4x,()

Let Vi = Vis = Voezpes Put V; = V=1 Vi, As = {t € C:|t] < 8}
Assume that 0 < e < 7. In particular, Sj; 11 = (V; NVjy1) x A1 are
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disjoint for j = 1,2,3,4. Let H be the set of H = {Hy3, Hy3, H34,Hy1}
satisfying the following: H; ;41 is defined on S; ;11 and

Hy,) = pHiap, Hy| = pHosp, Hzy = 7;Hio7,
Hjji1~id, on Sjjp
in which the positive numbers € and § depend on H. Note that we define
H,s = Hy1, Hs6 = Hipa, etc. Throughout the paper, that an identity
holds on a sectorial domain such as V, 3. x W means that it holds on
Vats,8-5,er X AZ’,_l for any 6 > 0 and some € dependent of §. This is
justified by Lemma 10.3.

We say that H ,ET are equivalent and write H ~ H , if there exist a
semiformal map ¥ and biholomorphic maps G; = Gj44, defined on S; =

i'IVe 5 x Ag,_l (for some positive €', 6’) or on S}, and satisfying

ﬁjjﬂ = G;ng‘j+1Gj+17 j=1,...,4; or

N o ‘ (2.2)
Hjroj13 =Gy Hjj1Gjpr, j=1,....4

Ga2 = pGip, Gy=pGzp, Gjra="7,G;Tk; (2.3)

Gj~ WV, onS}oronSj,,; (2.4)

U: (2,y,¢) = (alz, Q)z,ya(z, () + b(z, (), c(z, (), (2.5)

where a,b,c are semi-formal in z, a(0) # 0,b(0) = 0,¢(0) = 0, and
¢ — ¢(0,¢) is biholomorphic. Note that ¥ = pUp = 7;U7;. In particular,
a(0) is real.

Moduli space with volume-form.. — Let H; be the set of H € H
satisfying the additional condition

Hio=0, O=xdeNdyAdiaA---AdCor.

For H,H € Hg, we denote H ~ H, if there are G;, ¥ satisfying (2.2)-
(2.5) and Giw = w. Note that U*& = &. Denote by H/~ and Hy/ ~ the
corresponding sets of equivalence classes.

Recall that M is the set of real analytic n-manifolds M in C", of which
complex tangents form a germ of real analytic set of dimension n — 1 at
the origin, while the origin is a parabolic complex tangent of M. Denote by
M., the set of M € M satisfying Rew|ps = 0. Denote by M/ ~ the set of
holomorphic equivalence classes in M, and by M,/ ~ the set of equivalence
classes in M, under unimodular holomorphic maps.

The following theorem solves the two classification problems mentioned
early in this section.
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Parabolic complex tangents
THEOREM 2.1. — Each M € M is formally biholomorphic to
Q:zp = (71 + 21)2, Imzg =---=Imz,_1 =0

and each M € M, is equivalent to @ under some formal unimodular
holomorphic map. There are one-to-one correspondence between M/ ~ and
H/ ~ and one-to-one correspondence between M,/ ~ and Hg/ ~; moreover,
H/~ and Hg/ ~ are of infinite dimension.

Our moduli spaces, as moduli spaces given by Voronin [10], are not
explicit. However, they are useful to obtain results which are not achieved
by other approaches. For example, using our moduli spaces we obtain

THEOREM 2.2. — Let n > 2 and let L, be the dilation z; — rz;
(1 < j < n),z, — r2z,. There exists a germ M of real analytic n-
submanifold in C™ at the origin such that L. M is not equivalent to M under
any unimodular holomorphic map if v is a positive number with r # 1, while
all L, M (r > 0) are equivalent to Q: z, = 22121 +27+21,y; =0 (1 < j < n)
under unimodular formal maps.

The paper is organized as follows.

In section 3, we will obtain some preliminary normalization for a real
analytic n-manifold M by flattening its set of complex tangent points of
dimension n — 1, from which a preliminary holomorphic normalization for
the pair of Moser-Webster involutions follows.

In section 4 one can find normal forms for pairs of holomorphic lin-
ear involutions 71,7y in general and for special pairs 7,70 = prp inter-
twined by an anti-holomorphic linear involution p, under the assumptions
that 0 = 797 is not diagonalizable and fixes a hyperplane pointwise. The
linear involutions 7, 75, p discussed in section 4 are more general than those
arising from real manifolds with complex tangents.

In section 5 we will discuss the semi-formal normalization of pairs of
involutions whose linear parts are classified in section 4. In section 6, we
will identify the two classification problems formulated at the beginning of
this section with the problem on classifying pairs of involutions 7, 72 = pmp
under holomorphic maps.

Section 6 also contains some results on classifying real n-manifolds M
with a parabolic complex tangent under unimodular holomorphic maps and
we will also obtain a formal normal form showing infinitely many invari-
ants. However, the results in this direction are not complete, and the main
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difficulties arise from the volume form w which is invariant under 71 but
not 7o.

Sections 7 and 8 are devoted to the construction of moduli spaces stated
in Theorem 2.1, by adapting Voronin’s moduli space [10]. The non-triviality
of the moduli spaces are proved in the two sections too.

Theorem 2.2 is proved in section 9. The reader could read the proof of
Theorem 2.2 first, since it also outlines the construction from the involutions
of real manifolds to the moduli spaces.

In Appendix A (section 10), for the convenience of the reader we will
give a proof for a fundamental theorem of Voronin [10]. Voronin’s proof is
for two dimensional case, which can be easily adapted to higher dimensional
case.

We would like to conclude the section with the following two open prob-
lems.

A) Classify all real analytic n-manifolds M in C™ which have a parabolic
complex tangent at the origin. Here the set of complex tangent points has
dimension less than n — 1.

B) Classify all real analytic n-manifolds M in C™ having a parabolic
complex tangent under unimodular holomorphic maps. Here Redz; A -+ - A
dzp|m Z 0. The problem remains open even if the set of complex tangent
points of M has dimension n — 1.

3. Complex tangent points and a pair of Moser-Webster
involutions

We will recall the pair of Moser-Webster involutions [8].

Let M C C™ be an n-dimensional real analytic submanifold contain-
ing the origin, given by R1(2,Z) = ... = R,(2,Z) = 0 with dR; A --- A
dR, # 0, where R;(z,Z) are convergent power series and real-valued, i.e.
Ri(2,2) dZ(Eij (Z,2) = R;(Z, z). The complexification M¢ C C" x C" of M
is defined by Ry(z,w) = ... = Ry(z,w) = 0. Then M becomes a totally
real and real analytic submanifold of M€ via the embedding z — (z,%), and
dz A ... Ndzp|am extends uniquely to a holomorphic n-form w on M€, and
uniquely to an anti-holomorphic n-form Wy = dwy A -+ - A dwy,.

We say that p € M is a complex tangent of M, if T,M N iT,M # {0},
ie. if dz; A ... Adzy|p vanishes at p since M has dimension n. We assume
that 0 € M is a complex tangent point so ToM NiTyM is a complex space
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of positive dimension. We also assume that it has the smallest positive
dimension so it is a complex line. Hence by a change of coordinates we have
ToM = C x R"2 x 0. Then M is given by

2n = azZ + b2 4+ cZ + E (caz1To + daZ1T0)
I<a<n

+ Y eapzazs + O(|(21, %),

1<a,B<n
y = 0((z1, T)?).

Recall that € = "z + iy = (22,...,2n-1). Put w = dz1 A ... Adz,.
Then w|y = Adz; Adzy Adag A ... Adazy,_q for A= (=1)""Y(az; + 2cz; +
ZZ;; doxo +0(2)). We assume that M has a non-degenerate complex tan-
gent at the origin, i.e. that D, A or Dz, A does not vanish; equivalently
la| + |¢|] # 0. By a quadratic change of coordinates, we may achieve that

M: 2z, = a1z, + 023 + 21+ 0(3), ya = O(2), a>0,c20

where v = ¢/a € [0,00] is the Bishop invariant [1]. The complex tangent
point 0 € M is said to be elliptic if v < 1/2, or parabolic if v = 1/2, or
hyperbolic if v > 1/2. Put m1(2,w) = 2z and m2(z,w) = w. When v # 0,
mj: M¢ — C" are two-to-one branched coverings, and the covering trans-
formations form a pair of holomorphic involutions 7;: M — M¢ satisfying
To = p11p for p: (z,w) — (w,Zz). When ~ # 1/2, the set of complex tangent
points of M is real submanifold of M of dimension n — 2, and 71,7 fix a
complex submanifold of M€ of dimension n — 2 when v # 0,1/2.

Let us compute 71,7 for our special case, and find local coordinates
such that M is given by (2.1).

We assume that C, the set of complex tangent points of M, is a real
submanifold of dimension n — 1. So we are dealing with parabolic complex
tangents. w|pe vanishes on the complexification C° of C' in M€, and we
will see soon that C° is precisely the zero set of w|pse. First, a = 2¢. By a
quadratic change of coordinates, we may achieve that

M:z, = (21 +21)>+0(3), y=0(2). (3.1)

Now wlp = (=1)" (421 +0(2))dz1 Adzy Adxg A+ - - Adzy—1. Since dim C =
n — 1, we see that C is a totally real submanifold parameterized by

2 = a’(yh Ix) + iyh /Z = lx + Zb(yh /LU)? Zn = c(yh /(E)7
a(yr, ) = 0(2), b(y1, ©) =0(2), c(y1,’z) = O0(3).
_9-
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Put

F(z1, 'z, 2) = (a(—iz1, 2) 4+ 21, 'z 4 ib(—iz1, 2), 20 + c(—i21, 2)).

F~1(M) = M is still of the form (3.1) and C is flattened to the linear
space £1 = zp = Yo = 0. Now we can write

zn = (21+721)% + (21 + Z1)po(21,21, '), po = O(2),

M c C™
{ = (z1+7Z1)q(z1,71, ), ¢q(0)=0.

Looking at the zero set of dz1 A. . .Adzy, |1, we see that a1 divides po(x1,y1, ).
Thus M is given by

M C (Cn: Zn = (Z]_ +21)2p(z17§17 lx>7 /y = (Z]_ +21)q(z15217 lm)

with p(0) = 1,¢(0) = 0, and §(z1,%1, ) = ¢(Z1, 21, 'r). We have derived
(2.1).
The complexification of M is

1

2y = (21 +w1)?p(21, wr, ZE2),
M CC'xC" < w, = (21 +w)*p(wy, 21, #),

. / /
'z — w = 2i(z1 + w1)q(z1, w1, 22 w).

One can see that the set C~'(C M*®): z1 +wy = 0 is fixed pointwise by 71, 75
and is invariant under p. On M€, introduce coordinates

xgzl + wy, ygzl —wy, Cg(zg +wa, .y Zp—1 + Who1)-
Then p|pse: (z,w) — (W, %) becomes
p:(,y,¢) — (T, 7, )
We also have
ria’ =~z +za(z,y,Q), ¥ =y+ 2z +ab(z,y,0), ¢ =C+ac(z,y,Q).

with a(0) = b(0) = ¢(0) = 0. Note that 72 = id implies a(z,y,() =
za(z,y, Q).

Conversely, assume that a smooth holomorphic hypersurface C is fixed
pointwise by both 71, 75 of M, which means that p(C) is fixed pointwise by 7;

too. We may assume that M is given by (3.1). By linearizing 71, one sees that
C' is the unique smooth holomorphic hypersurface fixed by 71 pointwise and
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hence p(C) = C, and that C is tangent to z; +w; = 0. Put (o = (Zatwa)/2,
so 21, w1, ¢ form coordinates of M¢ and p becomes (z1,w1,() — (w1, 21, ().
C is the zero set of R = (Ry 4 iRy)(z1,w1,() = 21 + wy + O(2), where
R;(z1,w,() are real when (o, ..., (,—1 are real and wy = Z;. Now p(C~') =C
implies that (Ry — iR2)(z1,w1,() = Ro p(z1,wy,() vanishes on C, ie.,
that (Ry — iR2) (21, w1, () is a multiple of R(z1, w1, (); equivalently, R is a
multiple of R;. Then

w|Mc = uRl(zl,wl,C)dzl A dw1 A d<2 VANIAN an—l

with u(0) # 0. Thus w|as vanishes when R;(z1,%1,() = 0, which defines a
smooth hypersurface in M.

In summary, we proved that the complex tangent points of M form a
codimension one set in M, if and only if 7,7 fix the same complex hy-
persurface pointwise. In particular, when M has a non-degenerate complex
tangent at 0 and Re dzy A+ -Adz, |y = 0, the zero set of dzy A+ -+ Adzp |y =
tIm dzy A -+ Adzy|p has codimension 1 in M.

Remark. — When the dimension of the set C' of complex tangent points
is less than n—1, the zero set C' of wyy« is still a smooth complex hypersurface
in M€, 7y fixes C pointwise, and 75 fixes p(C) pointwise. However, C' N p(C)
is a complex analytic variety of pure dimension n — 2. The map z — (z,%)

identifies the set of complex tangent of M with a real analytic subset of C.

Before we state the next result, we need the notion of invariant smooth
formal holomorphic hypersurfaces. By a smooth formal holomorphic hy-
persurface passing through 0 € C", we mean an equation u = 0, where
u is a formal power series in z € C™ with «w(0) = 0 and du(0) # 0. Two
such equations v = 0 and @ = 0 are considered to be the same if u = vu
for some formal power series v. The formal hypersurface © = 0 is invari-
ant under a formal biholomorphic map F if F(0) = 0 and uo F = au
for some formal power series a; we say that the hypersurface is fixed by F
pointwise, if F(T(t)) = T(t) for some (and hence for all) formal holomor-
phic map ¢t = (t1,...,tn,—1) — T(¢) satisfying uo T = 0, T(0) = 0, and
rank7’(0) =n — 1.

PROPOSITION 3.1. — Let M C C™ be a real analytic submanifold with a
parabolic complex tangent at the origin. Let {71, 72, p} be the Moser- Webster
involutions on M°. Then the germ of the set C' of complex tangent points
of M at the origin is of real dimension n — 1, if and only if 7, fix the
same formal smooth hypersurface pointwise, in which case under suitable
holomorphic coordinates on M¢ we have

— 11 -
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/ —

Tr = x+1’aj($797<)7
Tj+ y/ :y—l—(—l)j*le—ﬁ—mbj(x,y,(), bJ(O) =0,
(’:<+xcj(1:,y,§), Cj(o):()a j:1727

Ty = PT1P, p(zvya <) = (fv 7?7 C)

Proof.— 71 is holomorphically equivalent to (z,y,() — (—z,y,¢) and
the latter fixes pointwise a unique smooth formal hypersurface containing 0,
which is actually given by x = 0. Hence the unique smooth formal holomor-
phic hypersurface fixed by 71 pointwise is actually given by a holomorphic
function. The same argument works for 7 also. So both 7; fix the same
smooth holomorphic hypersurface pointwise. From the argument given be-
fore the previous remark, we know that the set of complex tangent points
of M has dimension n — 1. |

Before we normalize 7y, 72, p under semi-formal maps, we will deal with
the linear involutions first in next section by considering a more general
situation. The semi-formal normalization for the involutions is given in sec-
tion 5.

4. Normal forms of a pair of linear involutions

We will find two normal forms: one for pairs of linear involutions 7y, 7o
on C" of which the indicator ¢ = 797 is not diagonalizable and the set of
fixed points of ¢ is a hyperplane, and the other for distinct linear involutions
71, To such that 75 = p71p for some anti-holomorphic linear involution p and
the set of fixed points of o is a hyperplane. We will show that the latter o
is not diagonalizable either.

By assumption, the set of fixed points of ¢ is a hyperplane, and that o
is not diagonalizable. So in suitable linear coordinates o = 6: 2’ = x,y' =
y + 4z, = ¢ with ¢ € C" 2.

We want to further normalize 79,7, while ¢ remains unchanged. Note
that x = 0 is the set of fixed points of 0. Hence 7 preserves z = 0 and we

can write
= —5058, (50 = :|:17
T1:{ Y =0y + box + 2,
(" = e+ b3z + c3y,
where ¢l c3,bs are column vectors and ¢ is a matrix. Since 10 = o~ 17y,
the (-components say c3 = 0 and y-components say dp = d. Since 77 = id

- 12 —
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then
(0l +€)=0, =1 (e—5I)b3=0.

Obviously, ( — ¢ is an involution. By choosing a linear transformation
(z,9,() — (x,y,5¢) we may assume that € is a diagonal matrix with di-
agonal elements €; = £1. Since (¢ — d1)bs = 0, we can choose b such that
(61 4 €)b + by = 0. Putting S(z,y,¢) = (z,y,¢ + bx), we obtain bs = 0 for
S~11S. Note that c2(6I 4+ €) = 0 implies that co; = 0 when €; = 4. Let
wo(x,y,0) = (x,y+ (1 — %)x — 5%(,(). We obtain bs = 2§ and ¢y = 0 for
Py L71¢9. In other words, by a possible permutation of ¢ coordinates and by
possible splitting ¢ into two sets of variables, denoted by (¢, w) by an abuse
of notation, the pair {7, 72} is normalized to

1'/ = —(51'7 xl = _5.r,
y = oy + 20z, . y' =0y — 20z,
Ti: , T2: / (4.1)
¢=q (=
w' = —w, w = —w.

Assume now that 79,79 are linear involutions and that 7 = prp for
some anti-holomorphic linear involution p. We also assume that the set of
fixed points of ¢ = 7711 is a hyperplane. Then ¢ is not diagonalizable.
Otherwise, in suitable linear coordinates we have o:2z — (ez1,29,...,2n).
Note that det 0 = det 7y det 75 = £1 and o # id. Hence e = —1. Now 23 =0
is preserved by 71,72, p. One may assume that the first component of p is
21 — z1. The first component of 71 is 23 — %21, since 7¥ = id. So the first
component of ¢ is the identity, which is a contradiction.

We will normalize p, while 4 = 71,79 = 72 remain unchanged at each
step of coordinate changes.

Consider the case § = 1 first.

Since 0~! = pop = 1071, then p, 7| preserve the set of fixed points of
o defined by 2 = 0. By a change of coordinates (x,y, (,w) — (cz, cy, {, w)
we may assume that the first component of p(z,y, (,w) is Z. Restricting to
x = 0, we have 7y = p11p. Hence p preserves the eigen-spacesz =y = =0
and £ = w = 0 of 71|,=¢. Thus we can write



Patrick Ahern and Xianghong Gong

Since tt = id, by a linear change of coordinates of the w-space, we may
assume that ¢ = id. Thus p? = id implies that ¢ is pure-imaginary. Let
S(z,y, ¢, w) = (z,y,,w + %t’x). Then S preserves 7;, and for p = S™1pS
we get t' = 0. The y and ¢ components of p? = id produce

pp+gqs =1, (4.2)

pp+p+qs =0, (4.3)

ug+qs =0, (4.4)

ss+5q=id, (4.5)

58 +s +35p=0, (4.6)

s5+50=0. (4.7)

From pry = 11p, we get

p=—p—1 (4.8)

s = -5 (4.9)

From (4.9), (4.2)-(4.3) we get pfi+ pp+p = 1, and combining with (4.8)
yields p = —1 and p = 0. Now (4.9) and (4.6)-(4.7) imply s’ = § = 0. So
(4.5) becomes s5 = id. We get s = id by a change of {-coordinates alone.
Now (4.4) says ¢ = g. Put p(z,y,(,w) = (x,y + %q(,(,w). Then ¢~ !pp
becomes

p: x’ = T, y/ = -, CI = C, w' =1w. (410)
Consider now the case § = —1, by a reduction to § = 1. Assume that
T1,T2 = poTipo are given by (4.1) with § = —1, and that pg is a linear

anti-holomorphic involution. Put L(z,y,(,w) = (z,y,w, (), and put L = id
when one of ¢, w is absent. Then 7; = —L7; L are given by (4.1) with § = 1.
Still 79 = LpoL7LpoL. By the above argument there is a linear map K
such that KLpoLK ™' = p = LpL is given by (4.10) and K7; K1 is still
given by (4.1) with 6 = 1. Then LKL7;LK 'L = 7; is given by (4.1) with
d=—1and LKLY°(LKL)™! = p.

In summary, we proved

PROPOSITION 4.1. — Let 1, T2 be two linear involutions on C™. Assume
that the set of fized points of o = 1o is a hyperplane. Then we have

- 14 —
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(i) if o is not diagonalizable, there is a linear transformation ¢ such that

oti~ ! are given by
' = —ox, r’ = =iz,
F1:¢ Yy =0y +20x, Ty =dy— 20z,
("=, ¢ =¢C,
where 6 = £1 and € = diag(ea, ..., €,—1) is a diagonal matriz with diagonal

elements €; = £1;

(ii) if 7o = p’71p" for some linear anti-holomorphic involution_po, then
@ can be chosen to satisfy (i) and pp°p~1 = p: (x,y,¢) — (T, -7, ().

Remark.— ¢ = 1 if and only if the above 71,75 have the same set of
fixed points. The same conclusion holds for 7, 75 below.

COROLLARY 4.2. — Let 70,79 be a pair of holomorphic involutions on
C". Assume that the set of fived points of o = 7970 is a smooth hypersurface,
and that o'(0) is not diagonalizable. There exists a biholomorphic map ¢
such that gm'f(pfl s given by

1 = —dx + :Eaj(m,y,C), aj(o) = 0,
QY =0y + (—1)7 7126z + xbj(z,y,¢), b;(0) =0, (4.11)
C/:5C+$Cj(377y707 C(O):Ov j:1a25

where § = +1 and e = diag(ea, ..., €,—1) with ¢; = £1. If 79 = prlp for
some anti-holomorphic involution p°, we can choose ¢ to satisfy
er’o~ (x,y,¢) = (T, —7,C) additionally.

Proof. — We first choose a linear map g such that the linear parts of
T, = <p07']9<pa ! are given by (4.1). Choose a biholomorphic map ¢; with
©1(0) = id, sending the set of fixed points of 77, into = 0. Then T =
1757 * preserves x = 0 and is tangent to 7j. Now ¢y = (id 4 71 (0)75)/2
preserves © = 0 and hence linearizes 7{|,—0 = 75|z=0 into 71(0)|z=0 =
75(0)|z=0. Thus QOQT;(Q02_1 are given by (4.11).

Assume now that 79 = p°72p°. Choose linear coordinates such that TJQ
is tangent to (4.11) and p° is tangent to p. The above argument shows that
there is a biholomorphic map tangent to the identity, sending Tjo into (4.11).
So p? is still tangent to p, and we may assume that TJQ are given by (4.11). Let
¥ = (id+pp?) /2. Since p° preserves z = 0, the set of fixed point of 797V, then

1) preserves x = 0. Restricted on x = 0 we have T]Q = 75, so the restrictions
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are linear. Hence 77 = (77 + p7y1p0)/2 = (77'(0) + p741(0)p0)/2 =
(797(0) 4+ 7(0)ppo) /2 = 7}(0)(id + pp°) /2 = 7;4. Thus 7y~ are still of
the form (4.11), while ¥p%p~! = p. O

Remark 4.3. — 1) Let 71, 72 be given by (4.11). Computing the Jacobian
matrix shows that the eigenvalues of mo7 at its fixed point (0,y,() are 1
and

[1 - (5&2 (Oa 5?/7 EC)][I - (5&1(0, Y, C)]

If 6 = 1 and € = id, a direct computation from the first component of Tj2 =id
shows that a;(0,y, () = 0. This turns out to be crucial in the Voronin theory.
Note that for the real analytic manifolds with a parabolic tangent we do

have § = 1 and € = id.

2) If § # 1 or € # id the above non-trivial eigenvalue may not be con-
stant. In particular 757 is not formally linearizable. To see an example,
let ¢(x,y, () = (zb(y,(),y, (), where b is a holomorphic function vanishing
nowhere. Let 7 = ¢71¢0~ ! and 7 = p711p. The non-trivial eigenvalue is

b(—dy, €¢)b(y. ¢)

which is not constant in general.

b

5. Semi-formal normalization

We will normalize pairs of involutions whose indicators fix a smooth
hypersurface pointwise. The arguments follow proofs in [11] and [10]. We
will give an averaging argument, which is also useful to construct Voronin’s
module functions of other linear symmetries.

We first normalize the composition 757 by semi-formal transformations.
The proof of next result is in [10], [11], when n = 2. We include the proof
for n > 2 for the convenience of the reader.

ProprosITION 5.1. — Let 7,70 be holomorphic involutions given by
(4.11). Assume further that Tom has constant eigenvalue 1 along its set
of fized points, if § # 1 or e #1id. There exists a unique semi-formal map

! :x+xu($7yaC)7
D¢ Y =y+ou(z,y,Q), (5.1)
(' =(+w(z,y,Q),
u(z,0,¢) = v(z,0,¢) = w(z,0,{) =0, (5.2)
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(v(z,y,¢), w(z,y,0)) = O(|(z,,O)*) (5.3)
such that
O lnn® =612 =2, Yy =y+4x, =¢
If 79 = p7ip for p: (x,y,¢) = (T, 7, (), the unique ® satisfies ® = p®p.
Proof.— As we remarked at the end of last section, our assumptions

mean that 757 has constant eigenvalue 1 at its fixed points (given by z = 0).
Therefore, we can write

=z + x2p(x,y, C)a
0 = TaTq: y/ :y+4$+$Q(ﬂfay7C)a q(O) :Oa
¢ =C+ar(z,y,Q), r(0) =0.

For &~ lo® = & we need

u(z,y + 4z, () —u(z,y,¢) = 2(1 +u(z,y,())*p®(z,y, (),
v(z,y +4,() — v(r,y,¢) = z(du(z,y,() + (5.4)
(1 +u(z,y,0)q®(z,y,Q)),
w(z,y +4z,¢) —w(z,y,¢) =z(1+u(z,y,Q)re(z,y, ().
Let ug, vr and wqy be coefficients of expansions of u(z,y, (), v(z,y, () and

wa(7,y,¢) in z variable, respectively. Comparing the coefficients of z! in
5.4, we obtain

0
48ly0 = (14 u0)po(y + vo, ¢ + wo),
8’(10
48_y = 4ug + (1 + uo)qo(y + vo, ¢ + wO)’
(9’LUO
45—;1/ = (1 + ug)ro(y + vo, ¢ + wp)-

Let ug, vo, wo be the unique set of solutions satisfying uo(0,¢) = vo(0,¢) =
wo(0,¢) = 0. For k > 0 comparing coefficients of z¥*1 in (5.4) yields

Quy
Ju 2p0  Poy Poc Ug,
v
4l By [ =4+ 9y qc | (y+vo,(+wo) | ve |+,
aaLy’v o Toy To¢ W

where the omitted terms are polynomials in u;(y,(), v;(y,¢), w;(y,()
(j < k) and partial derivatives of pj, g;,r; of order less than k evaluated
at (y + vo(y,¢), ¢ + wo(y,¢)). One readily sees that there are unique so-
lutions wug, vk, wr that are holomorphic on Ag“l and vanish for y = 0.
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Since pop = o1, then p®p linearizes 0. We have p®p(z,y,() = (x +
xu(z, —y,¢),y —v(x, -y, (), +w(z, —y,()). By the uniqueness of the solu-
tions ug, v, wy under the conditions u(z,0, () = v(z,0,¢) = w(zx,0,¢{) = 0,
we get p®p = . O

Remark. — The above proof is valid if o, not necessary a composition
of a pair of involutions, has the form

(2,9,¢) = (z + 2%p(z,y,¢), y + 4o + 2q(2,y, ), ¢ + 2r(2,y, ()
with ¢(0) = 0 = r(0).

Having normalized the composition 757, we now normalize the actual
pair 71,72 = pT1p.

COROLLARY 5.2. — Let 1,70 and ® be as in 5.1. There is a semi-formal
map
¥ =z +2u(z, (), u(0)=0
U<y =y +yu(x, ) +v(z,(), v=0(2)
('=C+w( (), w=0(2)

such that W&~ 1, ®W are equal to

#1(z,y,¢) — (—6z, 6y + (=1)7'26z,€(), j=1,2.

If 7o = p11p for p(z,y,¢) = (T, —7, (), the PV commutes with p.

Proof. — We prove it by an averaging argument.

Let ® be as in Proposition 5.1. Then ® preserves x = 0 and ¢ = id +
O(2). Put 7; = & '7;®@ = 7; + O(2). Note that 7»7; = 7> implies that

y-t d:ef(id—l—%ﬁl)/Q = (id 4 7272)/2. Since 7; are linear, we have 7; ¥ ~'7; =

We now assume that 7o = p71p with p(x,y,¢) = (T, —7, (). Let ® = pdp
be as in Proposition 5.1. We have p7; = Top. Let ¥ be as above. Then
pU—t = (p+phT1)/2 = (p+ T2T2p)/2 =T "p.

To show that the above ¥ = id+O(2) has the desired form, we recall that
®, 7; preserve x = 0. This shows that 7; and hence ¥ preserves z = 0 too.
Now ¥g = 6W¥ implies that the x, ( components of ¥ are independent of y.
One can also verify that the y-component of ¥ has the above form. O

It is a fundamental theorem of Voronin that there exists a biholomorphic
map H on a sectorial domain such that H is asymptotic to ® and Hrom H !
is linear (see section 10). Moreover, it is easy to normalize the pair 74,75 on
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sector when 797 is already linear. See Proposition 7.1 in section 7. For the
moment, we will realize ¥ as an asymptotic expansion of a biholomorphic
map H on sectors by the Borel-Ritt theorem. We will require that the
holomorphic map preserves & for later purpose.

Let ¥ be as in Corollary 5.2. So

U(z,y,¢) = (x +zu(z, ),y + yu(z, () +v(z, (), + w(z,()),

where the formal power series expansions of u,v,w in z have coefficients
ug(€), vg(€), wr(¢) which are holomorphic and bounded in a neighborhood
W of 0 € C"~2. Moreover u = O(1),v = O(2) and w = O(2). Let V be any
bounded sectorial domain with opening less than 27. Fix a square root /z
on V and choose g with |u| = 1 so that e/V? tends to zero as & — 0 in V.
Then |1 — e*/V¥| < ¢/|\/x| for ¢ > 0. Let ¢, be a positive sequence such
that cg sup |ug(¢)] < 1. Then @ ~ u on V x W. Construct v, w analogously
such that v ~ v and w ~w on V x W. Put

' =z + zu(x, (),

H: y'=y+yﬂ(9€,0+5(xa§);
C = C Jr{[)(xaC)'

Then the semi-formal map ¥ in Corollary 5.2 is asymptotic to H and
H~'6H = 6. We get the following.

PROPOSITION 5.3. — Let W be the semi-formal map given by Corol-
lary 5.2. Let 0 < B —a < 27, and € > 0 be small. There exists a biholomor-
phic map H = 6H6~1 such that H is asymptotic to ¥ on Vy g x AlTL.

Next proposition gives a uniqueness condition on the semi-formal map
®W. However, Corollary 5.2 suffices for our further discussions.

PROPOSITION 5.4. — Let 11, T2 be holomorphic involutions given by (4.11).
Assume further that Tom has constant eigenvalue 1 along its set of fixed
points, if § #£ 1 or € # id. There is a unique semi-formal map of the form

x, = x+xu(x’ y’()’
¢: 9 ¥ =y+u(z,y, ),
C/ = C+w(x7y7 C)?

u(0,0,€¢) = —u(0,0,¢), v(0,0,¢) =w(0,0,¢) =0, (5.5)
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u(,0,¢) = —u(=8z,0,€(),  v(~0z,0,e¢) = ~60(x,0.0), .
w(—0x,0,eC) = —ew(x,0,() (5.6)

so that
Ori® " = 7: (2,4,¢) — (—0z, 8y + (~1)/120,eC), j=1,2
If 79 = p7ip for p(z,y,¢) = (T, —7,C), the unique ® satisfies & = pPp.

Proof.— We will adapt a proof in [11] to the semi-formal case. By
Proposition 5.1, there is ®¢ such that <I>517'27'1 ®, = 6. Note that the nor-
malizing condition on ®(, given in Proposition 5.1, is equivalent to that
®q is tangent to the identify, preserves x = 0, and is the identity when
restricted to y = 0. In particular the inverse of @, satisfies the normal-
izing condition also. The new normalizing conditions (5.5)-(5.6) is about
the map (z,{) — ®(x,0,¢). Consequently, ® satisfies the new normaliz-
ing condition if and only if ®®, ! satisfies the same normalizing conditions.
Therefore, we may assume that 77 = 6. Then ® must have the form
' = .Z‘p(fE, C)vy/ = yp(l", <) + Q(‘rvc)a C/ = 7’(:177 C)

Write 7; = 7; + H;. Since 797 = & = 727, and 7; are linear, then
7A'20H1+H20T1 :0:7210H2+H10T2.
Hence 6H16 = Hy, i.e.,

Hl(x7y7<) = (xa(x,(), —ya(:a() + mb(m@),xc(x,())

First we want to find a sequence of maps ¢ (x,y,¢) = (2(1+px(C)), y(1+
1(€)), ¢), where pi(¢) is a homogeneous polynomial of degree k in ¢, such
that the x-component of Tj11 = ¢pTr¢, ', denoted by —dz + zag41(¢) +
O(|x|?), satisfies ary1(¢) = O(|¢[*T1). Moreover pj are uniquely deter-
minedv if ¢k ©--+0 ¢1(xayv<) = ((E(l + Ck(C))ay(l + Ck(C))aC) satisfies
cx(€€) = —cr(¢) + O(|¢|**1). We prove by induction. The assertion is
trivial for £k = 0 (with pg = 0), since the linear part of Ty is tangent to
71. Assume that pp_1(¢), k > 1, has been uniquely determined. Now the
z-component of T2 = id implies that (1 — dax(¢))(1 — dak(eC)) = 1, in
particular, ai(e¢) = —ax(¢) + O(|¢[F+1). The x-component of ¢, Tx¢;, " is
—6x 4+ 2[6pr (¢) — Spr(e€) + ar(¢) + O(|¢[F1)] + O(|z|?). On the other hand
cer1(€) = e (€) + pr(¢) + O(|¢|**1). Thus we need to solve the equations

pr(eQ) + cr(e€) = —pr(C) — cx(¢) + O(I¢[F),
pr(Q) — pr(e€) + dar(¢) = O(|¢[F+1),

which admits a unique solution py(¢) because ax(C) + ax(e¢) = O(|¢|F*1).
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To show the convergence of formal map
(I)O = klinolo ¢k ©--+0 ¢1: (%y, C) - (Jf(l +p(<))7y(1 +p(<))7 §)7

we look at the z-components of <I>0To‘1)al =T = limg_, o T%. The latter is
dz + O(]z|?), and we get

L+p(e€) 1 54 _
Tp(C)(l 4a(0,¢)) = 1.

Hence p(e¢) — p(C) = 8a(0, ¢) +3p(eC)a(0, ). Since p(¢) = ¥ paC® satis-
fies p, = 0 for €® = 1, then |p,| < pk if > pi(® = p* satisfies 2p* = af+p*a
with a*(¢) = Y |ao,o|¢*. This shows that ®g is convergent.

Set Ty = PPy ! Next, we want to find a sequence of semi-formal
maps
=2+ up (kT

Dy "=y + yup(Q)z” + vp(Q)z”,
¢ = (4 wi(¢)zk
such that T}, = @ka,ﬁI);l have the form

7 = —0x + 22 AL (2, ),
Tk: y/ = 5y+25m_yxk+lAk(x7C) +.’Ek+1Bk({E,<), (57)
¢ = eC + 2" Cy(x, Q)
and ék = ®p .- Dy®PP( have the form

' =z + zug(x, (),

)
q)k:: y/:y+yak(ma<)+5k(£7<)a
CI = C + wk(£7<)a

g =0, if e =1 Bror=ror=0, (5.8)
Upjn =0, if(=6)Yer=1and1<j<k,
Upgr =0, if (=0) el =-land 1< j <k, (5.9)
Whyojr =0, if (=6)7el =€, and 1 < j <k,
where el = elf‘ . "5;":11 for L= (lg,...,ln_1).

To achieve (5.7) and (5.9), we apply induction on k. Assume that we
have chosen ®;_;. We need to find ®; such that (5.7) and (5.9) hold. We
have
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Y =y — yur(Q)a* — vp(Qa® + O(JfF 1),
¢' = ¢ —wi(Q)zF + O(|x[FH1).
Ty = ®,Ty_1®, ! has the form

2 =2 = (O + O(fa+2),
oy

2 = =6z + 2 (A1 (2, €) + Sup(C) + (=0) g (eC)
+0(|a[*+2),

y' = 0y + 202 — yaF (A1 (2, ¢) + dur(¢) + (—0) ur(eC))
+2*(By—1(x,¢) — v (C) + (=6) vk (eC)) + O(Ja[F 1),
(' = e( 4+ 2*(Cro1(z, Q) — ewr (¢) 4+ (—6)*Fwi(e€)) + O(|z[*1),

which yields (5.7), provided
{ Ak:—l(O)C) + 5uk(§) + (_6)k+1uk(€<) = Oa

Bi-1(0,¢) — 0vk(¢) + (=6)Fvi(e¢) = 0,
Cr-1(0,¢) — ewy,(¢) + (—8)*wi(eC) = 0.

The above equations are solvable, since T¢_; = id implies that

Ak—l(oac) = 7(75)kAk—1(036<)7 Bk—1(07<) = (75)k71Bk—1(0;6<)3
Eckfl(oa C) = _(_6)kck*1(0a €C)

We also have

' =z + zug(z, (),
By = Py { Y =y + yur(z, ) + vk(z, (),
¢ = ¢+ (@, Q)
Uk (2, ¢) = g1 (2, ¢) + ug(Q)a* + O(|z[*),
Uk(,¢) = Br—1(2, ) + v(Q)a® + O(|z[*),
W (w,¢) = W1 (2, ) + wi(Q)z* + O(||* ).

b

In particular
(0, ¢) = tp—1,6(0,¢) + ur(Q),

1%(0,¢) = Uk—1,£(0,¢) + v (C),
wg(0,¢) = Wi—1,k(0, ¢) + wi(C).
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This shows that there exist unique wuyg, v, wg such that (5.7) and (5.9)
hold. More specifically, the solution is given by

Ap— ~
u(Q) == > M%CL— > Gpokrch,

(—0)kel#£1 (—0)kel=1

By ~
vk(C) = > %CL - > ekt

(—0)k—lel£—1 (=0)k—lel=—1

Ck—1,0,0,L _
wea(Q) = Y = h > Wt

eaF(—08)kel €o (—6) € ea=(—08)kel

The above formulae also say that if A;_1(0,¢), Br—-1(0,¢), Cr-1(0,¢),
u—1(¢), ve—1(¢) and wy_1(¢) are holomorphic on A2, then uy(¢), vx(¢),
wy(¢) are holomorphic on the same polydisc.

We now assume that 2 = prp with p(z,y,() = (Z,—-7,(). Here we
take 71(z,y,C) = (—0x,0y + 26x,eC). Then & = 77 and 75 = p7yp. Note
that p®p still normalizes 7; and satisfies the normalizing condition. By the
uniqueness of ® we obtain p®p = p. O

We should remark that the normalized maps, i.e, the maps ® satisfying
(5.5)-(5.6), do not form a (pseudo)group, even when ¢ = 1 and € = id.

6. Realization of pairs of involutions and holomorphic n-forms

Let 71,7 = p7p be the pair of involutions generated by a real analytic
n-submanifold M C C™ with a parabolic complex tangent at 0. Recall that
71 is defined on M¢ C C" x C" > (z,w) and preserves the holomorphic
n-form w = dz; A -+ A dz,, while 75 preserves the holomorphic n-form
we = dwy A -+ ANdw, = p*w. When M satisfies Rew|y; = 0, we have
w = —wy and hence both 7 and 75 preserve w.

Let £ be the set of real analytic n dimensional submanifolds M C C"
which have non-degenerate (parabolic) complex tangent point at 0 and sat-
isfy Redzy A+ - - Adzy|p = 0. Note that we have proved in section 3 that the
set of complex tangent points of M has real dimension n— 1. Write M ~ M
if they are equivalent by a biholomorphic map f preserving dz; A --- A dz,.

Next, we adapt the Moser-Webster involutions to the classification of L.

Consider the set £* of the following data {71, 72, p,w}: (i) p is an anti-
holomorphic involution, and 71, 70 = p71p are a pair of holomorphic involu-
tions on C™ fixing the same smooth holomorphic hypersurface N pointwise.
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(ii) (m271)'(0) £ id. (iii)) w = Adwy Adzy Adza A+ - - Adz,—1 is a holomorphic n
form on C™ vanishing on N to first order (i.e. A =0on N and dA # 0) and
T;‘w = w = —p*w, where 21, w1, 22,...,2,_1 are holomorphic coordinates
of C™.

Write {11, 72, p,w} ~ {T1,72,p,w} if there is a biholomorphic map f
satisfying 7; = fr;f =1, p= fpf~', and f*® = w.

Note that by Proposition 4.1 the linear parts of 7y, 79, p are equivalent to

711(%1/70 = (_xay + 2.’L',C), 722 = p’f-lpa p(xay7<-) = (f, _576) (61)

(6 in Proposition 4.1 equals 1, since the above (i) (ii) imply that 71 (0), 75(0)
have the same set of fixed points which is a hyperplane.) We may of course
assume that the p is of the above form by linearizing p first.

PROPOSITION 6.1. — Let M,M € L. Then M ~ M if and only if the
corresponding {71, T2, p,w} are equivalent. Fach {1, T2, p,w} € L* is equiv-
alent to one arising from some M € L.

Proof.— It is clear that if M, 1]\47 are equivalent by f preserving w then
the restriction of (z,w) — (f(z), f(w)) to M€ transforms the involutions
7j, p and w of M€ to those of Me. Conversely, if F' transforms the involutions
7j, p and n-form w of M€ to those of Me¢. Let m1 be the projection (z,w) — z.

Then f = m Fry' is well-defined and F(z,w) = (f(z), f(w)) on M°. Since
F transforms M€ into M then f transforms M into M. Obviously f is a

biholomorphism since F' is, and f preserves dz; A - A dzy.

We need to show the realization. Assume that 71,79 = p7r1p, with
(12711)"(0) # id, are holomorphic involutions on C" and that the common
fixed point set of 7; is a smooth hypersurface N. We also assume that w =
a(x,y,Q)dx Ady AdCa A+ - - AdC,—1 with a|y = 0 and da # 0 is a holomorphic
n-form satisfying 77w = w and p*w = —w. We shall find an n-dimensional
real analytic manifold M in C™, and a biholomorphic map ¢: C* — M€ such
that o ~!pp = po is the restriction of (z,w) — (W,z) on M€, and ¢~ '7;¢
are the involutions on M€ generated by M, and ¢*w = dz1 A ... A dzp|pe.

By Proposition 4.1, we may also assume that the linear parts of 71, 7, p
are given by (6.1). By averaging, we may assume that p(z,y,¢) = (T, -7, ).
Let 51 = %w?nl = % Then p(£1a7717<) = (ﬁhglﬂg) and 71(51777174-) =
(&1, —m —2&,¢) + O(2). Let

==& +&on(&,m, Q) =& +0(2),

Ll ORI

Pa = 7(Coz =+ Ca © 71(51777174)) = COt + 0(2)3

\}
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Pn=momi(&,m,¢) - m = —26m —ni + O(3).

By linearizing 7 alone, one can see that any holomorphic function that
is invariant under 77 is a holomorphic function in pq,...,pn_1,pn. Further-
more, Tiw = w implies that w = dp; A -+ Adpn—1 AdA(P1,-*,Dn—1,Dn)
with A(p1,...,pn—1,0) = 0. Define M C C™ by equations

Zj :pj(glaglat)a 1 g] <mn, Zn = A(pl,- .. 7pn—1apn)(£laglat)

with & € C, t € R 2. Since 831;4 (0) # 0, looking at the leading terms we

see that M is smooth and of dimension n. The complexification M€ is then
parameterized by

Z] :pj(517n17T>7 1 g] <n, Zn = A(p17"'7pn71apn)(£lan17T)a

w; :ﬁj(nhglaT)? 1 < .7 <mn, Wp, = Z(ﬁh v 71_777,71’?71)(7717517{2—‘)
with (&1,m1) € (C2,T e Cn2,

Obviously, M has a parabolic complex tangent at the origin, by looking
at the above expansions of p; and by using A = 0 for p, = 0 and 887‘1 £ 0.
Since p1,- -+, Pn—1,Pn are invariant by 7y, then 71 is the unique non-trivial
branched covering transformation of 7: M¢ — C™. Thus 7,75 = pmip are
the involution associated to M.

It is clear that w =dp; A -+~ Adp,—1 ANdA(p1, -+, DPn—1,Pn) is the com-
plexification of dzq A -+ Adzy|p in MC.

Since p*w = —w and p|p; = id, it follows that Re dzq A -+ Adzy|pr = 0.
Note that the condition pw = —@ (and 73w = w) is used only at the last
step. [l

We now consider the set V* of the following data {7, 72, p,w}, where
71,72 = p71p, T1(0) # 75(0), are holomorphic involutions on C", p is an
anti-holomorphic involution, and w = Adz Ady A d(s--- A d(,—1 is a holo-
morphic n-form on C”. Moreover, 11, 7o fix the same smooth holomorphic
hypersurface N pointwise, A vanishes to order 1 along N and 7w = w.
Note that the latter implies that 75 p*w = p*w, which is, however, not a
constant multiple of w in general.

Write {11, 72, p,w} ~ {71,72,p,w} if there is a biholomorphic map f
satisfying 7, = fr;j f =1, p= fpf~', and f*® = w.

Let V be the set of real analytic n dimensional submanifolds M C C"
which have non-degenerate (parabolic) complex tangent points on a smooth
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hypersurface in M. Write M ~ M if they are equivalent by a biholomorphic
map f preserving dzy A - Adz,.

Dropping the last paragraph in the proof of the above proposition, we
have

PROPOSITION 6.2. — Let M,M €V. Then M ~ M if and only if the
corresponding {71, T2, p,w} are equivalent. Each {11, 72, p,w} € V* is equiv-
alent to one arising from some M € V.

The above classification problem is of course interests in its own right.
We are unable to solve it in general in this paper. Nevertheless, we have
the following formal normal form, when n = 2 and w is invariant under 7,
and 7.

PROPOSITION 6.3. — Let 1,7 = poT1po be two holomorphic involutions
with po an anti-holomorphic involution on C2. Let wy = xa(x,y)dr A dy
with «(0) # 0 be a holomorphic 2-form. Assume that 11, T2 fiz © = 0
pointwise, 71(0) # 75(0) and wo = 7iwo for j = 1,2. There is a semi-formal
transformation @ satisfying

72.7 = 90717-_7'90: (LE, y) - (7’I7y + (71)]712'%)5
p=¢"pop:(x,y) — (T, -7),
w = wy = @) pdy A dy,

in which 0(x) = 0(x) with 0(0) € [0,7) is unique.

Proof.— By Proposition 5.1, we can choose a semi-formal map ¢, which
transforms 7}, py into the above 7}, p and transforms wy into wy. Then any
semi-formal map ¢; preserving 7;, p must have the form

e1:(2,y) — (za(z), ya(z) + b(x)),
a(z) =a(x) #0, b(z) = —b(z).

Since 6*w; = wy then wy = f(x)ew(””)xdm A dy. Since 7fw; = wy, then 7, 0
are even formal power series. Write

wy = T($2)6i0($2)$d$ A dy,
r(z) =7(z) #0, 0(x) =0(x), 0(0) € [0,m).
The identity pjw = w; is equivalent to
za®(z)d (z) + a®(x) = r(z?).
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Note that if a(z) = ag + 3, 4 /o a2j7™ +az* +O(k +1) and k is odd,
then the coefficient of z* of xa?(x)a’(x)+a®(z) is (k+3)adax, which must be
zero. Hence a must be even in z. For a(z) = [A(z?)]'/3, the above equation
becomes 2zA’(z) + A(z) = r(z), which admits a unique solution A.

After wy is normalized to w, the maps that preserve the form of w are
given by (z,y) — (z,y + b(x)) and they preserve w. This shows the unique-
ness of 6. a

We can also prove the following by an averaging argument.

PROPOSITION 6.4. — Let 11, T2, po,wo be as in Proposition 6.3. If Tom
is holomorphically linearizable, there exists a holomorphic map normalizing
Ty, To, po and wy simultaneously.

Proof. — We normalize 71, 79, pg first by averaging. We may assume that
79711 is the linear map &. By a linear transformation, we may assume by
Proposition 4.1 that 7;, py are tangent to 7;, p respectively (for n = 2). Then
po reverses &. Define g1 = (id + ppo)/2. Then ¢16 = 6¢1 and g1po = pgi.-
So for 7; = glrjgl_l, we still have that 77 = 6 and 7, reverses &. Put
g2 = (1d+7217’:1)/2 Then %192 = gg;l and &gg = ggé’, and hence 72292 = gg?g.
Also pga = (p + T2T2p)/2 = gap. We have therefore linearized 71, 2 and po
by a convergent map. From now on we assume that 7, 72 and pg are linear.

We now look at the holomorphic n-form wg = w;. One readily sees that
the a in the proof of Proposition 6.3 is convergent, when 7 is convergent.
Using the a, we normalize the holomorphic n-form. g

The above proposition, when 6 is constant, is due to Webster[11]. We
should mention that the above proposition does not mean that the equiv-
alence class of 71,72, po,wq is determined by the holomorphic equivalence
class of the indicator to71, as shown by Theorem 2.2.

We conclude this section by recalling a result of Moser-Webster, which
is needed to classifying real analytic manifolds that are formally equivalent
to the quadric.

Let C be the set of real analytic n-manifolds M in C™ such that M
has a parabolic complex tangent at 0 and its set of complex tangents is a
hypersurface in M. Let C/~ be the set of holomorphic equivalence classes.

Let C* be the set of {71, 72, p} satisfying the following: p is an anti-
holomorphic involution and 7,7 = p711p are holomorphic involutions on
C™. 71 and 72 fix pointwise the same hypersurface, and (1271)’(0) # id. We
say that {m, 12, p}, {71, T2, p} € C* are equivalent if there is a biholomorphic
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map g such that grj97' = 7; and gpg~' = p. Denote by C*/ ~ the set of
equivalence classes.

We now recall the following result of Moser and Webster|[8]:

PROPOSITION 6.5. — There is a one-to-one correspondence between C/ ~
and C* /[ ~.

7. Moduli spaces without volume-form - first half of Theorem 2.1

We will first recall the moduli space of Voronin [10] on holomorphic
mappings that have

o7’ =z +2%a(z,y,Q),y =y +da + 2b(z,y,(), " = ¢+ axe(x,y,) (7.1)

with ¢ € C"2,b(0) = ¢;(0) = 0. This moduli space will be adapted to our
classification problems.

Semi-formal maps and asymptotic expansions. Recall from the intro-
duction that a power series h(z,y,() = >, hj(y, ()27 is called semi-formal
in z, if all h; are holomorphic in (y,¢) € C x C"~2 on some fixed neighbor-
hood W of the origin. Given two semi-formal maps F, G from C™ to itself,
the composition F'o G is a well-defined semi-formal map, when G preserves
z=0.

Recall that S = V x W is a sectorial domain, if V is a sector of the
form Ve = {ziargz € («,3),0 < |z| < €} and W is a neighborhood
of the origin in C*~!. A semi-formal function G is called an asymptotic
expansion of a holomorphic function g on V' x W, denoted by g ~ G on
V x W, if G(z,y,¢) = > pe Gi(y, ()" with all Gj, being holomorphic on

some neighborhood W of the origin and if

lim |z|” ‘a:y( ZkaC ‘

V3z—0

uniformly on W for each N. Analogously, we say that a semi-formal map ®
is asymptotic to a holomorphic map H on V x W, if each component of ®
is asymptotic to the corresponding component of H.

Semi-formal or sectorial normalizations. A semi-formal map ®(z,y,() =
(x 4+ zu(z,y,C),y + v(z,y,(), ¢ + w(z,y,()) is normalized if it satisfies the
normalizing condition

u(x,O@) = U(iC,O,C> = U)(LL',O,C) = 0.
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The normalized semi-formal maps form a (pseudo)group. By Proposition 5.1
(and its remark) there is a unique normalized semi-formal map ® such that

6=0"to®:x' =2, ¢y =y+da, (=¢C
Note that a semi-formal map ¥ commutes with &, if and only if

U:a' = za(z, (), y' =yi(z,¢) +b(x,(), ¢ =cx,0).

Let o be given by (7.1), and ® be the above unique normalized semi-
formal map satisfying ®~'o® = 6. Voronin [10] shows that for any a < 3
< a+mif r > 0 is sufficiently small there is a biholomorphic map H, defined
on S = {ra <argz < B,|z| < r} x A?7! such that H~ 1o H = &, while
H~donS.

Voronin [10] proved the result on H; for n = 2. The same proof can be
modified easily for n > 2 (see section 10).

We need to choose the position of sectors so that no further condition is
imposed on the individual sectorial transformation H even in the presence
of the reality condition pg = gp, which is required to normalize o = 757;.
We should emphasize that such an arrangement may not be necessary, for
the Voronin normalizing maps H; can always be chosen to preserve p, by a
possible averaging when a sector is invariant under p. Indeed, if o commutes
with anti-holomorphic involution p and V; is invariant under p, Voronin [10]
constructed directly an H; that commutes with p. We are in the case that o
is reversed by p and it is not clear that such an H; can be obtained directly
from Voronin’s construction.

PROPOSITION 7.1. — Let S1 = {z:—€ < argzx < 7/2 + ¢,|z] < r} X
APl and S; = i'79Sy. Let 11,72 be holomorphic involutions given by
Proposition 5.1, and let 0 = To71. Let 1 = dea--- €1, where €; are as
in (4.11). For each 0 < € < /4 there exist r > 0 and holomorphic maps H;
on S;UG(S;) such that Hj admit the same asymptotic expansion ® of semi-
formal map on S; UG(S;), ®(0) =id and @ preserves x = 0. Moreover, we
have

(i) If § =1, then H, !,mjHy = #;; if 6 = —1, then H, '7;Hy = 7;.

(i) If 7o = pr1p additionally for p(x,y,() = (T, -7, (), one can choose
H; satisfying (i) and pH1p = Ha, pH3p = Hy.

(ii) If Tjw = pw,j = 1,2 additionally and w = a(z,y,()zdz A dy A
dGa A+~ ANdCn—1 is a holomorphic n-form with a(0) = 1, one can choose H;

satisfying (i) and Hyw = & = zdx Ady AdGa A+ AN dCp-1.
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() If 7, p,w are as in (i)-(ii) and p*w = —w, one can choose H;
satisfying (i)-(iii).

Proof.— The arguments for cases § = 1 and 6 = —1 are different. The
case § = 1 relies on Proposition 5.3. The case § = —1 requires only an
averaging argument.

(i) By Proposition 5.1, there is a semi-formal map ®9 = id + O(2),
preserving x = 0 and satisfying @, l6®, = 6. By a theorem of Voronin, there
is a biholomorphic map H} ~ ®y on some Vi x W such that H; "'cH} = &
on V7 x W. Next, we will find additional changes of coordinates, which
are composed with H7. It is understood that the composed maps will be
defined on sectorial domains by shrinking the aperture of V; slightly and
choose a smaller radius. This is justified by Lemma 10.3, since we will use
changes of coordinates on sectorial domains which preserve x = 0 and admit

asymptotic expansions that are tangent to the identity.

Consider the case § = 1 first. By Corollary 5.2, there is a semi-formal
map ¥ = id + (2), preserving x = 0, such that
UleW =5, UT'e lne0W =4

By Proposition 5.3, there is a biholomorphic map H;* ~ ¥ on Vi x A1
such that H}* ‘6 H}* = 6. Put H, = HfH;*. Construct Hy analogously
on Vo x W. Put Hy3 = 11 H {71 ~ ®q¥ = ® and Hy = 71 Ho71 ~ . We have

HylymiHy =7, Hy ~®¥ = ® =id+ 0(2).

For the case § = —1, we simply use averaging. Construct H3, H3, H}
analogously as in (i) for Hf. Define 71 , = H; ™ 'm Hj. Put

Hy =t = (id+ #171,0) /2 ~ (id + 7185 ' 71@o) /225 0

In particular, the asymptotic expansions of H};* are independent of k. It is
clear that %IHZ*_l;Lk = H;;*_l. Since H;_lTQTlH; = To71, we also have
H* ' = (id + 7272.1)/2 and hence 7 H;* '7 ), = H;*~'. This shows that
H;, = H; H;™ linearizes 7, T2 on a sector.

(ii) If 7o = p71p, we should construct H; first for 6 = £1 and then take
Hy = pHip. When § = 1, put H3 = 71 H17, and Hy = pH3p. When § = —1,
construct Hs analogous to Hy and put Hy = pHsp.

(iii) Next we assume that 77w = pw. We may assume that H; are already
constructed as in (i). Put

0;=Hjw=a;(z,y,Qzdr ANdy NdG A+ ANdGu-1.
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Since H; ~ ® and ®’(0) = id then a;(z,y,({) ~ A(z,y,() and A(0) = 1.
Put
1 ) 1/3 1 T, 1/3
o0 = { [ sates s ast = [ aaeorn )
0 T tJo
hj: (IZ’, Y, C) - ($bj(£L‘7 Y, C)a ybj(xa Y, C)a C)a
where b;(0) = 1. Then

R 1
1
- gd(fﬂbj(l',y’ C))3 A d(y/l’) A dCQ JARERA an—l = gja
L 1/3
by(w,9:0) ~ { Jy 32 Alws, sy, Q) s} =1+0(1).
ssume 0 = —1 first. Since 770, = wb;, then a7, = ag. en hyg
A ) fi S A]*HJ 6;, th 7 Then h

commute with 7;. Assume that 6 = 1. Then %J*Hk = pbit2, arT; = a2,
and hy427; = 7jhy. Thus Hjhj_1 are the required maps.

(iv) Assume that H; are already constructed as in (ii). Let h; be as
above. When p*w = —w, we have a1p(z,y, () = as(z,y,¢) and asp(z,y,() =
as(z,y,(). So ho = phip and hy = phgp. Therefore Hjh;1 are the required
maps. O

Having constructed H; by Proposition 7.1, we are ready to construct
two moduli spaces. This will finish the proof of Theorem 2.1.

Moduli space of real manifolds with parabolic complex tan-
gents on a codimension one submanifold. We will first construct the
moduli space for real analytic n-manifolds in C™ which have parabolic com-
plex tangents along an n — 1 dimensional submanifold. We will then show
the moduli space is infinite dimensional.

By Proposition 6.5, it suffices to construct the moduli space for C*. Recall
that {71, 72, p} isin C*, if 71, 72 fix the same hypersurface and (7271 )" (0) # id.
Also, {11, 72,p},{T1,72,p} € C* are equivalent if there is a biholomorphic
map g such that grjg7! = 7; and gpg~! = p.

Take {r¥,79,p"} € C*. By Corollary 4.2, there exists a biholomorphic
map ¢ such that 7; = <,07j04,0*1 fix # = 0 pointwise and are tangent to
75 (2,y,¢) — (—x,y + (—1)77122,¢) and such that p = pp®p~1 is given by
(z,y,¢) — (T, —7,¢). By Proposition 7.1 for each e € (0,7/4) there exists
r > 0 such that for

S; = Sj(e,r) =iz —e < argwr < T/2+ ¢, || <7} x ArT! (7.2)
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there are H; defined on S; U&(S;) and a semi-formal map @ satisfying

HfoTkHjZ?k, pHip = Ha, pHzp= Hy (7.3)

Hj~®=id+0(2), on S;U&(S;), j=1,....4, (7.4)

and moreover ® preserves x = 0. Put

Hjjy1=H; 'Hjp. (7.5)

We have
Hiy =pHiop, Hyy = pHysp, Hyporrs = 75 Hipi1%), (7.6)
Hjjp1~1id, on S;U6(S;). (7.7)

We shall call {H; j+1} a moduli function of {r0, 79, p°}, if H; ;41 satisfies
(7.3)-(7.7). Denote by H the set of moduli functions {H; i1} satisfying
(7.6)-(7.7) for some positive € and §

Remark. — As remarked in section 2, our biholomorphic maps H; ;11 are
defined on sectorial domains and admit asymptotic expansions. Therefore,
we will have good controls on the domains and ranges of inverse or compo-
sition maps. One can see this by applying Lemma 10.3. Sometimes we need
to shrink a sectorial domain, but this is done in terms the radius of the sc-
torial domain. The aperture of the sectorial domain is only shrunk slightly.
In particular, Hj 11 = ijlHjH is defined on S; N Sj41 Ua(S; N Sj41)
which is non-empty.

Of course, H; j11 depend on the choices of initial coordinate map ¢ and
Hj. Let us first determine how moduli functions change for different ¢ and
H;. Assume that ¢ is another choice such that 7; = gET]Q(,Z_l fixx =0
pointwise and are tangent to 7; and such that p = $p°@~!. Assume that ®
and I;Tj satisfy

ﬁj—jg;kﬁj:f-h k:1727 H]N&;a .]:17741

Pfhp = ﬁ% pﬁ?,/) = ﬁ4-

Recall that H; and H; are defined on domains of the form (7.2). Choose
small €, 7 such that they are both defined on S;(e, 7). For a possibly smaller
r, we can put ¢ = ¢ '. Then 7; = g~ '7;9 with gp = pg and the first
component of g(x,y,() is px(1+ O(1)) with p # 0 a real number. If g > 0,

put G; = H ;1 gH;, which is defined on S; when € and r are sufficiently small;
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if 1 < 0, put G; = H; 'gH; 5. Put ¥ = &~ 1g®. Then H; = g~'H,G; for
p>0and H; 5 =g~ H;G; for p < 0. Also

_ Hjiqq, ¢ >0,
Gi'Hjjn G = { 7 (7.8)
Hj 2543, ¢<0;
GQ = pGlp, G4 = pG3p, Gk+2 = %jG}ﬂA'j; (79)
Gj~¥ =pUp="7U7, onS; oron S;_o. (7.10)

Since ¥/(0) = ¢’(0) is biholomorphic and ¥ commutes with & then

U (x,y,¢) = (alz, Oz, ya(z, () + bz, (), c(=, (), (7.11)

where a,b, ¢ are semi-formal in z, a(0) # 0,b(0) = 0,¢(0) = 0, and ¢ —
¢(0, ¢) is biholomorphic. Note that a(0) = p. The above asymptotic expan-
sion implies that

Gj: Sigﬂ(ﬂ) il_jvfe,w/%re,(lfe)& X A?l:le)(; -

IV g mj242e,00 (14€)5 X Azo(ll+€)57

where ¢q is a positive number independent of €, §. Conversely, assume that
there are semi-formal map ¥ and biholomorphisms G such that {7, 72, p},
{71, 72, p} have moduli functions H; ;11 and Hj7j+1 satisfying (7.8)-(7.11).
If the first case in (7.8) occurs then g = HjGjﬁ;17j =1,...,4 agree on the
overlap. Hence g is well-defined on A%, NC* x C"~1, if §' is sufficiently small,
and g extends to a holomorphic map defined near the origin. On a sectorial
domain, we know that g ~ ®¥®~!. Thus ¢’(0) = ¥’(0), which implies that
g is a biholomorphic map. Now g~ ‘79 = ﬁgGngglrlHlGlﬁfl =71 and
g pg = ﬁgGQnglleGlﬁfl = p. Hence g~ 'mg = 7. If the second case
in (7.8) occurs, define g = HjGjI?j;lQ. Then g~ 'r1g = 71 and g~ 'pg = p.

Conversely, assume that we are given moduli functions H; ;41 satisfy-
ing (7.6)-(7.7), where Hj ;1 are defined on S;;i1(e0,70) = Sj(eo,r0) N
Sjt+1(€0,70) and Sj(ep,r0) with 0 < €9 < m/4 are given by (7.2). Following
Malgrange [7], we shall construct the corresponding pairs 71,72 = p71p as
follows.

Let A = {a:|arge — /2| < 2¢, |z| < 2r} x ALY By = {21 < argw <
/2 —¢ x| <r}x AP7L Put A; = i'77A; and Bj = i'77 By. Choose small
and positive €,r so that H; ;41 are asymptotic to identity on A;,; and so
that the first component h; ;i1 of Hj 41 satisfies 4/5 < |2h;;11(z,y, ()|
< 5/4 and |arg{2h; ;11(z,y,()}| < €/4 on A;. We may assume the first
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component of H ! | satisfies the same estimates. Then H; ;i is a biholo-
morphic map from A;;; onto C’j =H;;t1(Aj11). Let S; = AJUB]UC]. Let
X be the disjoint union L_, S;. We identify p € A; 1 with H; j11(p) € 5'j7
which defines an equivalence relation on X since CN'j does not intersect Ay
for k # j,57+ 1,7 — 2. Let X be the quotient space of X by the equiv-
alence relation, and 7: Xy — X be the projection. So U C X is open if
and only if 771 (U) N S; are open for all j; in particular, if V' is open in S;
then 7~ (n(V)) =V UH; 1;(VNA;)UH; ]I_H(V N CV'J) is open and hence
(V') is open. We need to show that X is Hausdorff. Let p, ¢ be in Xy with
m(p) # w(q). If p, ¢ are in the same S, take disjoint open sets U, > p, U, 3 ¢
in §;. Since Hj j41 is one-to-one then 7(U,), 7(U,) are also disjoint open
sets. If pisin S; and ¢ is in Sy, for k # j,j—1, j+1, then 7(S;), 7(Sk) sepa-
rate p and ¢. Finally it remains to check the case that p € S; and g € Sj41.

If g € Aj 1, then p and Hj j11(q) are both in S}, which is reduced to a pre-
vious case. The same argument applies if p € C’ Assume now that p is in
S; \6'J and ¢ is in Sj41\ Aj41. In particular |arg(p/q)| < €/2 does not hold.
Choose open sets U, > p and U, > ¢ such that |arg(p/H, ;+1(q))| < ¢/4
does not hold for p € U, and ¢ € U, N A;11. Therefore, 7(U,) N 7(Uy) is
empty and X is Hausdorff.

Now X is a complex manifold with the coordinates 7rj_1 = (x,95,¢)
defined on 7(S;) and with value in S; C C", and we also have its inverse
Tyt Sj — X07T—>X. Note that HjjJrl = 7T;17Tj+1 on Aj+1. On ’/T(Xo/4), we
define

’Fk: (l'jayjaCj) - (xj+27yj+23Cj+2) = (7xj,yj + (71)]6712‘%]'74]')7
,5{ (9617y1,§1)—>(9€27y27§2)= (fla_y17<1)7
. (x37y3a<3) e ($47y4a<4) = (537 _y37z3)'

Take smooth non-negative functions x;(z,y,() = x;(x/|z|) such that
X; equals 1 for argz € (/24 (1 — j)n/2,—€/2 + (2 — j)m/2) and O for
argr & (—€/2+(1—7)7/2,€/2+(2—7)7/2), and such that x;+---+x4 = 1.
Define

ZXJ z;(p (), y;(p), G(p))-

Since Hjj41 ~ id then K(X) = D N (C* x C"~ 1), where D is an open
neighborhood of the origin in C™. Note that K is a biholomorphism when the
complex structure on K (X) is defined by K;,D,, K;+D,, K;.D; and K o
7r;1 =K onm(S;). Note that W,?l(p) :ijﬂfl(p) when Xk(wgl(p))xj (W;l(p))

# 0. Thus
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4 4

Kj(t) =Y xn(Hij (£) H i (8) ~ > Xk (8)Hi 5 (1)

k=1 k=1

4
~> xkt=t, t=7;"(p) € S;.
k=1

Hence the complex structure extends to D and agrees with the standard
one along x = 0 to infinitely order. By the Newlander-Nirenberg theorem,
there is a diffeomorphism ¢: D — Q C C™ with ¥(0) = 0 such that YK
is biholomorphic. Since ¢ ({z = 0} N D) is a holomorphic hypersurface in
(the standard Euclidean space) C", by a holomorphic change of coordinates
(and by shrinking D if necessary), one may assume that ¢ preserves x = 0.
Now the inverse ¢!, expanded as a formal power series in z, Z, is a formal
power series in x only and has coefficients holomorphic in y,( in a fixed
domain. Using a finite order Taylor expansion of ¢»~! (in x) if necessary,
one may also assume that ¥ (x,y,() = (z,y,¢) + O(|z|?). On QN (C* x
C"1) define 79 = K7, K '~! and p° = ¢KpK~'¢~!. Again, since
H; j+1 ~ id then T]Q,po extends to {2} with TJQ(x,y, ¢) = 7i(x,y,¢) + O(|z)?)
and p°(x,y,¢) = p(x,y,¢) + O(|z|?). We need to show that {TJQ,pO} is the
required realization. Let g = (id+pp°®)/2. Then ¢ is tangent to the identity
and fixes z = 0 pointwise, and pp® = ¢°p°. Take H; = p"¢YK; = p" YK ;.
Then Hj_lHj_H = Hj ;1. On S; we have

H(t) = QYK (t) ~ "P(t) = @(t) =id + O(2), t= (z;,y;,¢),
where ¢ (x,y,¢) is the Taylor series expansion of ¢ (x,y,¢) in z,Z. Since
" and 1 preserve x = 0, ® preserves x = 0 too. As mentioned above,
1[)(37, y,¢) is actually a formal (holomorphic) power series in & whose coeffi-
cients are holomorphic in y, ¢ in a fixed domain. This finishes the proof of
the realization.

To deal with mappings defined on a sectorial domain S = V x An~1
that commute with &(z,y,() = (z,y + 4z, (), it is convenient to consider
the quotient space S/& by the projection (x,t,¢) = w(z,y,() = (x,e%,g).
More specifically, if H commutes with ¢ then it has the form H(x,y,() =
(xa(x,y,C),ya(z,y, ) +b(z,y, (), c(x,y,()) with ad = a, b6 = b and ¢6 = ¢,
which yields a mapping in (z,, {)-space defined for z € V, e Tl < [t] <
el and ¢ € A"72 given by

H:2' = za(z,t,¢), t =t\(x,t,¢), ¢ =é,t),

. - _ _ xlog
a=am -, C=CT 17 ™ 1(:L’,t,<):({1?, i 7€)7
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_ ol _ mibr (@, ,¢)
A=et d(z,t() = Cr— oL

When H is asymptotic to the identity on the sectorial domain V' x An~1,
such as a mapping H; 41 in {H, 41}, we have |a(z,y, () — 1| < co|x| and
yla(@,y,€) — 1) + b,y,0)| < colaf? for € V.0 Ay and (y,¢) € AP,
which implies that

|d(z,t, () < meolz| + meoly| <7

for |z|, |yl,|¢| sufficiently small. Hence H determines H uniquely. We will
also consider mappings G, such as a mapping G; appearing in the equiva-
lence relation of moduli space. The G is defined on a sectorial domain V' x
A"~ commutes with 6 and admits an asymptotic expansion ¥(z,y, () =
(zA(z,y,¢),yA(z,y,¢) + B(z,y,¢)) with A(0) # 0, B(0) = 0 = C(0). Note
that the semi-formal map W still commutes with &, so A6 = A and Bo = B.
However, G is not uniquely determined by G; G = G’ if and only if

A/ = A7 Cl = C7 B,(x7 y’ C) = B(I7y7 <) J’» 4]{:1’14(1’, y7 C)’ k E Z’

i.e. G’ = 6*G. Therefore, the asymptotic expansion of G determines k; in
particular, the equivalence class of { H; j 11} is determined by its equivalence
class in the (z, t, {)-space.

In (z,t,()-space, define 7i(z,t,{) = 72(x,t,() = (—x,—t"1,(), and
p(z,t,¢) = (7,%,¢). Then moduli functions H; ;11,5 = 1,...,4 will still sat-
isfy the conditions (7.6) (with the new 71 and p). The G; in the equivalence
relation still satisfy (7.8)-(7.10). Moreover, the asymptotic expansion of G,
becomes ¥ = (za(z, (), tA(z, (), c(x,()). On the (x,t,()-space the moduli
functions H; ;41 and mappings G; are required to satisfy asymptotic ex-
pansion conditions, and by definition the asymptotic expansion conditions
mean the conditions described in the (z,y, {)-space.

Next we want to show the non-triviality of the moduli space.
Define

His(z,y,Q) = (z,y +7(2,1),(), (7.12)
H34(xay><) = ((E,y +T(_$7 _t_1)7<)7 H23 = H41 = 1d7 (713)
rt) = 2% Jog L (L= )ep(@) (7.14)

i 1—(1=t)cp(z) ’

t=e2>, cp(z)=e"p(x), p(z)=p(-z), p(0)#0,  (7.15)

where p(x) is holomorphic near the origin. Put Hos3 = Hy; = id. We have

Hzy = 71Hi27 and 6Hjj116~" = Hjj41 ~ id when Jy| < § < 1/2.
Note that
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Hyz (@,y,Q) = (2,9 + 7(@,1),0),

1= (1=t ey (a)
15 (1= Depla)

Thus pHy2p = H;5 holds, if and only if p(x) = —p(x).

- 2
r(x,t) = W—f log

By a result of Voronin (Lemma 16 in [10]), if fNIj,j_H are of the form
(7.12)-(7.15) with p replaced by p, and if H; 1, H; j+1 are equivalent under
mapping G; ~ ¥ satisfying (7.8) and (2.5), then p = p.

The above argument shows the moduli space is infinitely dimensional
when n = 2. The higher dimension case can be obtained by trivial extensions
as follows.

PROPOSITION 7.2. — Let My, M, be two real analytic surfaces in C?
with a non-degenerate complex tangent at the origin. Define M} = M;
x R"=2 C C? x C"2. Then M, My are holomorphically equivalent, if and
only if My, M5 are holomorphically equivalent.

Proof. — By two local changes of holomorphic coordinates in C? one may
assume that M; are given by zo = ajzf—i—bjzlil—l—cjff—i—Ej(zl, Z1) with E; =
O(3) and |bj| + |¢;j| # 0. Assume that f = (f1,..., fr):C* — C" is a local
biholomorphism such that f(M;) = M;. Since ToM; NiToM; is spanned
by zi-axis, then f’(0) preserves the zj-axis. So f1(z1,0) = pz1 + O(2) with
p # 0. Since f(My) = M3, we have fao(z) = a2ff(2) + b2fi(2)fi(2) +
caf2(2) + Ea(f1(2), fi(z)) for z € M;. Let g;(z1,22) = f;(21,22,0) for
7 =1,2. We get

ga(w) = agg; (w) + bagi (w)g1 (w) + cagf (W) + Ez(g1(w), g1(w))  (7.16)
Wy = alwf + blwlwl —+ clﬁf + El (wl,wl).
Write go(wi,ws) = aw; + Pws + O(2). Comparing coefficients of ww;
and w? in (7.16), we see that by = boumt and Bc; = cofi®. Since pu # 0
and |bs| + |co| # 0, then 8 # 0. This shows that (z1,22) — ¢(21,22) is a
biholomorphism sending M; into M. [l

8. Moduli spaces with the volume-form - Second half
of Theorem 2.1

The second half of the proof of Theorem 2.1 involves a volume-form.

We will now construct the moduli space for real analytic n-manifolds
in C™ on which Redz; A - -+ A dz, vanishes and which have parabolic com-
plex tangents along an n — 1 dimensional submanifold. We will then show
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the moduli space is infinite dimensional. This will finish the proof of Theo-
rem 2.1.

Along the lines of the second half of the proof of Theorem 2.1, we will
also prepare some results for Theorem 2.2.

The proof is very similar to the part in the previous section. We will be
brief and emphasize the needed changes.

By Proposition 6.1, it suffices to construct the moduli space for L*.
Recall that {71, 72, p,w} is in L£*, if p is an anti-holomorphic involution, and
T1,To = pT1p are a pair of holomorphic involutions on C” fixing a smooth
holomorphic hypersurface N pointwise. The set of fixed points of ¢/(0) is
a hyperplane. w = Adzy A dz; ANdza A\ -+ A dz,_1 is a holomorphic n-form
on C™ vanishing on N to first order (i.e. A = 0 on N and dA # 0) and

Tiw=w=—p‘w.

Take {7, 79, p°,w°} € L*.

By Corollary 4.2, there exists a biholomorphic map ¢ such that 7; =
@r)p~! fix x = 0 pointwise and are tangent to 7;: (z,y,¢) — (—z,y +
(—1)7712x,¢) and such that p = @p’p~! is given by (x,,¢) — (T, —7, ().
Write w = ¢*w? = A(z,y,)xdx Ady Adly A -+ Ad,—1. Since p*w =
—w, then A(0) is real. By a change of coordinates (z,y,() — (cz,cy,()
with ¢ € R, we may assume that A(0) = 1. By Proposition 7.1 there exist
Vi=Ves={xeC:0< |z| < d,argz € (—€,7/2+¢€)} with 0 < € < 7/4,
V; =i'77V;, and H; defined on V; x A}~ (§ > 0) and semi-formal map ®
satisfying

H:\ymoHj =, pHip=Ha, pHsp=H, (8.1
Hi~®=id+0(2), on V; x A7l j=1,...,4, (8.2)

where ® preserves x = 0. Also
Hiw=0, o=adeAdyAdCA---AdCur. (8.3)

Put Hj ;1 = H; 'Hj;q. We have

Hyy = pHyop, Hy = pHysp, Hiyarrs = 75 Hg g1, (8.4)
Hjjp1~id, oni'™V_ . sx AP~? (8.5)

for possibly smaller €¢,d > 0. Also
Hi j0=0. (8.6)
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We shall call {H; j 11} a moduli function of {ry, T2, p,w}, if Hj j11 = Hj_lHjH
satisfy (8.1)-(8.6). Denote by H the set of moduli functions {H j41} satis-
fying (8.4)-(8.6) for some positive € and 4.

Let us determine how moduli functions change for different ¢ and H;.
Assume that ¢ is another choice such that 7; = gZT 9571 fix x = 0 point—
wise and are tangent to 7; and such that p = @p°¢~! and & = p*w

(x Y, ()xdm A dy ANdC A+ A an 1 (0) = 1. Assume that ® and H
satisfy H 27';€H = Tk,H ~ O lep = HQ,png = H47 and H*w = w.
Then 7; = g~ '7;9 with gp = pg and the first component of g(x Y, (:) is
cz(1+ O(|z|)) with ¢ being real and non-zero. If ¢ > 0, put G; = H~ gHJ7
ifc<0, put G; = H;lgﬁIjH. Put ¥ = @flg(f. Then ﬁj = g’lHjG] for
¢ >0 and ﬁj+2 =g 'H;G; for ¢ < 0. So

_ H; i1, c >0,
Gy H,j 411G = { Y (8.7)
Hji2543, c<O0;
G2 = pGlp, G4 = pGgp, Gk+2 = f'ijf'j, G;LZ) = @7 (88)

Gj~T, onV; x A¥ P oron Vj_g x A1, det W'(0) # 0. (8.9)

Note that G;w = @ implies that U*w = w. In particular, W preserves z =
0. Conversely, assume that there are G/; such that {m1, 72, p}, {71, T2, p} have
moduli functions Hj, ;1 : and J.i+1 satisfying (8.7)-(8.9). If the first case in
(8.7) occurs then H;G; H 1 j=1,...,4 agree on the overlap, which extend
to a blholomorphlc map ¢ defined near the origin. As before ¢~ 'mig = 71
and g~ 1pg = p. Hence g~ 119 = T». If the second case in (8.7) occurs, define
g =H;G; H]+2 Then g~ 'm1g = 7 and g~ 'pg = p. In both cases, we have
gtw=0.

Conversely, assume that we are given moduli functions Hj ;1 satisfying
(8.4)-(8.6). We already constructed 77,79 = p°70p° which realize Hj; 1:
Recall that H; ;11 = 7T;1WJ+1 are the transition functions on X. Hence
Hy, & = @ implies that there is a well-defined holomorphic n-form & on
X such that 70 = @. Let w° = (¢ K)""*&. From w° = (¢Km;)” 0, one
sees that w® extends to a holomorphic n-form vanishing precisely on z = 0

to first order. Recall that = = 0 is also the set of fixed points of 7¥. Since

J
O =& = —p*®, then 7w’ = W = —p*w. Therefore, {T]Q,po,wo} is a

J
reahzatlon of Hjjy1.

We need to show the moduli space is infinite-dimensional.
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Case n = 2. It is convenient to choose coordinates such that the map-
pings commuting with & corresponds to maps without any restriction in
new coordinates. We will use coordinates (x,t) with

iy

t=e?2 .

Each map H, defined on V; x R, that commute with ¢ gives arise a map
(still denoted by H) defined on V; x R, where R is a domain defined by
e /17l < |t| < e¥/1=l for some constant § > 0 (see section 7 on equivalence
relations in (z,y, () and (z,t, () spaces). Although 7; and p do not commute
with &, we define 7y = 72, p and the n-form & as follows

#1(x,t) = (—x,—1/t), p(z,t) = (T,1), ©&=dz®Adlogt.

We will define Hyo = pKpK !. Using the local generating function
~ ~ 1
23 logt +tx3p(x3)e” =¥ with a holomorphic function p(x) vanishing at 0, we
want to define (#,%) = K (x,t) by the identity
logtda® + &3 dlogt = d{z*logt + fwgp(ac?’)e_l/x?’}.

So K (and hence H 5) preserves dz3Adlogt, if K defines a biholomorphic
map. Thus we want to find where K and K ! are defined and estimate them
for later purpose.

We first rewrite the above identity as

& =x(1+tpa®)e )3, p(0) =0, (8.10)
f=te P By = ap/ (@) + pla) + Z% (8.11)

We need to check that K and K1 are defined on {(x,4):0 < |z| <
) )
r,|argz| < m/9,e” =1 < |t| < el=T} for some positive constants ¢ and r,
when 7,4 are sufficiently small.

Let us start with equation (8.11). By the contraction map theorem, for
some small r > 0 the equation T' = e~*T admits a unique solution T' = T'(w)
which is holomorphic in w for |w| < r, by requiring |T'| < 4. Note that

T=T(w)=1-w+Ow?), (8.12)

AT (w)|

T _ 1 — —wT(w) _ 1

<1/2.

Hence (8.11) admits a unique solution ¢ = tT(t{ﬁ(x?’)e_m%) with |§ — 1]
< 1/2. Substituting tT(tﬁ(x?’)e*w%) for # in (8.10), we see that K is defined
on a desired domain.
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From (8.11)-(8.12) we get

P =t(1—p(a®)e V"t + O((te/*")2)), |argi| < %

for |t]| < e%, where O((te=/")2) has absolute value bounded by ¢|te~/=" |2
and its Laurent series (and hence Taylor series) expansion in ¢ has no t*
terms for k < 2. Now (8.10) says that

= (14 3p)e 7 4 Ot )R)).

To find where K ! is defined, we start with (8.10). Replace z3, 23 by
x, & respectively first and then set (1 + u) = &. We are led to a simpler
equation

A, & _1tu
=tp R 8.13

(1 + u) ( )

First, a contraction argument shows that for |f| < eTH , larg 2| < 7/3 and

0 < |x| < r with small r, there is a unlque solutlon U = u(x t) that is
holomorphic in #,# and satisfies |u| < |e~27|. Substituting m for z in

(8.11), we see that K~ is defined on a desired domain.

To estimate K1, we use (8.13) and get |u| < |#]le 27| and

[u@ ) = fp(@)e™ | < lip(1—) — p@)e™# |+ ip()e e 1)L,
Thus ) )
u(,t) = tp(2)e” 7 + O(|te™ 22 |?). (8.14)
Returning to the original equation (8.10), by p(0) = 0 we get
r = 2(1 4+ u(@3, 2t))~1/3. Hence
S 1. .3 —1/&3 r ——112
r=2(1- gtp(a: Je + O([te” 27 ?)). (8.15)

Solve (8.11) for ¢ by substituting (8.15) for z. To get an estimate for the
expansion of ¢, note that

3 3, . 73,1 : 1/

e (HuGE D3 — m1/3 (1 4 o(“(ﬁ,g’ 1)) = 18 (14 O(fie /)

by (8.14) and p(0) = 0. Combining the above, (8.11) and (8.15), we get
= {(1+ p(a%)ie /¥ + O(|%e 1)),
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Recall that K preserves & = dx> A dlogt. From the above computation
we obtain expression

& =a(1—tlp—p)(@¥e V" + O(t2e /")),

His = pKpK~1: -
P=t(1 4+t —Dp)(®)e V" + O(t2e /")),

Define Hy7 = Hos = id, Hzy = 71Hi271. Let HY, .4 be of the same

form with p replaced by p*. Assume that 757 and 7o7; are holomorphi-

cally equivalent. Then H* and H are equivalent by G;. By [10], we have

Gi(z,y) = Ga(z,y) = (a(x),a(x)y/x + b(z)). Put a(z) = za(x). By as-

sumptions, G; preserves @ and admits an asymptotic expansion. Hence

z3ad(z) = fg%dx = 23, i.e. @® = 1. Since G; commutes with
p, then a(z) = z. In (z,t)-space, we get G;(z,t) = (z,tA;(x)) with A\ = Ay
and A2 = As. Recall that G; have the same asymptotic expansion. Hence

Aj(x) are asymptotic to the same formal power series A(x).
In (z,t)-space, we have Glel 9G9 = H{,. The z-component ofolHl 2Gly
is

On (ViNVy) x {t € C:1 -6 < |[t| <1+ 6§} the coefficient of ¢! of the
Laurent series expansion of the z-component of Gl_lH 12G2 = H{ 4 gives us

(p = P)(@*)Aa(z) = (0" = p")(2?). (8.16)

In particular, A9 is meromorphic near the origin (assuming p—p # 0). Since
Ao admits the asymptotic expansion A, then Ay = A is holomorphic near the
origin and we must have (p — p)(z3)A(x) = (p* — p*)(23) as formal power
series in z. Since 71G471 = Go = pG1p, we have A(T) = A(z) = A(—z)~ L.
Hence A(iy)A(iy) = 1 as formal power series in the real variable y. So

(= D) (=iy’)(p — P)(iy’) = (0" = ") (~iy*)(p" = ) (iy°)

as holomorphic functions in y € C.

We now consider the family of holomorphic functions p # 0 satisfying

p(—=¢) = p(¢) = —p(¢), p(0) =0.

If p and p* are in the above family and if the corresponding moduli functions
are equivalent, then p* = £p. In particular, the above result shows that the
moduli space is of infinite dimension. This finishes the proof of Theorem 2.1
for n = 2.
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For the proof of Theorem 2.2, we need to show that for the above H; ;1
with
p(x) = p(z) 0, p(0) =0
and for distinct positive numbers r, the moduli functions {D; ' H; ;+1D,}
are not equivalent under G; preserving @, where

Dy (2,t,0) = (ra,t,¢) (D, (x,1) = (ra,t)).

This is quite easy to see. First we know that G;(z,t) = (za;(z),tA;(z))
with G1 = G4, G2 = G3. Since G preserve dxz? Adlogt, then aj =1. Thex
component of D 1H; D, is given by

1 N 1
p(1 = 3tp = D)(r*a%)e” 77 ) + O(%e 7).

The x component of D, ' H3,D, is given by
1
z(1+ gt_l(p - ﬁ)(r3x3)e_3+c3) +O(e™).

Since Gj(z,t) = (z,tA;(z)) and A; ~ A, the asymptotic expansion alone
shows that {D; 'H;;41D,,} and {D,;'H;;1D,,} are not equivalent, as
long as p(z) — p(z) # 0 and rq, ro are distinct positive numbers.

For later purpose we remark that the only G, in the (z,t)-space, that
preserves dz® A dlogt and H; ;i is the identity, by (8.16). In the (z,y)-
space, the {G,} that preserve H, ;1 must be G; = 6%, where k is the same
for all j. Since 7; reverses & then G o = 7;G;7; imply that k = 0, i.e.
G; =1id in the (z, y)-space too.

Case n > 2. Put € = (¢3,-.-,Cn—1) for m > 3 and ¢ = ((o,--.,Cn-1)-
Recall that
7A-l(g"7ta<) = (—Jf, _1/t7C)a p(x7tac) = (E?zvz%
O =da3 Adlogt AdCy A -+ AdCp_y.
Let K be a map of the form

T =ux,

{=t+pla)e /" Lig(z,1),

Go=Cql(xt), (=1
with
2ick

ple) = kz:: k— DI(k222 + 1)

1

cor =1, 1 <copy1 < 2. (8.17)
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Note that p(x) is meromorphic on C* with simple poles at %, and that its
residues at ﬁ decay rapidly as |k| — co. One can verify that K preserves
dz® Ndlogt Ad(a A -+ Ad(,_1, and that the s-th iterate of K is given by

KS:‘% =, {: t + Sp(x)eil/w gtqs(zﬂf)a 62 = CQQS(zvt)a /é = /<~

Put Hi, = pKpK~'. Since p(Z) = —p(x), we get pKp = K~' and Hy 5 =

K 2. Define Hy; = Ho3 =id and Hs4 = 71 Hy 271. Let {H;j+1} be another

set of moduli functions, defined as above with p being replaced by p*. We

still assume that p* has the same form (8.17) with ¢, being replaced by
€ (1,2). Denote the corresponding ¢, by ¢*.

We will prove that if p and p* are distinct, then {H; 1} and {H};,}
are not equivalent by G; satisfying G2 = pG1p and Gz = 71G171 = pGup,
without assuming Gjw = @. In other words, the corresponding M, M*,
satisfying Re dz1 A --- Adzy|p = Re dzy A -+ Adzp|p+ = 0, are not even
holomorphically equivalent.

Assume that GlHTQ = H1 2G2. We know that Gl = G4 and G2 = G3
with Gj: 2’ = za;(z, (), t' = tA;j(z,{), (" = ¢;(x,(). The z,t components of
G1H{y(z,t,() are

m/ = 56(11(13, CquZ(I7t)a /C)v t/ = tqu(I7t))\1(I, <2q*—2(xat)7 ,C)

The x,t components of Hyo2Ga(x,t, () are

' =xzay(z,C), t =t a(z,{)q_2(zaz(z,(),tAa(z,Q)).
Set ¢ = 0 and equate the two = and t components respectively. We get
a1(z,0) = as(z,0),

q*—2(xv t)/\l(x’ O) = )\2($, O)Q—Q(xCLQ(zv 0)7 t)‘Q(xa O)) (818)
Both sides of the second identity are polynomials in ¢~ and their coeffi-
cients say that Ay(z,0) = Ai(z,0) on V4 N Va. Since Gj71 = 71Gj42 then
Ni(=2,¢) = Njg2(z,0)7! and a;j(—z,¢) = ajiao(x, (). Hence \o(z,0) =
A1(z,0) and a1(xz,0) = as(x,0) on V3 N V4. Thus we can define a(z) =

a;(x,0) and A(z) = Aj(z,0), which are holomorphic near z = 0, with
A(0) # 0 # a(0). Now (8.18) becomes

1

(@) = Ma) " 'p(aa(a))er =6, (8.19)

The last identity holds on a small sector in the z plane, and hence in
a punctured neighborhood of the origin. For 0 < z < 1 and for some
positive constant cg, we have ¢y < |p(x)| < 1/cg. So (8.19) implies that
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a(0) = 1. All meromorphic functions p given by (8.17) have a simple pole at
:I:%, k=1,2,..., with residue £%. Now (8.19) says that if an integer & is
sufficiently large, then fa(4+) = 7 for some integer k' > 0. Since x — za(z)
is biholomorphic near the origin and a(0) > 0, then k/ca < k' < cok for
some constant cy. Therefore, the residue by of the right-hand side of (8.19)
at i/k' satisfying 1/(csk’l) < |bgs| < c3/k'!. The residue b}, of the left-hand
side of (8.19) at i/k satisfies 1/k! < [b},| < 2/kl. We conclude that k' =
Therefore a(i/k) =1, A(55) = 1 and p* = p.

Assume now that G1 H{y = H34G2. We have

H34(.’E,t,<) :’TA—IHIQ(_I7 _t_lac)
= f1(—a, —t g 2(~z,~t7"), (g2 (~a, —t71), )
= (:E? tq72(_xa _t_l)_la CQQ—z(_% _t_1)7 /C)

The t-component of H34Ga(z,t,() is

t/ = t)\Q(x’ C>q72(_xa2($?g)’ —(t)\2<.’17, <)>_1)_1'

Again, the t-components of both sides of G1H{,(z,t,0) = H34G2(x,t,0)
say that

¢ oz, )\ (2,0) = Xo(,0)q_2(—zaz(x,0), —(tAo(x,0)) "7

which never holds since the left-hand side is a polynomial in ¢! of degree
1 while the right-hand side is not.

Case n > 2 - another family. Let { = ({a,...,(n—1) and C = ({3,...,Cn-1)-
The above family cannot be used for the proof of Theorem 2.2 for n > 2,
since for {D; ' H; j+1D,}, where D,.(z,t,() = (rz,t,7(), are obviously equiv-
alent for all » > 0. We need another construction. Put v({) = ¢35 + (o for
n = 3, and put

n—1

Q) =G +G T+ G+ Y G

Jj=3

for n > 3. Using the equation

log tdCs + Cadlogt = Aiog i, 162 108 t+ fv(()p(z)eil/I},

we define a map (Z,t C K(z,t,¢), preserving 48 A dlogt AdCy A~ A
dCn—1, by A

i=r (=

f = te—tvea (Op(a)e/*

G2 = Go + to(Q)p(a)e /7,
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where p still has the form (8.17). As above K, K1 are defined on the desired
domains. We write components of K and K~! as Laurent series expansion
in t and get

£ =t — 205, (Opla)eV/ + O(F),

K: 62 =(+ tv(()p(:v)e*l/z + O(t?),

T =u, ICA = /Ca
5 5
where by O(t?) we mean a Laurent series expansion in ¢ (e” T+T < [t| < eTeT)
containing no terms t* for k = 1,0, —1,.... Also

¢ = b+ P Ope)e V1 O(),
K9 ¢ =G —to(Qp(@)e /" +0(t%),
‘,L,/ — 1;’ /C/ — /C.
Define Hy 5 = pKpK . Recall that p = —p. We get
¥ = b4 2820, (Opl)e 1 +O(),
Hiz:q G =G —2to()p(x)e /" + O(t?),

x/ =7 /C/ — /C.
Put H41 = H23 = ld, and H34 = ’7A'1H127A'1.

For r > 0 put H;,, = Dy Hj 11D, with Dy.(x,t,¢) = (rz,t,r(). We

get

Jj+1
t' =t + 2620, (rO)p(ra)e™ 7 + O(t3),
Hiy:q ¢ =G —2r to(r)p(ra)e = + O(t2),
xl = /C/ — /C.
Assume that H and H* are equivalent by some G satisfying Gj& = & and
other conditions. So we have G = G4, G3 = 71G171 = pGup and Gj: 2’ =
za;(z,C),t' = tA\;j(z,¢), ¢ = ¢j(x, ). Also d(za;(z,¢))? Adeja(z, () A+ A
de n—l(l‘y C) = dx?’ A ng JANCIAN an—l-
Assume that G1H12 = H{9Gs. The z-component of G1H12 = H{,G>
says that a; o Hyo(x,t,() = az(x, () on (ViNVa) x {t:e_ﬁ < |t < e_%} X

Ag‘”. In particular a;(z,() is independent of (5 since p(z)v(¢) # 0, and
ai(z,¢) = as(x,¢) on (ViNVa) x AZ 2 and hence on (V3NVy) x A} ™2 because

#1Gj = G o7 Now a(z, C) &L a;(x, ¢) is holomorphic near 0 € C"~!. The
t-component of G1Hy 2 = H{,G2 says that
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(1 + 2tve, (Op(a)e ™ )M (x, 2 — 2t0(Op(a)e /7, () )
:M@&HHﬂﬂﬂ%O%vw@OMW%@&ﬁfﬁﬂm}+%F%
8.20
Comparing the constant terms in the expansion in ¢, we get A\i(x,() =
)\2(56, C) on (Vlm‘/g) XA?_2 and hence on (V30V4) XA?_Q by 7A'1Gj = Gj+2721.
Write A; = A. The coefficients of ¢ in (8.20) say that

e (OM.O) Ao OvOp)
= Az, ¢)?ve, (rea(z, €))p(raa(z, €))e™ ~ rwal=70

Recall that by the definition of G;, A\(z, () admits an asymptotic expansion
vanishes nowhere. As x > 0 tends to zero, the left hand side of (8.21), by
setting ¢ = 0, is A(0,0) # 0 since v¢,(0) # 0 = v(0), while the right-hand
side, after removing e%_m, admits an asymptotic expansion which is
not identically zero too. Note that a(z,0) is real-valued when z is real.
Hence ra(0) = 1. Note that the identity (8.21) holds for Im z < 0 and small
|z|. The location of the poles of p(z) indicates that a(x, ) is independent
of . Set C = 0 and let z — 0. When j is large and ¢ is small, we have
|a(0)]/2 < |a(z;, C)| < 2]|a(0)|. As before the magnitudes of the residues on
both sides of (8.21) indicate that

(8.21)

ra(z, ¢) = 1.
The ¢-component of G1Hy 2 = Hi 4G5 says that on (V3 NV;) x Ag‘_Z

120 Hyo(m,t,C) = caa(,¢) — 2r 1tA(z, Ov(rea(z, O))p(x)e™ s + O(t2),
c1j0Hio(z,t,0) =co4(x,(), 2<j<n.

(8.22)
The last identity implies that ¢; j(z, () are independent of (3 and ¢;; = ¢2;
for j > 2. In the first identity above, the constant terms of the Laurent series
expansion in t say that ¢12 = coo. We obtain ¢; = ¢ on (V3 N13) x A§_2
and hence on (V3N V,) x Ag_z by 71G; = Gj4+271, and we can write ¢; = c.
Put ¢ = (ca,...,c,—1) by abuse of notation. From d(r~'z)% A dea(z,¢) A
o Adep_1(2,¢) = dzd AdCa A+ - AdC,—1, we see that for ¢ = (¢3,...,(n 1)

02(x7<) = Ct({E, /C)ZQ -I-IB(LL', /C)v cj(C) = Cj(/C) (] =3,...,n— 1)7 (823)
)

_ a(Cg A G |

3 1 ) s Cn

ria” " =det ———F—%,
a(cdu sy C’nfl)

in which the right-hand side of (8.24) is 1 when n = 3. The coefficients of ¢

in (8.22) say that

(8.24)

cac, (2, Q(¢) = r~ M@, Qu(re(w, (). (8.25)
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Looking at the vanishing order of both sides, we see that cac, (0) # 0.

So far we have not used the particular form of v(¢), except that v,

#0=v(0).

Assume n > 3 first. Now we use the definition of v({). Comparing the
Weierstrass polynomials in (3 of both sides of (8.25) and recalling that

c3,...,Cn—1 are independent of (o, we obtain
n—1

(raa +rp)" + (rala +rB3)" ' +rals +rpg + Z re;(x, ¢) (rade +rB)? !
j=3

= (ra)™((F + G Gl GG T G).
(8.26)
Since 3(0) = 0 and ¢;(0) = 0, comparing the coefficients of ¢,¢3,. .. yields
£ =0 and
ra(z, C)=1, rej(x,()=¢, j>2.
Now (8.24) implies that r = 1 = « since r > 0. And (8.25) implies A = 1.
When n = 3, it is straightforward that r =a =X =1 and g = 0.

Assume that G1Hy 2 = H3 G4 for

t' =t + 2ve, (rO)p(—ra)er + O(t™1),
Hj, =1H{yf1:4 ¢ =G+ 2 w(rp(—rz)ers + O(t2),

r = T, ICI = /<7
where by O(t~*) with k& > 0 we mean a Laurent series expansion in ¢ (for
o) o)
e T+l < |t| < el#T) containing no terms ¢! for | = —k + 1, —k + 2,.... Since

G, is given by 2’ = za;(z,(),t' = tA;j(z,(),{ = ¢j(z,()), it is clear that
the (o-component of Hj,Ga(z,t,() has a non-zero coefficient for ¢t~1. But
the (o-component of Gy Hja(x,t,() has zero coefficient for ¢t—!. Therefore
G1Hy 2 = Hj G2 never occurs.

We just proved that {D,;'H;;i1D,} is not equivalent to {H; i1} by
G; preserving w, if r > 0 and 7 # 1.

We have finished the proof of Theorem 2.1.

One can also conclude that different positive r values correspond to
different equivalent classes too. For if D’ H”+1Dr1 and DilHj j+1Dr,
are equivalent by G;. Then H; ;11 and D _1 HjjuD,,, -1 are equivalent

by D,,G;D;-L.

Remark 8.1.— The above proof also shows that in the (z,t,()-space
{Hj 41} is equivalent to itself by G; = id only. In the (z,y,()-space,
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this means that G; = 6%. Now the reality condition on {G;} implies that
G, =id.

9. Proof of Theorem 2.2

Put oz = (z2,...,2p-1), ¢ = ({2y-+-,Cno1), wo = d21 A -+- Adz, and
w=xdx Ndy ANd(s N\ -+ ANd(,—1. Consider a real analytic manifold

M- zn:(zl +21)2+E(317715 /-7;); E(zl7217lx)20(3)7
N Yo =Falz1,21, ), Folz1,21, ) =0(2), 1<a<n
with Re wp|pr = 0.
Consider the linear map

f= Lr_lzz — (r_1z1,~--,r_lzn,l,r_zzn), r > 0.

Then M = f(M) is given by

M:

—~ Zn:(zl +21)2+E(21721)7 E(zhzhlx):O(?))a
yazﬁa(21,517/$)7 Fa(zlazla/x):O(Q)) I1<a<n

with Rewy| 7 = 0. The complexification of f is

Fi(z,w) = (f(2), f(w)).

Let M¢ C C"xC™ be the complexification of M. Let 70, 79 be the branched-
covering transformations of projections M€ to z and w spaces, respectively.
Define 77,73 analogously for M¢.

Then FT]Q = ?JOF and Fp® = p'F.

Now we apply Proposition 7.1. The first part of requirements on moduli
functions is the existence of a biholomorphism ¢: C" — M¢, ©(0) = (0,0)
satisfying

<p_17]090 =71 (2,y,¢) = (—z,y+ (-1)7"22,0) + - O(1),

wd:dcp*wo\Mc = A(z,y,0)w, A(0)=1.

The second part of requirements on moduli function {H; 41} of M is the
followings

H]]_lQTkHj - 7A—k: ($7y, C) - (—{177y + (_1>j_12x7 C)a
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pHip = Hy, pHsp=Hy, p:(z,y,¢)— (T,-7,0),
Hiw=0=xdr ANdyNd@ N Nd(n—1,
Hj ~ ®:(2,y,¢) — (za(z,y,¢),y + b(z,y,¢), 'z + c(x,y,()) on V; x Ar~?
Hjje1=H; 'Hjer,  (ViNVi) x AT

where V; = i' 7 {x: —e < argz < 7/2+¢€,0 < |z| <7}, A, = {y € C:|y| <
r}, and a(z,y, () with a(0) = 1 and (b(z,y, (), c(x,y,()) = O(2), are formal
power series whose coefficients are holomorphic in y, ¢ in a neighborhood of
the origin.

Next, we assume that a set of moduli function Hj ;41 of M has been
given. Then we want to find moduli functions for M, by using those of M.

For a positive number r put
DT: (x) y7 () - (’r‘x7 ry’ TC)?

¢ =FeD,.C" — M?, ¢(0)=0,0).
Then we have
@‘17’}3@ = (F(pDT)_lFTlgF_l(F(pDT) =D D,

L5 (2,9,0) = (—2,y+ (-1 122,0) + 2 O(1),

¢ '@ = (FeD,) 'Fp’F~Y(FeD,) =p, r€R.

Also
w d:efﬁ*dzl/\---/\dznw[c:(FgoDT)*dzl/M-J\dzn\Mc
1
= ——Dkp*dz1 A+ Ndzp|pe
rot (9.1)
= Dw= A(ra,ry,r{)xde ANdy Ndla A -+ Nd(p—1
rn
def

S Alz,y, Oxde Ady AdCo A+ ANdCa_y, A(0) = 1.

Remark. — The equation (9.1), and hence A(0) = 1, is the only place
where we used the non-isotropic dilation f = L. All other computations
remain true for any biholomorphism f.

We still need to find a set of moduli functions for M. Put ij =D, H;D,.

We have B et~ ~
Hjjs1 == Hj 1 Hj = D Hjj Dy,
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Hj o7H; = Dy 1H— LoTkH; Dy = 7,

pHyp = pD; " HD,p = Hy, pHsp = H,

H:& = (D H;D,)*( S Diw) =,

~ 1
H; ND;1<I>DT:x—>xa(7°x,7°y,TC), y—y+ =b(rz,ry,r¢),
r

¢ elra, Q)

Therefore D71 H jj+1D; form a set of moduli functions of M. The theorem
is proved by choosing H; 41 such that D 'H;; 1D, and Hj,41 are not
equivalent if » > 0 and r # 1. The existence of such an {H; 11} has been
constructed in previous two sections.

This finishes the proof of Theorem 2.2.

Given a germ of real manifold M in C™ at the origin, denote by Aut,e; (M)
the germs of holomorphic maps ¢ on C™ such that ¢(0) =0, p(M) = M,
and ¢*dzy A -+ Adzy, = dzy A--- Adz,. The proof of Theorem 2.1 can be
modified to yield some real analytic manifolds M with a parabolic complex
tangent of which Aut, (M) is finite.

PROPOSITION 9.1. — Letn > 2, and let k =1 forn =2 and k = 27 for
some integer 0 < j < n—2. There exists a real analytic manifold M which is
equivalent to z, = (z1 +z1)?,Imzy = --- = Imz,,_1 = 0 under some formal
unimodular holomorphic map such that Aut,. (M) has exactly k elements.

Proof.— Let us recall the correspondence between M and its moduli
functions. For a real analytic manifold M which has parabolic complex
tangents along a hypersurface in M. We have a totally real and real ana-
lytic embedding A: M — M¢ C C?". Two branched coverings from M¢ to
C" yields two involutions 7;. There are holomorphic maps H; defined on
sectorial domains such that H 27';€H =7, and H *dz1 A - /\ dzn|pe =
xdx AdyNdCoA---NdCp,—1. We have Hj1 = H HJ+1 Thus if a unimodu-
lar holomorphic map ¢ preserves M then G; = gaH orG; = +2<,0H
preserves the moduli functions Hj ;i1 and :de /\ dy NdCa A -+ N dCp—1.
Clearly, distinct maps ¢ correspond to distinct sets of {G}.

Now the proof of Theorem 2.2 yields examples of M with
|Autvol(M)\ =1.
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Let n > 2 and k = 27 for some integer 1 < j < n — 1. Let p be defined
by (8.17). For j = 1 put v(¢) = "' + CQ" 4G+ ZZ:% (kCQQk 3. For
1<j<n—2put

Jj+1

U(C): 22n 1_’_4-271, 3+C2+Z<k<2k: 3+ Z Cng 3

k=j+2

If G, H“HGJJrl = Hj j+1, then (8.26), which is obtained from (8.25), is
just v(c(z,¢)) = a®"1(z,{)v(¢). By (8.23) we obtain 3 =0 and

2
:"':Cj-t,-l:1:Cj+2:"'*cn—1~

W

a?=1, ¢

One can also show that G, H;, J+1G]+1 Hj 53 is impossible. Therefore,
in the (z,y, {)-space, {HNH} is preserved by G (z,y, ) = (ax, ay, c2(a, . . .,
¢n—1Gn—1) and 6™G;. For the latter we must have m = 0, since G2 =
71G;71. This shows that Aut, (M) has exactly 27 elements. O

10. Appendix A — Normalization on sectorial domains

We now recall the following fundamental theorem of Varonin[10].

We change the notation slightly. Let z = (z3,- -, z,,) and
f@y,2) = (wy+w,2), [y =(y+a).

THEOREM 10.1. — Let (x,y, 2) be the coordinates of C"™. Let f be a holo-
morphic map on C™ of the form

(2,9,2) = (x +2®p(2,y,2),y + = + 2q(2,y, 2), 2 + 25(2,y, 2))

where q(0) = 0 = s(0). Let « < f < a+m. There exist r depending on «, 3,
and a holomorphic map B defined on {r:a < argz < f3,|z| < r} x An~1
such that on {z: o < argz < 3, |z| < r} x A", B fB = f and B admits
the asymptotic expansion ® which preserves x = 0 and satisfies ®'(0) = id
and ®|,—o = id.

Proof. — Voronin gave a proof for n = 2. For the convenience of the
reader only, we modify it for n > 2.

Applying (z,y, z) — (az,ay, z), we may assume that the sector is
Vea CCilargz| < g —a, 0<|z|<esin2a.

~52 —



Parabolic complex tangents
In the y-plane consider the rhombus VQQ with vertices

0, A=e'G%, A B=2esina.

Ve« is the smallest rhombus that contains the sector V¢ , and has the origin
as one of vertices. All sides of V. , have length €. Let R, be the smallest

rhombus centered at the origin and has four sides parallel to sides of Ve’a.
The vertices of R . are

B, —B, C=12ecosa, —C.

We also need to consider rhombuses which are contained in R . We start
with rhombus

0 T
R cC, 0<6<1/2, (1+-)a<-—.
(1=0)e,(1+2)a / (1+ 7r)CY 5

Its vertices are

B’ =2(1 - 0)esin(1 + g)m —B', C'"=1i2(1-0)ecos(1+ g)a, -,
m m

Let us first verify that R, _g). (118)q C Rea- Indeed, using sinz > 2y for

0 < x < w/2 we obtain

1

0 2
_B)=sina— (1—0)si a2 -9t ="
26(3 B')=sina— (1 9)5111(1—}—7T)04/97r (1-19) >

We also have

2%1(0— C") =cosa—(1—-0)cos(l1+ g)a

(2]

T

>0cosa+ (1 —0)sinasin

0 0
i —_— =
n{ﬁ’4\/§7r} 427

Note that o-(B — B') < fa and 5=(C — C’) < 2. Denote [B,C] the

line segment connecting B to C. It is so oriented if needed. The boundary
I'=T¢ of R, is the union of

> mi

It =[C,~-B|U[-B,~C], T~ =[-C,B]U[B,C].

We will orient I'", '~ counterclockwise as above when an orientation is
needed. We have dist(I'c .o, I'(1_g)c (142)0) = dist([B,C],[B’,C’]) and by
=

s o (% 6
COSCK>COSQ(1+%)—SID2(1+%) o Weget
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dist([B, C], [B’,C']) = min((B — B’) cos a, |C — C’|sin a) < 4eba,
facosa  Oa ) > €0 (10.1)
p ) 2\/57_(2 > 2 .

dist([B, C], [B’,C"]) = 2e min(

For z € V(1_g)c,(142)a> We have dist(z,C \ Ve o) > min(|z|sin o fe).
Hence
dist(z, C\ Ve,o) = ab|z|/8, 2 € Vi3_py (1424)- (10.2)
Let ¢ be a holomorphic function on S with

n—2
S =05ca=Vea X Reox A"

Let yg = —C and

p(x,t, 2 1 1
prleyn) = [ APEIL L L,
r+ 2m  t—-y yo—y
x,t, 2z 1 1
poteyn) = [ HPAL L L g
- ™ =y Yo—y

Then on S we have ¢ = ¢ + ¢_. Let

hi(z,y,2) = Zcp+(x7y+ kx,z), h_(x,y,2z)= Z o_(z,y+ kz, z).
k=0 k=—1

Put b = hy + h_ and h(z,y,z) = h(z,y, z) — h(z,0, z). Note that hy, h_
are defined on U = S U f(5), and that on S

h(%yvz)—h(%y‘Fx,Z):90(337%2’)7 h(x,O,z)zO
We can write

hi(x,y,z) = /:(: cp(x,t,z)Ei(t,x,y,yO)dt
T

with E(t,2,y,y0) = 55-Gx (2L, =8 for

2miz z ) x
DED - (a,0) = - ).
G+(CL, ) k:O(k+a k—‘rb)’ G (av ) szl(k_‘_a’ k+b)

If |Jarga| < m—7,0 <y <m/2and k > 0, then |a+k| > |a|siny > 2|a|y/7.
In particular, |a + k| > kvy/7 for k > |a|/2. Assume that 0 < |a| < |b], and
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|argal, | arg b| are less than m — . Then ﬁmﬁr(a7 b)| is less than the sum

1 : .
of il and 4 partial sums:

1 I T o
> < D
2 27 29
1<k<‘a‘/2 ‘G‘Hb| sy |b|Py \a|/2<k<2\a\ |b|]€’7 sin 7y |b|"/
2 o 4 ¢
—_— <, — < .
2 sy Sl 2 BT
2|a|<k<2|b| k>2|b|

Thus for 0 < v < /2

/! /!
1 o Co

—G Cl,b g —+ - 1)
1+ (0O < i+ 52 mimal o))

larga| < m—7,|argb| < m—7.
b—al

Recall that f*(z,y) = (z,y + =) and denote S = Viu_joea+22ya ¥
R(l—j@)e7(1+%)a' When ¢ € F:(S and (z,y) € S;, we have |arg(y — t)| <
larg(—B+C)| = Z + a and |argz| < T — (1 + £)a. So

—1 O
I <arg(y — )| + |argz| <7 — —.

| arg

— 2 — —
Also |“25| > 524 by (10.1) and 220 — #21 < 2. One gets
Co

yT T Stufr(Sy). teTZ,.
494C¥3‘.’E|7 (a:,y)e 1 f( 1)7 € €,

|Ei(t7xayay0)| <
(The estimate for F_ on f*Sl* is analogous to that of F, on Si.) Fix
z € A2, We have

Cp€

hi(z,y,2)| <
| :t( 'Y, )| |J}|94043y

sup lp(a,y,2)], (z,y) € S;UF(ST).
€le o

The above is for a solution h to h — hf = ¢ when ¢ is a function. We
want to apply the solution to the mapping case.

We need a lemma on mappings defined on sectorial domains.

For a mapping ¢ = (¢1,...,vy,) defined on S, 4 it is convenient to use

norm y y y
1 2
[T/J]N,e,a = ZUP“JUNH ly |TV oo T:H}

Recall S¢ o = Vi o X Reo x AP72. In brief, put V; = V(l—je)e,(l-s-%)on S; =
S(1-j0)e,(1412)q> and Win; = [w]N,(l—ja)e,(H%)av etc. For a matrix A =

(@i,j)nxn, we denote |A| = max; D |ai ;|.
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LEMMA 10.2. — Let k, N be positive integers. Let 0 < € < 1/4 and
0<60< g, and0 < (14 *)a < 5. Let H = id + h: Scq — C™ be
holomorphic. There exist constant ¢y > 1, ¢, > 1, independent of N, h, 0, €,
such that if

(DN e < cj 00

then H is injective on S1, and H, H™! =id + h satisfy

HZSj—>Sj,17 j:1,2,...7k, (103)
(]2 < 2[h]N e (10.4)
H S —8;, j=12,..k (10.5)

Moreover, HH™! =id on Sy and H*H =id on Ss. In particular, H(S;)
B} Sj+1 and H_1(5j+1) D) Sj+2 fO’I”j =1,.. .,k‘.

In the above lemma if we assume additionally that [hf]x.c.o < c,;}LHQa, then
H is injective on S U fSl by choosing a possibly large constant ci .. (See
the proof of the lemma.) Consequently, H ! is well-defined on S;41 U f Sit1
(and map it into S; U ij) for j=1,... k.

Let us postpone the proof of the lemma and continue the proof of the
theorem. For the rest of proof of the theorem, all constants ¢1, ¢a, ¢}, . .. may
depend only on n but not on other quantities and they are all larger than 1.

Write H = id4+-h with h = (h1, ..., hy), f = f4+@ with o = (o1, ..., ©n).
Then HfH™' = f becomes ¢ + hf = fh. Voronin solved the equation
through a sequence of approximations. The linearized equation is ¢ + h f =
f h, and in components it becomes

hl(myyvz)_hl(x7y+z7z) :901(%?!72)’
hz(%yaz)—hz(%y+$,z) :<p2(xay7z)_hl(m7y7z)7
hj(zvyaz)ihj(z7y+xﬂz) :<)0j(x7yaz)a ]:3,,71

Solve the first and third equations with estimates on SE"l and

—De,(1+ L)
2 27
then the second equation on 5?1_9)6,(1+%)a. For (z,y) € S;1_9)67(1+%)a U

f*<5{179)6,(1+%)a) we have

516 .
h; < —— g . 2
| ](QT,y,Z)‘ X |$|94043 ;UPWJ(J?,%Z)L .] 7é I

€,

~2 2
C1€ &
|ho(z,y,2)] < [2]0%a3 1S“u5 lp2(z,y,2)| + 226500 1S“u5 lo1(z,y, 2)]|.
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The above estimates imply

Co€ A Co€

[h]Nfl,l < W[@]N,E,aa [ho .ﬂNfl,l < W[@]N,e,a' (106)

Write HfH ! = f—l— . We need to estimate ¢. Roughly, we want to bound
the norm [p] (on a shrunk sectorial domain) by [p]?. We will apply Lemma
10.2 several times. We need to keep track the domains and ranges of map-
pings. We now take k£ = 20 in Lemma 10.2, which will suffice our purpose.
(So we assume that 0 < § < 45 and (1+ 200)q < Z.) And denote cag,, = Cs.

Assume that

(10.7)

We then have [ffltp]N70 < 2[p] < 0*327' Hence f(S;) C f(Sj-1), f~1(Sj+1)
C fH(S;) for j=1,...,20.

Both [h|n—_1,1 and [hf]N—m are less than 0227?. We have [f_lhf]N_Ll <
902—*0‘. To apply Lemma 10.2 to f~'Hf = id + f~'hf, in which €, a are
replaced by (1 — 0)e, (1 + %)a we let

!
55 = 51-j6)1-0)e,1+2) (14 £)a"

We obtain H(f(S})) € f(S;) = f(S1). Since S C St S; for 1 <
j < 20, then H(f(S3)) € f(S1). Applying Lemma 10.2 to f~1f, we get
f(S4) C £(S3). Applying Lemma 10.2 to H, we obtain H1(S%) C S} C Sy.

Therefore, f = HfH~! maps S% into f(Sy).

Note that . )

H(Sg/) - 53—17 H(fS;) C fS;'—lv
H™Y(S)) C S, H ' fSi,)Cfs;, j=1,...,20.

Also HH™' =id on Sy U fS4 and H~'H =id on S} U fS}.

The domains f (S;) are not product domains, which cause difficulties
in estimating derivatives. So we will pull all maps back on S;. Set g =

F71F = id+ . We have [t 2L [¢)] v.c.o < 2[¢). Recall that ¢ = HfH — f
is defined on Sf. From the linearized equation ¢ = fh —h f , which holds
on S1(D H'SL), we get @H = hf — hf on H™'S.. The latter is actually
defined on S, for which we first estimate. We write hf = p. So

hf —hf = (D1g —P1,P29 — P2y Pnd — Pn)-
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Write p = (N ph, 2V 71ph, ..., 2V 1pl ) and o = (2N FLq, Nl o aNyl).
Note that g(Ss) = f~1f(S4) C S3. Next, we estimate the derivatives of p;.
For 0 <t < 1, put z; = = + taN T (2,9, 2), s = y + taNh(z,y, 2) and
2 =z +teN (Y, .. ) (z,y, 2) we have

op ~ Oph

1 N—
%((Etvytazt) = Nz 1p/1(xt7ytazt) + %((Etvytvzt)‘

Since |z| < e < 1/2 and |¢]| < 1/2 by (10.7) we have
(2 + taN L )N 1| < gV teW =DMl < gz N1,

Note that (x¢, v, 2¢) = tg(x,y,2) + (1 — t)(z,y,2) and it is in the convex
domain Ss3; consequently

1P} (@e, ye, 20)| < S;lp | < Plv11 = [hflN—11-
3

Also [taN 1) (z,y, 2)| < |z|[¢] < |2|/2. By (10.2) we have dist(z¢, C\ V;) >
ap), c
Ocr|z¢| /8 and hence |%(xt,yt,zt)\ < ﬁm supg, [pi| < Wilz‘[(p], by (10.6).
Also
op} s , Call op} CoCh
g no g N0 -7 ) ) ) < .
| 6y (‘rt’ Yt, Zt)‘ 02 e Séllp |pl‘ 9107 [()0] |82’] (xt Yt Zt)' 0907 [50}

Recall that on Sy we have [¢}] < [¢)] < 2[¢p]. By using a line integral, we
conclude
|(plg - pl)($7 Y, Z)| = ‘pl(x+xN+1wlla erl’N?//z, N zNT%) - pl(xa Y, Z)'

C4N
< 910047 |x|2N[S0]§V,e,a? (%y,z) € 54.

Analogously, we obtain
[(pjg — pj)(x,y, 2)| = |pj(x+aN T y+aN ey, oz +2Ny)) — pila,y, 2)|

@]?V,e,ou (JJ’Z/,Z) € 547 1< ] <n.

N B
S 91%a7|x|21v 'l

Hence for f = HfH ' =id + ¢ on S%, we have

@1l csN o |65 csN o .
|z o H-1]2N S 910a7[ IN.ear lxo H-1]2N-1 S 91047 (PN ear J> 1.
By Lemma 10.2 we have [h]x_1,6 < 2[h]x_1.1, and by (10.6) and (10.7) we
get w10 H'* = Jo + aVhi(z,y,2)|* > [al* (1 — ke h]n-16) > [2]*/2
for k = 2N,2N — 1. Hence
~ CﬁN
[90]2N—1,(1—59)(1—0)e,(1+%)(1-&-%)& < W[@]?\/,e,a'
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We now linearize f by a sequence of mappings. We change notations. If
we are given fr = er i on Sk = S, 0, We can find Hyy; =id + hyy on
Sk+1 = SEkJrl’akJrl with €kt1 = (1 — 59k)(1 . Qk)ek and Qpy1 = (1 + %)(1 +
%), such that frp1 = Hyr1fuHy )y = f + @rt1 is defined on Syyq and

def »
[hk—l-l] - max{ [hk—H‘f]Nk—1,(1—91@)619,(1-"-971“)0%7 [hk+ﬂNk—17(1—9k)€k7(1+67k)04k}

Co€L
< 98—6[90]‘5]7
def cr Ny
[¢k+1] [Sok+1]Nk+1,€k+1 g1 X 910 7 [ka
(10.8)
for Ng11 = 2Ny — 1, provided
01007 4o
o] = [Pt Mescran < ot E8n(k +1)%csby. (10.9)

Note that by Lemma 10.2 and (10.9) we have
Fi(Sk) € F(Skjo1)y 4 =2,...,20

— , r def ,
for Sk.d = 51 jo)en (14 22 ) 5 kg = 5100 (1-00)en, (1422 (14 % Yo

For Hyy1 =id + hyy1, using (10.8) and Lemma 10.2, we obtain

Hi1(S1;) € Skjors Hi (Skjin) CSkyy G=1,...,20,

Hin(fS)) € fSjo. Hih(fSjn) € fS), j=1,...,20.  (10.10)
Also Hy1H, 7!, =id on S}, U f5S] , and H;lekH =id on S} 5 U £S5} 5

Take Ny = 3. So Ny = 2F+1 4+ 1. We are given aq € (0, 5). Take 0}, = —k
and fix 8 > 0 such that 6y < 4% and aoo = limg oo a < /2. Set €5 =
limy oo € and Seo = Se__ q.,- It remains to choose an ey € (0,1/4). Let
ag = [¢o], which depends only on €, (and f), and let

cr Ny, 2
Ak+1 = 910 i Ok

We may assume that ap # 0. Then aZ—;:l 2! (ak )? for k > 1. With by
being defined in (10.9), b’““ > l(0’;%)10 = 51>. By the semi-formal theory,

1
we can find a holomorphlc map

Bo(x,y,2) = (¢ +¢Bp,y+ BY»z+ By'), Bo=id+O0(2)
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such that f = BofBy ' = f 4 O(|z|*). We choose €y € (0,1/4) such that
[vo] < bp (in particular (10.9) holds for k£ = 0) and

ay C7N0 1

= = T 0o] < 715
ao Héoag [ol 212

For induction, we assume that ap < b and % < 2% Then agy1 <

212( 8 )%ar < gizak < gzbe < begr and 42 < 212(%4)% < . There-
fore ap, < by for all k. We have [p1] < a1 < b1. So we can find Hy. By
induction, we can show that the sequence Hj is well-defined for all £ and

[or] < ap < by, for all k.

Next, we want to find a domain on which Ay = HpHy_1 - -- Hq is defined.
Recall that 6, = 2% For ¢ = 14, we have

Hk“(S<1fwk)(179k>ek,<1+“%>(1+97k)ak)

cS (by 10.3)
def

(1*i9k+1)(1*91«+1)6k+1’(1+M%)(1+%%)ak+l T Tkl

(1= (i—1)05) (1—0x ) ep, (14 2% (14 Gy,
cS

(For the last inclusion to hold, we might need to choose a smaller [,
and hence a smaller ¢y. However, the inclusion remains true regardless the
choice of ¢ . We will also adjust 8 a few times.) Hence Ax(Sf 14) C S 14-

Also Ak(fS{LM) C fS,’C’M. From kak_lHk_l = f1 we want to conclude that
A fr = foAx holds on 56’17. The statement is trivial for k¥ = 1. Assume
it holds for & = m. First, we have fo(S)17) C fo(So,17) C f(So1s) C

f(Sh 14), where the last inclusion is obtained by choosing a possibly smaller
B. Thus on Sj 17, Amy1fo is well-defined, and it equals Hp,11(Anmfo) =
Hppi1 fmAm. By definition H,, 1 frn = fina1Hmo1 holds on H;:H(Smﬂ).
Since A (50,17) C Am(S0,14) C Si1a C H;L}H( m,s) = H;Li-l(sm"rl)? then

Hpi1 fmAm = fmae1Hmi1 A holds on 56717. This shows that Ag fo = frAr
on Sp 7.

Next, we want to show that Ay converges to a holomorphic map A on
S6.14Uf S 14- Write hy,(2,y, 2) = (z+aNeh) (z,y, 2), y+aNe 7R (2, y, 2), 2+
oM p (2, y, 2)), where b)) = (hg2 ..., hin), and Ag(z,y,2) = (z + 2™
Al (z,y, 2),y+aN LAl (2, y, z),z—i—Ale_lAg(m,y, z)). We have A = hi, AY
= hy, A" = hY’". Hence on S 1, U fSj 14 we have

max{|A’1|, |A11/|, |A11”‘} < [hl] <L
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Assume that on S 1, U fS(),M we have |[A}| <1+ + ﬁ Then

' =x+ 1:NlA§€ + (x4 a:NlA;C)Nth;cH(Ak),
A o =y e A @ Mg ),
=24+ AY + (2 + leAz)NHl_lh%’H(Ak).

Since |z| < 1/4 then

(A1 — Apl = [V =M (1 2N AL )N by (A)
< oM =N (L oM AL Vet R (A
< ANk |Ne by (AR)] < 72, by (10.8)-(10.9).

By the same argument, we obtain [A} , — A}| < = and Ay =AY < =

Therefore, Ay converges to Ao, = (z4+ 2N H' y+ 2N H" » 4 xNo=1 ")
uniformly on S 1, U fS(’J)M. Note that the sup norm of (H', H"”,H") on
Sp.14 U fS6714 is less than 3. By definition, Hk+1kak_J:1 = fr41 on Skiq.
Hence Hyi1fx = fy+v1Hiy1 on Hk__:lSkH. Since Hk__:lSkH C Sk then
Hip1Hy frm1Hy ' = fry1Higa still holds on Hy !\ Syy1. Now Hyy1 Hy fr1
= fr+1Hpy11Hy holds on Hk_lHk_ilsk'i‘l' In general, we have Apy1fo =
fr+1Ak41 on Hfl ‘e H,;lekH. Using

Hy L (Sajona—o,) e (1+ 25)(1+ %)ay,)
- S<1—<j+1>ek><1—ak>ek,(1+%)<1+%m

and by a computation as above, we can verify that Hl_1~-~Hk_J:1Sk+1
D 56713. This shows that Agy1fo = frr1Akr1 on 56713. Taking limits, we

get Ao fo = fAs on So.a7-

We want to show that A,, admits an asymptotic expansion. By Lemma
8 in [10] and by H;|,=o = id, we know that each H; admits an asymptotic
expansion. As above we can verify that H, = lim; oo Hj -  Hgy1 = (z +
N Cl y + aNe IO 2 + 2N T 1O satisfies max{|Cy |, |CF|, [CY|} < 3 on
Sk_1.14- In particular |Hy (2,9, 2) — (z,y,2)] < 2|z|V~1. One sees that A
admits an asymptotic expansion. Finally, we can set B = AZ!, defined on
(814 U fS(’)’M) N A7 for some r > 0. Choosing a smaller r if necessary, we
conclude that B~'fB = f holds on Sj 13 N A'. The asymptotic expansion
® of B must be ® since ® = id + O(2), ®|,—¢ = id, and & normalizes f.
O

Proof of Lemma 10.2. — Recall that H = id+h. For h = (zV*1h}, 2V R,
oy zNRL), we define [h|yca = supg,  {II}(z,y,2)[}. Let v = [h]nea
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< 0;;9204 with cg,, = ¢ > 1 to be determined. Recall that 1 < k < %
0<e<1/4and (1+%)a < 7/2. Fix 1 < j < k. Denote S; = S 0
R; = R( etc. Note that

)
1-j0)e,(1+ )
1-j0)e,(1+2)ar

R joye,a+22)a © 1o g)1-(i-1)0)e, (14 £) (14 G2120)o

since @ < 1. By (10.1) the distance between boundaries of R; and R;_1,
denoted by dist(bR;_1,bR;), is larger than (£)2(1— (j — 1)8)e(1 + @)a
> Qo (for ¢; = 16).

C1

Fix (z,y,2) € S;. We want to show that if max{|w:|,..., |w,|} < 7?22?1
then (2/,y,2") = (z + 2V wy,y + 2Nwo, ..., 2, + 2Nw,) € Sj_1. (i) We

have y' = y + 2Nwy € Rj_1, since |[zNws| < 67?2231 < dist(bR;j_1,bR;). (ii)
We have o/ = z+z" ™ w; € V;_;. First, since |arg(1+¢)| < [¢] for [¢] < 1
then |arg(l + zNwy)| < Flwi| < 9?0‘. Also [N FTlwy| < €f. (iii) We have
zi = zj +aNw; € A_(j—1)p)e, since |xNh;-(x,y, z)| < €f. By (i)-(iii), (10.3)
holds when ¢ > 72¢;.

To show that H is injective, we need to estimate the derivatives of h. For
z € Vi, the disc centered at  with radius 0|z|a/8 (< min{|z|sin 2, 0e}) is
contained in Vy. Hence for (z,y,z) € S1, we have

A(xN*Lhy(z,y,2)) o 8|2z| N1y o 16]x|Nr
Ox S Ozla T ba

1
< —
n

if ¢ > 16n. For ¢ > 2nc; we can also obtain |a(

02

. Np .
< 1/nand |d(x+(:’y’z))| < 2|z|N~1r < 1/n on Sy, from which we conclude

that H is injective on Sj.

N No1
™ hj(z,y,2)) 2¢1|z|
oy | <

~ We need to find H~! = id + h. Let hy(z,y,2) = Nty (x,y, z) and
hi(x,y,2) = 2™Nu;j(z,y,2) for j > 1 For HH~! = id on S, we need

up = —(1+ 2Nu) VPR (o + oV ug, y + 2Nug, . 20 + 2Ny,
u; =—(1+ xNul)Nh;(x + 2Ny gy + 2Nug, .z + 2N uy)
for j =2,...,n. Rewriting (10.4) in sup norm, we want to get

|u|(1—29)e,(1+%)a < 2

Fix (z,y,2) € S(1-26)e,(142)a- Write (10.11) as w = Tw. By (i)-(iii), T is

0%a
T2cq

defined on A%, assuming 2r < . We can also have

2(N 4+ 1)eVr < 4r < In2.
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By (1 + 2[z|Nr)N+1 < 2NHDIe™r < 9 e get T(AL) C AR,

We also need T to be a contraction. By (i)-(iii) we see that (z/,/,2') =

(x4 2Ny y + 2Nus, ..., 2, + 2Nuy,) is in S; for u € AR, (and (z,v, 2)
Ohy 4y 8supg, |n)| Oh 4 c1supg, [n]
€ Sy). Hence |52 (2,9, 2")| < “Oala |aT,(35 L2 < —— i, and

Ohs 4y <ClsuPSO|h;\ N
|g- (2", ', 2")| < ——5—. Now we get

N
|88Tju‘ < (N—|—1)€2N€NT|$‘NT+€2(N+1)€NT8|Z| T7
(58 «

oTju 9 N, cr]z| Nt
< 2Npel2WHDeTr L s 1,
| Ouy, | re 02a0 -

Obviously, T: A%, — A%, is a contraction map, if r < 9270‘ and c is sufficiently
large. We have shown that H ! is defined on Sy and satisfies (10.4). Then
(10.5) follows from (10.3) (by applying it to H ! and by choosing a possibly

larger ¢, k).

We have HH~' =id on Sy and HH~'H = H on Ss. Since H is injective
on Sy, we get H'H = id on S;. Finally, we have S; = HH(S;) C
H(ijl) and Sj+1 = H_IH(SJ;H) C H_l(Sj) for 1=2,...,k.

Assume now that [hf]N’C,Q < c;;ﬂza also holds. We know that H is
injective on S and on f S1. We want to show that it is also injective on the
union of Sy U fSs. Assume that distinct (z,y,2) € Se and (2/,y',2) € S,
satisfy H(xz,y,z) = H(z',y’,2’). Then (2/,y’,2') is not in S]. Note that
52N fS2 contains S2MAY),. Then (z,y,2),(2,y,2") are not in A7), Hence
|(z',y,2") — (z,y,2)] > cefa? for some constant c. Now |[H(a',y,2") —
H(z,y,2)| > cefa® = 2e 7 [W (2, y', 2")| + |h;(x,y,;z)\ > 0, by choosing a
larger ¢y, . This shows that H is injective on Sy U fS3. We can obtain the

injectivity on S U f S1, by applying the result to the case where 6 is replaced
with 6/2. O

Lemma 10.2 is mainely used in the proof of Theorem 10.1. We also have
the following lemma, which has been used throughout the paper.

LEMMA 10.3. — Let 0 < a < 7. Let H be a holomorphic mapping de-
fined on Wy, = {z:|argw| < m—a}NA} . Assume that H admits an asymp-
totic expansion ® of semi-formal map. Assume that ® preserves x =0, i.e.
the x-component of ® has the form xa(x,y, z). Suppose that ®'(0) is biholo-
morphic. Let a(0) = |a(0)|u. Let 0 < €1 < €2 < m — . There ewist r1,72
with 0 < ro < 11 < 1o such that H: Woye, r, — W is biholomorphic and
W > :U’Wa+62ﬂ“2'
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Proof. — Write ®(z,y,2) = > oo ("1 Ak (y, 2), 2% By (y, 2), 28 Ci (y, 2)).
Let @1 (z,y,2) = Zizo(kaAk(y,z),kak(y,z),kak(y,z)). Then @, is
biholomorphic near the origin of C". Writing H(z,y,2) = (za(z,y,z),
b(x,y, z),c(x,y, z)), one can obtain the conclusions directly from Lemma 10.2
by considering the map

(2,9, 2) — (x(a(tz, ty, t2))T, ¢ b(tat, ty, t2), ¢ e(ta?, ty, t2))

for some small positive t. (Il
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