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A p-adic approach to local analytic dynamics:
analytic conjugacy of analytic maps tangent

to the identity(∗)

Adrian Jenkins
(1)

, Steven Spallone
(2)

ABSTRACT. — In this note, we consider the question of local analytic
equivalence of analytic functions which fix the origin and are tangent to
the identity. All mappings and equivalences are considered in the non-
archimedean context e.g. all norms can be considered p-adic norms. We
show that any two mappings f and g which are formally equivalent are
also analytically equivalent. We consider the related questions of roots
and centralizers for analytic mappings. In this setting, anything which
can be done formally can also be done analytically.

RÉSUMÉ. — Nous considérons la question d’équivalence locale de fonc-
tions analytiques qui fixent l’origine et sont tangentes à l’identité. Toutes
les fonctions et équivalences sont dans le contexte nonarchimédien, c’est-
à-dire que nous pouvons considérer les normes comme étant des normes p-
adiques. Nous démontrons que deux fonctions f et g formellement équivalentes
sont aussi équivalentes analytiquement. Nous considérons la question des
racines et centraliseurs pour les fonctions analytiques. Dans ce contexte,
tout ce qui peut être prouvé formellement peut aussi être prouvé analy-
tiquement.

1. Introduction

The goal of this paper is to consider the local analytic equivalence of
mappings f which are tangent to the identity, but whose convergence is
with respect to a non-archimedean norm | · | (for example, a p-adic norm).

(∗) Reçu le 21 février 2008, accepté le 17 mars 2009
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Here and in what follows, we will refer to the “local analytic classification”
as simply the “analytic classification.” We discover the interesting fact that
the non-archimedean case yields very simple invariants for this classification,
as opposed to the substantially more difficult (both in construction and
interpretation) invariants present in the theory for C. These results have
been known for mappings with other multipliers for some time – we cite
some of the relevant results in both the archimedean and non-archimedean
settings.

The question of the local conjugacy classes of holomorphic mappings
(analytic in C) has a long history. In 1884, the first such results regarding
equivalences were proven by Koenigs [13]. In particular, it was shown that
given an holomorphic function f(z) = az+O(z2) defined in a neighborhood
U of C, where |a| �= 1, then in a neighborhood V ⊆ U of the origin, there
is a conformal mapping h(z) = z + O(z2) such that (h ◦ f ◦ h−1)(z) = az.
Thus, any such mapping can be linearized, and moreover, the linearizing
biholomorphism h can be taken to be tangent to the identity.

Significantly later, the question of the linearization of holomorphic map-
pings f whose multiplier has norm 1 but is not a root of unity was settled
in famous papers of Siegel [18], Bryuno [4] and Yoccoz [21], [22]. We focus
on Siegel’s result here: let the mapping f have the form f(z) = λz + · · ·,
where λ has norm one but is not a root of unity. Define the quantity
Ωλ(m) = min1�k�m |λk − 1|. Then, the map f is linearizable provided that
there are constants β > 1 and γ > 0 so that Ωλ(m) � γm−β for all m � 2.
The idea of the proof is to estimate the coefficients in the formal power se-
ries conjugating f with its linear part. It is worth noting that Siegel’s result
does not characterize all such linearizable maps. Although all mappings f
whose multipliers are not roots of unity are formally linearizable, there exist
such maps which are not holomorphically linearizable.

However, if one instead considers mappings in the non-archimedean cat-
egory, defined on fields of characteristic 0, similar results can be proven.
The proof of Koenig’s result can be modified easily in the non-archimedean
setting. Moreover, it has been shown by Herman and Yoccoz [9] that the
Siegel estimate holds for all p-adic numbers with norm 1 that are not roots
of unity. Thus, in both of these settings, the formal classification and the
analytic classification coincide.

Of course, one cannot naively expect linearization if |a| = 1; as an ob-
vious (and important) example, if a = 1, then linearization is impossible
for any function f(z) �= z. Thus, an interesting problem is to determine
the invariants present in such a classification of mappings tangent to the
identity. It is easy to acquire formal invariants for this equivalence (we re-
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view this in Section 2.2). Nonetheless, the holomorphic classification remains
very delicate; after initial attempts by Fatou [7] in the late 1910’s to deter-
mine the invariants, the problem remained unsolved until the early 1980’s,
when Ecalle [6] and Voronin [20] independently developed the moduli space
of invariants for such mappings (see also the work of Malgrange [14] and
Il’yashenko [10] for a different approach). We note here that such holomor-
phic classification relied on a topological conjugacy, provided independently
by Camacho [5] and Shcherbakov [16].

Strangely enough, the following problem is still very much open: given
two mappings f and g, are these two mappings equivalent via an analytic
map which is tangent to the identity? While the analytic classifications cited
above provide the theoretical invariants present, as Ahern and Rosay note
[1], they are too difficult to be computed for even the simplest of mappings.
There are partial results present (for example, it is known which entire func-
tions are analytically equivalent to f(z) = z

1−z , and which are equivalent to
f(z) = z + z2), but as a whole, the problem is poorly understood. It is easy
to construct formal power series H conjugating f to g, but showing that
any such power series converges (or diverges) is generally very difficult.

If we restrict ourselves to the case where the mappings f and g have
rational coefficients, then we may often take the conjugating power series
H to have rational coefficients. In this situation it is natural to study the
p-adic convergence of H for a given prime p. This analyzes the largest power
of p which divides the denominators of the coefficients of H. We may view
the rational coefficients of H as sitting inside the p-adic completion Qp

of Q rather than the archimedean completion R, and do our work there.
This study complements the classical question of holomorphic convergence;
it is an instance of what is popularly known as the Lefschetz principle,
which roughly says that interesting questions for real and complex numbers
should have interesting analogues in the p-adic setting. This principle has
found application in harmonic analysis, algebraic number theory, and more
recently in dynamical systems (see for example [3], [8], etc).

Indeed, for power series with coefficients in a complete, non-archimedean
valued field, it becomes reasonable to test for the convergence of a given
conjugating map H. The reason for this is two-fold: first, a series

∑
an

converges with respect to a non-archimedean norm if and only if an → 0 as
n → ∞. Second (in a sense to be made precise later), the convergence of a
power series depends solely on the decay of denominators - growth in the
numerator is not detrimental to convergence.
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For any field K with norm |·|, we denote the ring of absolutely convergent
power series centered at 0 with coefficients in K as OK

0 . In this paper, we
consider fields K of characteristic 0 which are complete, non-archimedean
valued fields, but most of our interest will be in the field of p-adic numbers
Qp, any finite extension of Qp, and the analytic completion of any infinite
algebraic extension of Qp.

The main result of this paper is the following:

Theorem 1.1. — Let f ∈ OK
0 be an analytic function which is tangent

to the identity, f(x) = x+amxm+· · ·, with am �= 0. Write K̃ = K[ m−1
√
am].

Then, there are a µ ∈ K̃ and an analytic function h ∈ OK̃
0 so that (h ◦ f ◦

h−1)(x) = x + xm + µx2m−1. Moreover, m and µ are analytic invariants
for f .

The algebraic technicality of adjoining a root is convenient, although it
is unnecessary if K is algebraically closed. We will usually drop the tilde in
practice – this should cause no confusion).

In other words, the formal and analytic classifications agree in the non-
archimedean setting. This is in stark contrast to the analytic classification
in C. Theorem 1.1 was obtained in the integral case (i.e., for series whose
coefficients have norm less than one) in the thesis of Dominique Vieugué
[19], via techniques similar to our own (i.e. via formal power series estima-
tion). However, the general case is not handled there. It is worth noting that,
since analytic functions with respect to a non-archimedean norm are con-
tinuous, this shows that formal equivalence does indeed imply topological
equivalence, which is consistent with the theory in C.

With this result in place, one can then answer questions regarding roots
and centralizers of analytic mappings tangent to the identity. Using known
reults of Herman and Yoccoz [9], we can then prove the following:

Corollary 1.2. — Let f be an analytic map tangent to the identity.
Then, f admits analytic roots of all orders. The formal and analytic cen-
tralizers of f agree.

The structure of the paper is as follows: Section 2 discusses basic results
and notation for non-archimedean analysis and local dynamics. The short
Section 3 is used to summarize basic results of analytic flows in the p-
adic setting, as proven by Herman and Yoccoz [9]. Most of the proof of
Theorem 1.1 is in Section 4. In this section we introduce and apply the
useful “sigma function” σm(n), which estimates rather well the growth of
the denominators of the conjugating function. Finally, using the previous
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work, Section 5 finishes the proof of the Theorem 1.1, Corollary 1.2, and a
few other tidbits regarding conjugating maps.

Theorem 1.1 provides a complete analytic classification of mappings
which are tangent to the identity and convergent with respect to a non-
archimedean norm. As mentioned, this shows that formally equivalent map-
pings are also topologically equivalent. In a future work, the authors plan
to give a complete topological classification of analytic mappings tangent to
the identity, and to study what smoothness conditions may be imposed on
such a conjugating map. Recently, Jenkins [11] has given a full formal clas-
sification of so-called semi-hyperbolic mappings in Cn, and has shown that
the formal classification differs wildly from the holomorphic one. There are
few algebraic restrictions on the formal classification; the techniques used
there would work, for the most part, if the coefficients lay in a field of
characteristic 0. It would be of interest to determine whether the formal
and analytic classifications agree if one considers non-archimedean norms
| · |. Finally, we do not consider the case of fields with characteristic p; the
methods used here will fail in that setting.

It is possible that the results here can be found along other lines, à
la the theory of Ecalle and Voronin, providing a more “conceptual” proof.
This approach does not seem to be in the literature however. We point out
that the proofs here are elementary and self-contained, and our hope is that
they will provide insight into the holomorphic case. In particular, we believe
that such techniques can be modified in order to give precise examples of
convergence or divergence of formal power series conjugating maps f and g
which are holomorphic in C and tangent to the identity (for at least those
formal series with rational coefficients).

Part of the research here was done while both authors were Research
Assistant Professors at Purdue University. The authors are thankful for the
support of the department. Also, the authors would like to thank Laurent
Stolovitch for bringing the thesis of Vieugué to their attention.

2. Preliminaries

This section is devoted to an explanation of the non-archimedean set-
ting in which we work, together with some basic notions of formal dynam-
ics. We also take the opportunity to fix some notation. In the introduction
and throughout the paper, we have used the convention that if the norm
is archimedean, then we will write sets in the bold style (i.e. R,C, etc.),
whereas if the norm is non-archimedean (or if the field is the rational num-
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bers), we will write in blackboard bold style (i.e. Q,Qp,Cp, etc.). Power
series with coefficients in C will be denoted f(z) as usual, while power
series with coefficients in a non-archimedean field K will be denoted f(x).

2.1. Non-archimedean Fields

The bulk of this paper involves not the complex numbers C but rather
a non-archimedean complete (nontrivial) valued field K of characteristic 0.
We give a survey of the pertinent facts. For proofs see [17] or [15].

Definition 2.1. — Let K be a field. A non-archimedean valuation (or
norm) on K is a map | · | : K → R satisfying the following rules, for all
x, y ∈ K:

1. |x| � 0, |x| = 0 if and only if x = 0.

2. |x + y| � max{|x|, |y|}.

3. |xy| = |x||y|.

The pair (K, | · |) is a non-archimedean valued field.

We will simply write K when the valuation is implicit. Of course the
usual absolute value in C does not satisfy the second condition. The constant
valuation, |x| = 1 for all x �= 0, is called trivial. We do not consider these.

Let K = Q and choose a prime p ∈ Z and a real number 0 < α < 1.
Consider the map ∣∣∣m

n

∣∣∣
p,α

= αp(m)−p(n), (2.1)

where p(n) is the exponent of p in the prime factorization of n. Then | · |p,α
is a non-archimedean valuation on Q.

The following is a well-known theorem of Ostrowski:

Proposition 2.2. — Any nontrivial non-archimedean valuation on Q

is of the form | · |p,α for some p and α as above.

Given a valuation on a field K, there is a natural topology on K com-
patible with | · |. We define it in the usual way with balls.

Definition 2.3. — Given a positive number r ∈ R, and x ∈ K, define
Br(x) = {y ∈ K : |x− y| � r}.
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Then we give K the topology generated by the basis {Br(x) : r ∈ R, x ∈
K}. For a given p, the topology of (Q, | · |p,α) does not depend on the choice
of α.

Definition 2.4. — ∆ = B1(0).

Note that ∆ is a subring of K by the definition of valuation; we will
refer to ∆ as the ring of integers of K.

A non-archimedean valued field K is considered complete if it is complete
as a metric space. Recall that if K̃ is a finite-degree field extension of a
complete, non-archimedean valued field K, then the norm | · | on K extends
uniquely to K̃, and furthermore, this extension is complete. In particular,
if α is any algebraic element over such a field K, then K[α] is a complete,
non-archimedean valued field.

For example, (Q, | · |p,α) is not complete, being countable. In fact the
completion of any such K will be a complete non-archimedean valued field.
The completion of (Q, | · |p,1/p) is called Qp. Note that |p| = 1

p in this case.

From now on we take K to be a non-archimedean complete valued field
with characteristic 0. In this case Q is a subfield, and becomes a valued field
by restriction of | · |.

We record a simple lower estimate on |n!| in this context.

Proposition 2.5. — If the valuation of K restricts trivially to Q then
|n!| = 1. Otherwise, |n!| = |n!|p,α � αn.

Proof. — The only thing to prove is the last inequality. It is well-known
that p(n!) = n−Sn

p−1 , where Sn is the sum of the digits of n in base p. Therefore
p(n!) � n, and the result follows. �

Since the valuation on K is nontrivial, there is an element π ∈ K with
0 < |π| < 1. Since R is an archimedean field, for every ε > 0 there is a
k ∈ N so that if q = πk, then |q| < ε.

Finally, we would like to point out that any algebraically closed field of
characteristic 0 with the same cardinality as R is isomorphic as a field to C,
by transcendence theory. This applies, for example, to the algebraic closure
Qp and its completion Cp. This means that much of the formal algebraic
theory of C applies to a general non-archimedean field K of characteristic
0.

Of course there is no reason to expect any topological relationship.
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2.2. Power Series

We denote the ring of formal power series K[[x]] as usual. If two formal
power series f, g ∈ K[[x]] have zero constant term, then they may be com-
posed to yield another formal power series f ◦ g ∈ K[[x]] with zero constant
term.

An interesting feature of non-archimedean analysis is the following: a
series

∑
n an converges if and only if an converge to 0.

Given a power series f(x) =
∑

n anx
n ∈ K[[x]], its radius of convergence

about 0 is given by

ρ =
(

lim sup
n→∞

n
√
|an|

)−1

(2.2)

Definition 2.6. — The power series f(x) ∈ K[[x]] is called locally an-
alytic at 0 if ρ > 0. The set of such functions is denoted OK

0 .

For example if γ ∈ K with |γ| = c, and an = γn, then ρ = 1
c . On the

other hand, if c > 1 and an = γn
2
, then ρ = 0. Therefore if K = Qp the

power series

f(x) =
∑
n

1
pn2 x

n (2.3)

is not in OK
0 .

As usual, if the linear term a1 �= 0, then f will be formally invertible, in
the sense that there is a unique power series g(x) ∈ K[[x]] with (f ◦ g)(x) =
(g ◦ f)(x) = x. In particular, power series of the form f(x) = x + O(x2)
are invertible. Moreover, an implicit function theorem implies that if f is
locally analytic, then the formal inverse g is itself locally analytic.

Let f(x) = x + amxm + O(xm+1) be a power series in K[|x|], where
K is any field of characteristic 0. As mentioned above, we write f ◦ g to
be the composition of f and g, while writing fg to mean the standard
multiplicative, pointwise product. Furthermore, given n ∈ Z, we write f◦n

to be the nth iterate of f , and write fn to be the nth multiplicative power
of f .

Given two such power series f and g, we say that f and g are equivalent
(or conjugate) if there is an h satisfying h◦f ◦h−1 = g. We are deliberately
vague here - as mentioned in the introduction, the degree of smoothness on
the map h can have a huge effect on the equivalence classes present. In this
paper, we will concern ourselves with two cases: h can be a formal power
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series, or an analytic one (if h is analytic, then obviously K will have some
associated norm).

By considering the conjugating map x �→ ( m−1
√
am)x, we assume that

am = 1, and this assumption will be present throughout the paper. We
show here that any such mapping may be reduced formally to f0,m(x) =
x + xm + µx2m−1, and moreover, the numbers m and µ provide formal
invariants for the mapping f . The proof of this fact is known to many,
and is impossible to ascribe to a single source. We include the proof here,
however, as the conjugating map constructed will always converge in the
non-archimedean setting (as we shall show later).

Proposition 2.7. — Let f ∈ K[|x|] have the form

f(x) = x + xm +
∞∑

j=m+1

ajx
j . (2.4)

Then, there exists µ ∈ K and a formal power series H(x) = x + · · · so that
H ◦ f ◦H−1(x) = x+ xm + µx2m−1. Moreover, these numbers m and µ are
uniquely defined.

Proof. — We consider polynomials of the form hn(x) = x+cnx
n, where

cn is to be determined for n � 2. We will define inductively H2(x) = h2(x),
and Hn(x) = hn ◦Hn−1(x) for n > 2. Finally, we will define Fn = Hn ◦ F ◦
H−1
n .

We begin with n = 2. Let g = x + xm + µx2m−1, where µ is to be
determined. We will define each cn so that Fn and g agree through order
m + n− 1. For n = 2, we define

c2 =
am+1

m− 2
. (2.5)

We now suppose that cl has been chosen for 2 � l � n − 1 so that Fl
and g agree up to order l + m− 1, and will define cn so that

hn ◦ Fn−1 ◦ h−1
n (x) = g(x)xn+m. (2.6)

We write [Fn−1]n+m−1 to be the coefficient of the (n + m− 1)-degree term
of Fn−1. With this stipulation, we now define cn as:

cn =
[Fn−1]n+m−1

m− n
. (2.7)

Note that when n = m, the formula given above is of no use. The coeffi-
cient cm will have no effect on the 2m − 1 coefficient of Fm. Although one
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may define cm to be any element of K, for simplicity of the later presenta-
tion, we will define cm = 0. This completes our inductive definition of the
polynomials hl and Hl, l � 2. In addition, we will write µ = [Fm]2m−1.

Finally, the formal map H is defined to be H = limn→∞ Hn, taken in
the formal sense. Since the nth coefficient of Hl is unchanged for all Hl

with l > n, we see that each coefficient in the formal series H depends
algebraically on a finite number of terms, and thus is well-defined.

In order to see that the numbers m and µ are in fact invariants, suppose
that f(x) = x+xm+O(xm+1) and g(x) = x+xn+O(xn+1) are conjugated
via a map h(x) = x +

∑
alx

l. From the equation h ◦ f = g ◦ h, we have

h(x + xm + O(xm+1)) = h(x) + (h(x))n + O(xn+1). (2.8)

Via trivial computation, this can be reformulated as follows:

h(x) + xm + O(xm+1) = h(x) + xn + O(xn+1). (2.9)

This forces m = n. We fix this number m.

Since the proof above shows that f is formally conjugate to x + xm +
µx2m−1 for some choice of µ, we fix this value of µ. We can now assume
that f(x) = x + xm + µx2m−1. Let g(x) = x + xm + νx2m−1, and suppose
there is an h(x) = x+ c�x

� + . . ., with c� �= 0, satisfying h ◦ f = g ◦h. Then,
we have

h(x) + xm + µx2m−1 + &c�x
�+m−1 + O(x�+m)

= h(x) + xm + mc�x
�+m−1 + νx2m−1 + O(x�+m).

From this we see that & = m, and then µ = ν. The numbers m and µ
are therefore uniquely determined, and provide invariants for the formal
classification. �

We make the following remarks:

1. Since the coefficient cm has no effect on the process outlined above,
it can be considered a “free term”. We have defined cm = 0, but it
will be shown that the series above converges locally for any choice
of cm.

2. One consequence of the formal classification is that any mapping f
of the form (2.4) can be taken to the form f̃(x) = x+xm+µx2m−1 +
O(x2m) by a polynomial change of variable of degree m − 1, and
moreover, the proof shows that this change of variable is unique, if
chosen so that it is tangent to the identity. Therefore, in much of
what follows, we will assume that f(x) = x+xm+µx2m−1 + · · ·, and
therefore that H(x) = x + Am+1x

m+1 + · · ·.
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3. While it is not important to our theory to find a precise formula for
the formal invariant µ, it is worth mentioning that in the case m = 2,
we have that µ = a3

a2
2
.

2.3. Miscellaneous Notation

We will often need to study the process of raising a power series to a
given exponent (multiplicatively). Consider for example the power series

f(x) =
∞∑
i=0

aix
i.

Then, for any natural number &, f(x)� will be a sum of terms of the form

ai1ai2 · · · ai�xi1+i2+···+i� ,

where i1, i2, . . . , i� is a (finite) sequence of positive integers, not necessarily
distinct.

Definition 2.8. — Given a finite sequence i = (i1, . . . , i�), write |i| =
i1 + · · · + i�. Also write &(i) = &, the “length” of i.

We also adopt the following notation.

Definition 2.9. — Given a power series f , we write [f ]n for the coef-
ficient of the nth-degree term of f .

Thus, any power series f may be written as f(x) =
∑

n[f ]nxn.

The following lemma will be useful later. Its proof is immediate.

Lemma 2.10. — Let η(x) = α1x + αdx
d + αd+1x

d+1 + · · · ∈ K[[x]], and
j, T ∈ N. Then if j �= T and T < j + d− 1, then [η(x)j ]T = 0.

3. Vector Fields and Flows in K

This short paragraph is devoted to the formal and analytic theory of
flows and vector fields in K. We merely cite theorems in this section; a
reference for these results is Herman and Yoccoz [9].
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Proposition 3.1. — Let T tV (x) = TV (t, x) be the formal flow of a (pos-
sibly formal) vector field V of the form

V (x) =
∞∑
n=1

vnx
n, (3.1)

with coefficients vn ∈ ∆. Then

1. This flow has the form

TV (t, x) =
∞∑
n=1

an(t)xn, (3.2)

where a1(t) = exp(tv1), and an(t) is a formal power series in t satis-
fying an(0) = 0 for all n � 2

2. If V is a locally analytic vector field near 0, then for any value of t,
the time-t map T t(x) is locally analytic in x near 0.

In part (ii) of Proposition 3.1, we will often say that the flow is locally
analytic in x near 0. However, from the example of V (x) = x2, it is clear
that the neighborhood on which T t(x) is defined can shrink for different
values of t.

Our interest is in the case when v1 = 0; in this setting, for any value of
t, the flow T tV will be a map tangent to the identity.

Example: Consider the vector field V (z) = xm

1−(µ−1)xm−1
∂
∂x . This vector

field is locally analytic near 0 ∈ K. Moreover, the time-one map T 1
V of this

vector field takes the form

T 1
V (x) = x + xm + µx2m−1 + · · · , (3.3)

and is necessarily locally analytic.

Moreover, if a map f has the form f = T t0V (x) for some value t0 �= 0,
the centralizer Z(f) of f is completely determined. In particular, we shall
make use of the following lemma in Section 4.

Lemma 3.2. — Let V (x) be a vector field which generates a formal flow
T tV (x). Fix t = t0, and write f(x) = T t0V (x). Then, if g(x) = x + · · · is any
formal map satisfying g ◦ f = f ◦ g, then there is a t1 so that g(x) = T t1V (x);
i.e. g is in the flow of V (x).

Note that in our setting, this implies that any formal map g centralizing
the time-t map of an analytic vector field V must itself be analytic.
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4. The Sigma Function

This section is devoted to the bulk of the proof of Theorem 1.1.

Let f ∈ OK
0 be a power series of the form (2.4). By the second remark

following Proposition 2.7, there are m ∈ N, µ ∈ K, and a polynomial change
of variable which is tangent to the identity conjugating any such series to
f(x) = x+xm+µx2m−1+O(x2m). Thus, when treating analytic equivalence,
we can assume that f takes the form

f(x) = x + xm + µx2m−1 +
∞∑

n=2m

anx
n, (4.1)

so that f is formally equivalent to f0(x) = x + xm + µx2m−1. Then, via
Proposition 2.7 there is a formal series H(x) = x + Am+1x

m+1 + O(xm+2)
conjugating f with f0, where ck is given by Equation (2.7) for all k (and
note that the series is unique, since we have chosen c2 = c3 = . . . = cm = 0).
We show that this series converges in some neighborhood of 0 ∈ K.

First, we make the following observation: since the radius of convergence
is positive, the sequence {1/ n

√
|an|} is bounded below by some ε > 0. Pick

q ∈ K with 0 < |q| � ε so that bn = anq
n ∈ ∆ for all n � 2m − 1. (Here

a2m−1 = µ.) Thus, we are reduced to the study of series f of the form

f(x) = x + xm +
∞∑

n=2m−1

bn
qn

xn, (4.2)

where bn ∈ ∆. The idea here will be to estimate the decay of the denomi-
nators in the coefficients of hn and Hn.

We first begin with some algebraic results which shall be of use to us in
our estimation of the coefficients of the formal conjugating maps H. We need
to study how the power series H in the proof of Proposition 2.7 combines
the coefficients cj of the polynomials hj . The following lemma, which is
purely algebraic, determines which products may occur in a given degree.

Let c = c2, c3, . . . be a sequence of indeterminates. We assign a degree
(or a weight) to each cj , which we define to be j. Write A = Z[c2, . . .] for the
Z-module generated by the products

∏
j cj . Suppose that i = (i1, . . . , i�) is

a finite sequence of natural numbers (not necessarily distinct). We define
&(i) = & and |i| = i1 + . . .+ i� as in Definition 2.8. Write ci for the monomial
ci1 · · · ci� ∈ A; its degree is |i|.

Then a typical element of A may be written as a(c) =
∑

i αici, with
αi ∈ Z.
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Lemma 4.1. — The Sigma Function For j � 2 let hj(x) = x + cjx
j ∈

A[x], and Hj = hj ◦hj−1 ◦ · · · ◦h2 ∈ A[x]. Write Hj(x) = x+
∑

nAj
n(c)xn,

with Aj
n(c) ∈ A. Suppose for a given n � 2, Aj

n(c) =
∑

i α
j
i ci, for integers

αji . Then for any i such that αji �= 0, one has n = |i| − &(i) + 1.

Proof. — We induct on j. The statement is clear if j = 2. Given i, let
n(i) = |i|− &(i)+1. Then Hj+1(x) = Hj(x)+ cj+1(Hj(x))j+1. The terms of
the first part, Hj(x), satisfy the proposition by induction. By our inductive
hypothesis, the second part is a sum of monomials of the form

cj+1(α
j
i1
ci1) · · · (α

j
i
L
ci

L
)x

∑L

k=1
n(ik) · x(j+1)−L.

Therefore the exponent of x in this monomial is given by(
L∑
k=1

n(ik)

)
+ (j + 1) − L =

(
L∑
k=1

|ik| − &(ik) + 1

)
+ (j + 1) − L

=

(
L∑
k=1

|ik| − &(ik)

)
+ (j + 1).

On the other hand, write i′ for the new sequence formed by concatenat-
ing j + 1, i1, · · ·, and iL. We have

n(i′) =

(
(j + 1) +

L∑
k=1

|ik|
)

−
(

1 +
L∑
k=1

&(ik)

)
+ 1,

which is equal to the previous expression. �

We now introduce a function which governs the growth of the coefficients
of Hn. Fix m � 2. Let us define, for n ∈ N with n � m + 1,

σm(n) = (n− 1) + m

[
n− 2
m− 1

]
, (4.3)

where [x] denotes the greatest integer less than or equal to x.

Lemma 4.2. — Let the function σm be given by Equation (4.3), and let
n � m + 1. Then the following properties hold.

1. σm(n) is a strictly increasing, integer-valued function of n, σm(n +
(m− 1)) = σm(n) + (2m− 1), and(

2m− 1
m− 1

)
n−

(
m + 2 +

1
m− 1

)
� σm(n) �

(
2m− 1
m− 1

)
n−

(
3m− 1
m− 1

)
.
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2. If a, b ∈ N, and b− a � m− 1, then σm(b) − σm(a) � (b− a) + m.

3. Let i = (i1, · · · , il) be an &-tuple of positive integers and let n =
|i| − & + 1. Then,

�∑
j=1

σm(ij) � σm(n).

Proof. — The first two statements are elementary; we prove the last
statement. The problem reduces to proving that

∑�
j=1

[
ij−2
m−1

]
�

[
n−2
m−1

]
.

Since & � 1, we have
∑

j(ij − 2) � n − 2. The property then follows from
more general fact that for any & integers a1, . . . , a�, and positive integer N ,
one has ∑

j

[aj
N

]
�

[∑
j aj

N

]
.

�

Now, let f be of the form (4.2) with formal invariants m and µ =
b2m−1

q2m−1
.

Associated to m, we have the function σm; we drop the m for convenience.

Proposition 4.3. — Fix a natural number m � 2, and let cj ∈ K for
j = m + 1, · · · satisfy (j − m)!qσ(j)cj ∈ ∆. Define hj = x + cjx

j ∈ K[x],
and write Hj(x) = hj ◦ · · · ◦ hm+1(x) = x +

∑
nAj

nx
n. Then for all n,

(n−m)!qσ(n)Aj
n ∈ ∆.

Proof. — As in Lemma 4.1, we know that Hj(x) = x +
∑

nAj
n(c)xn,

whose nth term is Aj
n(c) =

∑
i α

j
i ci. The coefficients αji will be nonzero only

when n = |i| − &(i) + 1. So for the nth term we need only consider products
of the form ci1 · · · ci� , with

n = (i1 + · · · + i�) − & + 1.

By hypothesis we have (i1 − m)! · · · (i� − m)!qσ(i1)+···+σ(i�)ci1 · · · ci� ∈ ∆.
First, we deal with the factorials. We know that the multinomial coefficient

i1 + i2 + · · · + i� − &mi1 −m, i2 −m, . . . , i� −m

=
(|i| − &m)!

(i1 −m)!(i2 −m)! · · · (i� −m)!

is an integer. It is therefore enough to prove that n−m � |i| − &m. By the
equation for n this reduces to showing that

|i| − & + 1 � |i| − &(m− 1),
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which is true since & � 1 and m � 2. Finally, |qσ(n)| � |qσ(i1)+···+σ(i�)| by
Part (iii) of Lemma 4.2. �

Similarly, for the coefficients cn, we have the following:

Proposition 4.4. — Let f be an analytic mapping of the form (4.2),
where bn ∈ ∆. Let hn, Hn, and cn be defined as in Proposition 2.7. Then,
(n−m)!qσ(n)cn ∈ ∆ for all n � m + 1.

Proof. — Much of the proof of this proposition is based on the following
simple fact: if |ac| � 1 and |b| � |a|, then |bc| � 1. In what follows, all of our
computations are motivated by replacing a particular a with a b of smaller
norm.

We induct on n. For n = m + 1, we have cm+1 = − b2m
q2m

as in the proof

of Proposition 2.7. Since σ(m + 1) = 2m, we note that cm+1 satisfies the
estimate, and take c2 = c3 = · · · = cm = 0. Thus, we assume that cn satisfies
the estimate (n-m)!qσ(n)cn ∈ ∆, and we show that (n-m+1)!qσ(n+1)cn+1 ∈
∆.

From Proposition 4.3, we can write Hn in the form Hn(x) = x +∑
k�m+1 A

n
kx

k, where qσ(k)(k − m)!An
k ∈ ∆ for all k � m + 1. Writing

Hn+1 = Hn + cn+1H
n+1
n , the formal classification theorem shows that, up

to order O(xn+m+1), we must have Hn+1 ◦ f = f0 ◦Hn+1. Therefore, up to
this order we must have

Hn ◦ f + cn+1(Hn ◦ f)n+1 = Hn + cn+1H
n+1
n + (Hn + cn+1H

n+1
n )m

+
b2m−1

q2m−1
(Hn + cn+1H

n+1
n )2m−1.

We consider the (n+m)-degree coefficient of each side. Once we expand the
powers, we can see how this simplifies the expression.

We have (Hn + cn+1H
n+1
n )m = Hm

n +mcn+1H
n+m
n +

∑
j�n+m+1 αjH

j
n,

where αj ∈ K. Now Hn+m
n = xn+m + O(xn+m+1), and for j � n + m + 1,

it is clear that [Hj
n]n+m = 0.

Therefore [(Hn + cn+1H
n+1
n )m]n+m = mcn+1 + [Hm

n ]n+m.

In the same way, we have [(Hn + cn+1H
n+1
n )2m−1]n+m = [H2m−1

n ]n+m.

Thirdly, we consider the expression [Hn+1
n ]m+n. We may apply Lemma

2.10, with T = n + m, j = n + 1, and d = m + 1, so that T < j + d− 1 for
all terms. Therefore [cn+1H

n+1
n ]m+n = 0.
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Finally, by writing f(x) = x+xm+ · · ·, we see that [(Hn ◦ f)n+1]n+m =
n + 1, since Hn ◦ f = x + xm + O(xm+1).

Therefore, the induction reduces to the study of the equation

(n−m+1)cn+1 = [Hn−Hn◦f ]n+m+[Hm
n ]n+m+

b2m−1

q2m−1

[
H2m−1
n

]
n+m

. (4.4)

We show that the sum of the terms on the right-hand side of (4.4) lies

in
q−σ(n+1)

(n−m)!
∆, breaking the argument into three claims.

Claim 4.5. —

(n−m)!qσ(n+1) b2m−1

q2m−1
[H2m−1

n ]n+m ∈ ∆.

The coefficient [H2m−1
n ]n+m comes from a sum of terms of the form

xk0

�∏
t=1

(Ast
xst)it , (4.5)

where we have the sums

k0 + i1 + · · · + i� = 2m− 1 (4.6)

and
k0 + i1s1 + · · · + i�s� = n + m. (4.7)

Let us call the coefficient of this (n+m)-degree term Bn+m. This coefficient
satisfies the estimate

�∏
t=1

((st −m)!)it qitσ(st)Bn+m ∈ ∆. (4.8)

We consider the multinomial coefficient

i1(s1 −m) + · · · + i�(s� −m)s1 −m, . . . , s1 −m, · · · , s� −m, · · · , s� −m

where sk −m appears ik times, for k = 1, 2, . . . , &. Since this is an integer,
we may replace the product of factorials appearing in (4.8) with (n −m)!,
provided that

i1(s1 −m) + · · · + i�(s� −m) � n−m. (4.9)
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From (4.7), this is true exactly when

2m � k0 + (i1 + · · · + i�)m. (4.10)

This inequality certainly holds if i1 + · · ·+ il � 2. This is only possibly false
when & = 1 and i1 = 1. But then by (4.6), we have k0 = 2m−2. Then (4.10)
follows since m � 2.

In order to estimate the power of q appearing in (4.8), we will show that

�∑
t=1

itσ(st) � σ(n + 1) − (2m− 1). (4.11)

(The slightly smaller decay is necessary, since ultimately, we multiply
[H2m−1

n ]n+m by q−(2m−1).)

Denote by s the (i1 + · · ·+ i�)-tuple of integers consists of s1 in the first
i1 components, s2 in the next i2 components, etc. Then |s| = i1s1+· · ·+i�s�
and &(s) = i1 + · · · + i�.

From (4.6) and (4.7), we see —s—=n+m-k0 = n+m−((2m−1)−&(s)).
Therefore, we have n+1=(—s—-&(s) + 1) + (m− 1). Therefore, from part
(i) of Lemma 4.2, σ(n+1) = σ(|s| − &(s)+1)+ (2m− 1). Finally, Part (iii)
of Lemma 4.2 yields the inequality (4.11).

This finishes Claim 4.5.

Claim 4.6. —

(n−m)!qσ(n+1) ([Hm
n ]n+m −mAn+1) ∈ ∆.

Again, write the (n+m)-degree term of [Hm
n ]n+m as a sum of terms of the

form (4.5). Equation (4.7) remains the same, k0 + i1s1 + · · ·+ i�s� = n+m,
but (4.6) becomes

k0 + i1 + · · · + i� = m. (4.12)

We consider again the estimate (4.8), given by

�∏
t=1

((st −m)!)it qitσ(st)Bn+m ∈ ∆.

In order to replace the sigma functions appearing there, here we must show
that

�∑
t=1

itσ(st) � σ(n + 1).

– 628 –



A p-adic approach to local analytic dynamics...

Using the notation s to be the (i1 + . . . + i�)-tuple with s1 in the first i1
components, etc., and defining |s| = i1s1 + . . .+ i�s� and &(s) = i1 + . . .+ i�,
we obtain by subtracting Equation (4.12) from (4.7) (and adding 1 to both
sides)

n + 1 = |s| − &(s) + 1.

Therefore, we may apply part (iii) of Lemma 4.3 to replace the sigmas
appearing in (4.8) with σ(n + 1).

Dealing with the factorials is trickier. From (4.10), if & � 2, we may
replace the product of factorials appearing in (4.8) with (n−m)!. If this is
not the case, then again i1 = 1, and so k0 = m− 1. This forces s1 = n + 1,
and we are left with the single term mAn+1. We will consider this term later
- for now, we simply set it aside.

This finishes the proof of Claim 4.6.

Claim 4.7. —

(n−m)!qσ(n+1) ([Hn −Hn ◦ f ]n+m + (n + 1)An+1) ∈ ∆

The computation of [Hn−Hn◦f ]n+m reduces to the study of the (n+m)-
degree coefficient of

Hn(x) −Hn ◦ f(x) =
n+m∑
j=m+1

Aj(xj − f(x)j).

Let us write gj(x) = xj − f(x)j . If j � n + 2, then gj(x) = O(xn+m+1), so
those terms may be discarded. Therefore, we may assume that j � n + 1.
If j = n + 1, the the only term appearing is

[An+1(xn+1 − f(x)n+1)]n+m = −(n + 1)An+1.

This exception is why we subtract this term from [Hn −Hn ◦ f ]n+m in the
claim. We now consider the case of j � n.

We will consider each coefficient [Aj(f(x))j ]n+m individually. We first
expand the jth power of f . A typical term will be a sum of terms of the
form

xe1(xm)em

(
b2m−1x

2m−1

q2m−1

)e2m−1

. . .

(
b�x

�

q�

)e�

, (4.13)

with
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e1 + em +
�∑

s=2m−1

es = j. (4.14)

This term will have degree n + m when

e1 + mem +
�∑

s=2m−1

ses = n + m. (4.15)

Of course,

q(2m−1)e2m−1+...+�e�

[
xe1(xm)em

(
b2m−1x

2m−1

q2m−1

)e2m−1

. . .

(
b�x

�

q�

)e�]
n+m

∈ ∆.

We will prove that

σ(n + 1) − σ(j) �
�∑

s=2m−1

ses. (4.16)

(We need the extra decay, since we will multiply this term by Aj). By
Lemma 4.2(i), we have

σ(n + 1) − σ(j) � 2m− 1
m− 1

(n− j + 1) + (1 −m) +
1

m− 1
. (4.17)

Subtracting Equation (4.14) from Equation (4.15) gives

n− j + 1 = 1 −m + (m− 1)em +
�∑

s=2m−1

(s− 1)es.

Combining this with the above estimate, we see that the inequality (4.16)
will be true when

(2m− 1)em +
�∑

s=2m−1

(
(s− 1)

(
2m− 1
m− 1

)
− s

)
es � (3m− 2) − 1

m− 1
.

(4.18)
In fact, all the coefficients on the left hand side are greater or equal to
2m− 1, since we may rewrite each coefficient as

(s− 1)
(

2 +
1

m− 1

)
− s = s− 2 +

s− 1
m− 1

� s− 2 +
2m− 2
m− 1

= s.
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We may therefore conclude the following: If the inequality (4.16) does
not hold, then only one of the exponents em, . . . , e� may be nonzero, and in
fact must be equal to 1.

Suppose this is the case. Recall that f(x) = x+xm+O(x2m−1). If em = 1
and all higher exponents are 0, then the term (4.13) is simply xj−1(xm),
and we must show that qσ(n+1)−σ(j) ∈ ∆. But in this case n+1 = j, so this
is clear.

On the other hand, suppose some es = 1 for s � 2m− 1.

The term (4.13) now has the form

xj−1bn+m−j+1

(
x

q

)n+m−j+1

,

with n + m− j + 1 � 2m− 1. Thus we only need to check that if m− 1 �
n+ 1− j, then σ(n+ 1)− σ(j) � (n+ 1− j) +m. This follows immediately
from statement (ii) of Lemma 4.2. Putting it all together, we see that

(n−m)!qσ(n+1)[Aj(f(x))j ]n+m ∈ ∆

for all values m + 1 � j � n.

This finishes Claim 4.7.

We now complete the proof of Proposition 4.4. We rewrite the right-hand
side of Equation (4.4) as

([Hn−Hn◦f ]n+m+(n+1)An+1)+([Hm
n ]n+m−mAn+1)+

b2m−1

q2m−1
[H2m−1

n ]n+m

−(n−m + 1)An+1.

By Proposition 4.3, we have that

(n−m + 1)!qσ(n+1)(−An+1) = (n−m)!qσ(n+1)(−(n−m + 1)An+1) ∈ ∆.

Therefore, putting this together with Claims 4.5, 4.6 and 4.7, we see that

(n−m + 1)!qσ(n+1)cn+1 ∈ ∆. (4.19)

This completes the induction, and the proof of Proposition 4.4. �
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5. Theorem and Corollaries

In this last section, we wrap up the proof of Theorem 1.1. We record
several corollaries, including an observation regarding formal conjugating
maps.

Proof of Theorem 1.1. — We write Hn(x) = (hn ◦ hn−1 ◦ · · · ◦ hm+1)(x),
where hk(x) = x + ckx

k. From Propositions 4.3 and 4.4, we note that the
conjugating map H = limn→∞ Hn will have coefficients An satisfying (n-
m)!qσm(n)An ∈ ∆, where q is chosen as in the beginning of Section 4. By
Proposition 2.5, there is a real number 0 < α � 1 so that |(n − m)!|−1 <
α−n for some real number 0 < α � 1. Thus by choosing q to satisfy also
0 < |q| < α, we obtain that |(n−m)!|−1 < |q|−n. From Lemma 4.2, we have
that σm(n) � 3n for all m � 2, n � m + 1. Thus, Anx

n will tend to 0 if |x|
is sufficiently small, and hence our series converges.

Let f take the form (4.1) and let ε(f) = min

{
1

n
√
|an|

}
. From the proof

we have the following:

Corollary 5.1. — Suppose the norm on K restricts to the usual p-adic
norm | · |p, 1p on Q. Choose e ∈ N so that p−e � ε(f). Then Hn(x) converges

for |x| < p−(λe+1), where λ = 2m−1
m−1 .

With a full analytic classification in place, we now settle the questions
of centralizers and root extraction for a typical analytic map f of the form
(4.1).

Let us begin with centralizers of f , both formal and analytic. We write
ZF (f) = {g ∈ K[[x]] : g(0) = 0, g′(0) = 1, g ◦ f = f ◦ g}, and ZA(f) = {g ∈
OK

0 : g(0) = 0, g′(0) = 1, g ◦ f = f ◦ g}.

The centralizers of two conjugate elements are themselves conjugate sub-
groups. Therefore we only need to compute the centralizer for one represen-
tative from each conjugacy class.

Let f be of the form (4.1) with formal invariants m and µ.

In fact f is equivalent to the time-one map of the flow of a vector field.
This is useful because the centralizers of these maps are completely under-
stood.

As in Section 3, consider the vector field V (z) = xm

1−(µ−1)xm−1
∂
∂x . The
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time-one map T 1
V of this vector field takes the form

T 1
V (x) = x + xm + µx2m−1 + · · · .

Thus, f and T 1
V are analytically conjugate. Since ZF (T 1

V ) = ZA(T 1
V ) =

{T tV : t ∈ K}, we may now compute the centralizers ZF (f) and ZA(f). Let
h be an analytic map tangent to the identity satisfying h ◦ f ◦ h−1 = T 1

V .
We have the following:

Corollary 5.2. — ZA(f) = {h−1 ◦ T tV ◦ h}t∈K .

Note also that ZA(f) = ZF (f).

Root extraction is now a simple consequence.

Corollary 5.3. — Let f be of the form (4.1), and let n � 1 be a natural
number. Then, there is a unique g ∈ OK

0 tangent to the identity satisfying
g◦n = f .

Proof. — An easy induction constructs a unique formal map g tangent
to the identity satisfying g◦n = f . Any such root necessarily belongs to the
centralizer of f , and since the formal centralizer agrees with the analytic
one, we conclude that g is in fact analytic. Thus, f admits analytic nth-root
extraction of all orders. �

Corollaries 5.2 and 5.3 together yield Corollary 1.2.

Finally, if f and g are analytically equivalent, then there is an analytic
map h satisfying h ◦ f ◦ h−1 = g. Let h̃ be any other formal map satisfying
h̃ ◦ f ◦ h̃−1 = g. Then, since h̃−1 ◦ h = k is a formal map centralizing f , it
must be analytic as well. Thus, we have proven

Corollary 5.4. — Let h be a formal map which conjugates two for-
mally equivalent maps f and g, both of which are analytic in some neigh-
borhood of the origin. Then, h is in fact analytic in some neighborhood of
0 ∈ K.
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