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Uniqueness and factorization of Coleff-Herrera
currents

Mats Andersson
(1)

RÉSUMÉ. — Nous prouvons un résultat d’unicité pour les courants de
Coleff-Herrera qui dit en particulier que si f = (f1, . . . , fn) définit une
intersection complète, alors le produit de Coleff-Herrera classique associé
à f est le seul courant de Coleff-Herrera qui soit cohomologue à 1 pour
l’opérateur δf − ∂, où δf est le produit intérieur par f . De ce résultat
d’unicité, nous déduisons que tout courant de Coleff-Herrera sur une
variété Z est une somme finie de produits de courants résiduels supportés
sur Z par des formes holomorphes.

ABSTRACT. — We prove a uniqueness result for Coleff-Herrera currents
which in particular means that if f = (f1, . . . , fm) defines a complete
intersection, then the classical Coleff-Herrera product associated to f is
the unique Coleff-Herrera current that is cohomologous to 1 with respect
to the operator δf −∂̄, where δf is interior multiplication with f . From the
uniqueness result we deduce that any Coleff-Herrera current on a variety
Z is a finite sum of products of residue currents with support on Z and
holomorphic forms.

1. Introduction

Let X be an n-dimensional complex manifold and let Z be an ana-
lytic variety of pure codimension p. The sheaf of Coleff-Herrera currents
CHZ consists of all ∂̄-closed (∗, p)-currents µ with support on Z such that
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ψ̄µ = 0 for each ψ vanishing on Z, and which in addition fulfill the so-called
standard extension property, SEP, see below. Locally, any µ ∈ CHZ can
be realized as the result of an application of a meromorphic differential op-
erator on the current of integration [Z] (combined with contractions with
holomorphic vector fields), see, e.g., [4] and [5].

The model case of a Coleff-Herrera current is the Coleff-Herrera product
associated to a complete intersection f = (f1, . . . , fp),

µf =
[
∂̄

1
fp

∧ . . .∧∂̄ 1
f1

]
, (1.1)

introduced by Coleff and Herrera in [6]. Equivalent definitions are given in
[9] and [10]; see also [12]. It was proved in [7] and [9] that the annihilator of
µf is equal to the ideal J (f) generated by f . Notice that formally (1.1) is
just the pullback under f of the product µw = ∂̄(1/w1)∧ . . .∧∂̄(1/wp). One
can also express µw as ∂̄ of the Bochner-Martinelli form

B(w) =
∑
j

(−1)jw̄jdw̄1∧ . . .∧dw̄j−1∧dw̄j+1∧ . . .∧dw̄p/|w|2p.

In [11], f∗B is defined as a principal value current, and it is proved that
µfBM = ∂̄f∗B is indeed equal to µf . However the proof is quite involved. An
alternative but still quite technical proof appeared in [1]. In this paper we
prove a uniqueness result which states that any Coleff-Herrera current that
is cohomologous to 1 with respect to the operator δf − ∂̄ (see Section 3 for
definitions) must be equal to µf . In particular this implies that µf = µfBM .

It is well-known that any Coleff-Herrera current can be written α∧µf ,
where α is a holomorphic (∗, 0)-form and µf is a Coleff-Herrera product
for a complete intersection f . However, unless Z is a complete intersection
itself the support of µf is larger than Z. Using the uniqueness result we can
prove

Theorem 1.1. — For any µ ∈ CHZ (locally) there are residue currents
RI with support on Z and holomorphic (∗, 0)-forms αI such that

µ =
′∑

|I|=p
RI∧αI . (1.2)

Here RI are currents of Bochner-Martinelli type from [11] associated
with a not necessarily complete intersection. In particular, it follows that
the Lelong current [Z] admits a factorization (1.2).
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Uniqueness and factorization of Coleff-Herrera currents

The SEP goes back to Barlet, [3]. We will use the following definition:
Given any holomorphic h that does not vanish identically on any irreducible
component of Z, the function |h|2λµ, a priori defined only for Reλ >> 0,
has a current-valued analytic extension to Reλ > −ε, and the value at
λ = 0 coincides with µ. The reason for this choice is merely practical; for
the equivalence to the classical definition, see Section 5. Now, if µ ∈ CHZ

has support on Z∩{h = 0}, then |h|2λµ must vanish if Reλ is large enough,
and by the uniqueness of analytic continuation thus µ = 0. In particular,
µ = 0 identically if µ = 0 on Zreg.

By the uniqueness result we obtain simple proofs of the equivalence
of various definitions of the SEP (Section 5) as well as the equivalence of
various conditions for the vanishing of a Coleff-Herrera current (Section 6).

2. The Coleff-Herrera product

Let f1, . . . , fp define a complete intersection in X, i.e., codimZf = p,
where Zf = {f = 0}. Notice that (1.1) is elementarily defined if each fj
is a power of a coordinate function. The general definition relies on the
possibility to resolve singularities: By Hironaka’s theorem we can locally
find a resolution π: Ũ → U such that locally in Ũ , each π∗fj is a monomial
times a non-vanishing factor. It turns out that locally µf is a sum of terms

∑



π∗τ
 (2.1)

where each τ
 is of the form

τ
 = ∂̄
1
ta11

∧ . . .∧∂̄ 1
t
ap
p

∧ α

t
ap+1
p+1 · · · tar

r
,

t is a suitable local coordinate system in Ũ , and α is a smooth function with
compact support. This representation turns out to be very useful; though
not explicitly stated, it follows from the definition in [6] as well as from any
other reasonable definition of µf by taking limits in the resolution manifold;
see, e.g., [2] for a further discussion.

It is well-known that µf is in CHZf but for further reference we sketch
a proof. It follows immediately from the definition that µf is a ∂̄-closed
(0, p)-current with support on Zf . Given any holomorphic function ψ we
may choose the resolution so that also π∗ψ is a monomial. Notice that each
|π∗ψ|2λτ
 has an analytic continuation to λ = 0 and that the value at 0
is equal to τ
 if none of t1, . . . , tp is a factor in π∗ψ and zero otherwise.
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According to this let us subdivide the set of τ
 into two groups τ ′
 and τ ′′
 .
Notice that |ψ|2λµf =

∑

 π∗(|π∗ψ|2λτ
) admits an analytic continutation

and that the value at λ = 0 is
∑

π∗τ
′′

 . If ψ = 0 on Zf , then 0 = |ψ|2λµf ,

and hence µf =
∑

 π∗τ

′

; it now follows that ψ̄µf = dψ̄∧µf = 0. If h is

holomorphic and the zero set of h intersects Zf properly, then T = µf −
|h|2λµf |λ=0 is a current of the type (2.1) with support on Y = Zf ∩{h = 0}
that has codimension p + 1. For the same reason as above, dψ̄∧T = 0 for
each holomorphic ψ that vanishes on Y and by a standard argument it
now follows that T = 0 for degree reasons. Thus µf has the SEP and so
µf ∈ CHZf . This proof is inspired by a forthcoming joint paper, [2], with
Elizabeth Wulcan.

3. The uniqueness result

Let f = (f1, . . . , fm) be a holomorphic tuple on some complex manifold
X. It is practical to introduce a (trivial) vector bundle E → X with global
frame e1, . . . , em and consider f =

∑
fje

∗
j as a section of the dual bundle

E∗, where e∗j is the dual frame. Then f induces a mapping δf , interior
multiplication with f , on the exterior algebra ΛE. Let C0,k(Λ
E) be the sheaf
of (0, k)-currents with values in Λ
E, considered as as sections of the bundle
Λ(E ⊕ T ∗(X)); thus a section of C0,k(Λ
E) is given by an expression v =∑′

|I|=
 fI∧eI where fI are (0, k)-currents and dz̄j∧ek = −ek∧dz̄j etc. Notice
that both ∂̄ and δf act as anti-derivations on these spaces, i.e., ∂̄(f∧g) =
∂̄f∧g + (−1)deg ff∧∂̄g, if at least one of f and g is smooth, and similarly
for δf . It is straight forward to check that δf ∂̄ = −∂̄δf . Therefore, if Lk =
⊕jC0,j+k(ΛjE) and ∇f = δf − ∂̄, then ∇f :Lk → Lk+1, and ∇2

f = 0. For
example, v ∈ L−1 is of the form v = v1 + · · ·+ vm, where vk is a (0, k − 1)-
current with values in ΛkE. Also for a general current the subscript will
denote degree in ΛE.

Example 3.1 (The Coleff-Herrera product). — Let f = (f1, . . . , fm) be a
complete intersection in X. The current

V =
[ 1
f1

]
e1 +

[ 1
f2

∂̄
1
f1

]
∧ e1 ∧ e2 + (3.1)

[ 1
f3

∂̄
1
f2

∧ ∂̄
1
f1

]
∧ e1 ∧ e2 ∧ e3 + · · ·

is in L−1 and solves ∇fV = 1 − µf∧e, where µf is the Coleff-Herrera
product and e = e1 ∧ . . . ∧ em. For definition of the coefficients of V and
the computational rules used here, see [9]; one can obtain a simple proof of
these rules by arguing as in Section 2, see [2].
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Example 3.2 (Residues of Bochner-Martinelli type). — Introduce a Her-
mitian metric on E and let σ be the section of E over X \Zf with minimal
pointwise norm such that δfσ = f · σ = 1. Then ∂̄σ has even total degree
(it is in L0) and we let (∂̄σ)2 = ∂̄σ∧∂̄σ, etc. Now

u = σ + σ∧∂̄σ + σ∧(∂̄σ)2 + σ∧(∂̄σ)3 · · · (3.2)

is smooth outside Zf and ∇fu = 1 there; in fact, since δf (∂̄σ) = −∂̄δfσ =
−∂̄1 = 0 we have that δf (σ∧(∂̄σ)k) = (∂̄σ)k = ∂̄(σ∧(∂̄σ)k−1), so ∇fu =
(δf − ∂̄)u becomes a telescoping sum. (A more elegant way is to notice that
(3.2) is equal to σ/∇fσ; then ∇fu = 1 follows by Leibniz’ rule since ∇2

f = 0,
cf. [1]).

It turns out, see [1], that u has a natural current extension U across
Zf . For instance it can be defined as the value at λ = 0 of the analytic
continuation of |f |2λu from Reλ >> 0 (the existence of the analytic con-
tinuation is of course nontrivial and requires a resolution of singularities).
If p = codimZf , then ∇fU = 1 −Rf , where

Rf = Rfp + · · · + Rfm,

Rf is the value at λ = 0 of ∂̄|f |2λ∧u and Rfk = σ∧(∂̄σ)k−1|λ=0. Moreover,
these currents have representations like (2.1) so if ξ ∈ O(Λm−pE) and ξ∧Rfp
is ∂̄-closed, then it is in CHf

Z by the arguments given in Section 2. Notice
that

Rfk =
′∑

|I|=k
RfI∧eI1∧ . . .∧eIk

. (3.3)

If we choose the trivial metric, the coefficients RfI are precisely the currents
introduced in [11]. In particular, if f is a complete intersection, i.e. m = p,
then, see [1], Rf1,...,p = µfBM∧e.

Theorem 3.3 (Uniqueness for Coleff-Herrera currents). — Assume that
Zf has pure codimension p. If τ ∈ CHZf and there is a solution V ∈ Lp−m−1

to ∇fV = τ∧e, then τ = 0.

Remark 3.4. — If Zf does not have pure codimension, the theorem still
holds (with the same proof) with CHZf replaced by CHZ′ , where Z ′ is the
irreducible components of Zf of maximal dimension.

In view of Examples 3.1 and 3.2 we get

Corollary 3.5. — Assume that f is a complete intersection. If µ ∈
CHZf and there is a current U ∈ L−1 such that ∇fU = 1 − µ∧e, then µ is
equal to the Coleff-Herrera product µf . In particular, µfBM = µf .
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The proof of Theorem 3.3 relies on the following lemma, which is prob-
ably known. However, for the reader’s convenience we include a proof.

Lemma 3.6. — If µ is in CHZ and for each neighborhood ω of Z there
is a current V with support in ω such that ∂̄V = µ, then µ = 0.

Proof. — Locally on Zreg we can choose coordinates (z, w) such that
Z = {w = 0}. We claim that there is a natural number M such that

µ =
∑

|α|�M−p
aα(z)∂̄

1
wα1+1

1

∧ . . .∧∂̄ 1

w
αp+1
p

, (3.4)

where aα are the push-forwards of µ∧wαdw/(2πi)p under the projection
(z, w) �→ z. In fact, since w̄jµ = 0 and ∂̄µ = 0 it follows that dw̄j∧µ = 0,
j = 1, . . . , p, and hence µ = µ0dw̄1∧ . . .∧dw̄p. Therefore it is enough to
check (3.4) for test forms of the form ξ(z, w)dw∧dz̄∧dz. Since w̄jµ = 0 we
have by a Taylor expansion in w (the sum is finite since µ has finite order)
that∫

z,w

µ∧ξdw∧dz̄∧dz =
∑
α

∫
z,w

µ∧ ∂αξ

∂wα
(z, 0)

wα

α!
dw∧dz̄∧dz

=
∑
α

∫
z

aα(z)
∂αξ

∂wα
(z, 0)dw∧dz̄∧dz(2πi)p

=
∑
α

∫
z

aα(z)
∫
w

∂̄
1

wα+1
∧ξ(z, w)dw∧dz̄∧dz.

Since µ is ∂̄-closed it follows that aα are holomorphic. Notice that

∂̄
1

w
βp
p

∧ . . .∧∂̄ 1

wβ1
1

∧dwβ1
1 ∧ . . .∧dwβp

p /(2πi)p = β1 · · ·βp[w = 0],

where [w = 0] denote the current of integration over Zreg (locally). Now
assume that ∂̄γ = µ and γ has support close to Z. We have, for |β| = M ,
that

∂̄(γ∧dwβ) = (2πi)paβ−1(z)β1 · · ·βp[w = 0].

If ν is the component of γ∧dwβ of bidegree (p, p− 1) in w, thus

dwν = ∂̄wν = (2πi)paβ−1β1 · · ·βp[w = 0].

Integrating with respect to w we get that aβ−1(z) = 0. By finite induction
we can conclude that µ = 0 locally on Zreg. Thus µ vanishes on Zreg and
by the SEP it follows that µ = 0. �
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Proof. — [Proof of Theorem 3.3] Let ω be any neighborhood of Z and
take a cutoff function χ that is 1 in a neighborhood of Z and with support
in ω. Let u be any smooth solution to ∇fu = 1 in X \Zf , cf. Example 3.2.
Then g = χ− ∂̄χ∧u is a smooth form in L0(ω) and ∇fg = 0. Moreover, the
scalar term g0 is 1 in a neighborhood of Zf . Therefore,

∇f [g∧V ] = g∧τ∧e = g0τ∧e = τ∧e,

and hence the current coefficient W of the top degree component of g∧V
is a solution to ∂̄W = τ with support in ω. In view of Lemma 3.6 we have
that τ = 0. �

4. The factorization

The double sheaf complex C0,k(Λ
E) is exact in the k direction except
at k = 0, where we have the cohomology O(Λ
E). By a standard argument
there are natural isomorphisms

Ker δf
O(Λ
E)/δfO(Λ
+1) � Ker∇f

L−
/∇fL−
−1. (4.1)

When 1 = 0 the left hand side is O/J (f), where J (f) is the ideal sheaf
generated by f . We have the following factorization result.

Theorem 4.1. — Assume that Zf has pure codimension p and let µ ∈
CHZf be (0, p) and such that J (f)µ = 0. Then there is locally ξ ∈ O(Λm−pE)
such that

µ∧e = Rfp∧ξ. (4.2)

Proof. — Since ∇f (µ∧e) = 0, by (4.1) there is ξ ∈ O(Λm−pE) such that
∇fV = ξ − µ∧e. On the other hand, if U is the current from Example 3.2,
then ∇f (U∧ξ) = ξ−Rf∧ξ = ξ−Rfp∧ξ. Now (4.2) follows from Theorem 3.3.
�

Proof. — [Proof of Theorem 1.1] With no loss of generality we may as-
sume that µ has bidegree (0, p). Let g = (g1, . . . , gm) be a tuple such that
Zg = Z. If fj = gMj and M is large enough, then J (f)µ = 0 and hence by
Theorem 4.1 there is a form

ξ =
′∑

|J|=m−p
ξJ∧eJ

such that (4.2) holds. Then, cf. (3.3), (1.2) holds if αI = ±ξIc , where Ic =
{1, . . . ,m} \ I. �
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Example 4.2. — Let [Z] be any variety of pure codimension and choose
f such that Z = Zf . It is not hard to prove that (each term of) the Lelong
current [Z] is in CHZ , and hence there is a holomorphic form ξ such that
Rfp∧ξ = [Z]∧e. (In fact, one can notice that the proof of Lemma 3.6 works
for µ = [Z] just as well, and then one can obtain fakto for [Z] in the same
way as for µ ∈ CHZ . A posteriori it follows that indeed [Z] is in CHZ .)
There are natural ways to regularize the current Rfp , see, e.g. [12], and thus
we get natural regularizations of [Z].

Next we recall the duality principle, [7], [8]: If f is a complete intersec-
tion, then

annµf = J (f). (4.3)

In fact, if φ ∈ annµ, then ∇fUφ = φ − φµ∧e = φ and hence φ ∈ J (f)
by (4.1). Conversely, if φ ∈ J (f), then there is a holomorphic ψ such that
φ = δfψ = ∇fψ and hence φµ = ∇fψ∧µ = ∇(ψ∧µ) = 0.

Notice that HomO(O/J (f), CHZf (ΛpE)) is the sheaf of currents µ∧e
with µ ∈ CHZf that are annihilated by J (f). From (4.3) and Theorem 4.1
we now get

Theorem 4.3. — If f is a complete intersection, then the sheaf mapping

O/J (f) → HomO(O/J (f), CHZ(ΛpE)), φ �→ φµf∧e, (4.4)

is an isomorphism.

5. The standard extension property

Given the other conditions in the definition of CHZ the SEP is automat-
ically fulfilled on Zreg; this is easily seen, e.g. as in the proof of Lemma 3.6
(notice that the SEP is a local property), so the interesting case is when the
zero set Y of h contains the singular locus of Z. Classically, cf. [3], [4], and
[5], the SEP is expressed as

lim
ε→0

χ(|h|/ε)µ = µ, (5.1)

where Y ⊃ Zsing and h is not vanishing identically on any irreducible com-
ponent of Z. Here χ(t) can be either the characteristic function for the
interval [1,∞) or some smooth approximand.

Proposition 5.1. — Let χ be a fixed function as above. The class of
∂̄-closed (0, p)-currents µ with support on Z that are annihilated by ĪZ and
satisfy (5.1) coincides with our class CHZ .
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If χ is not smooth the existence of the currents χ(|h|/ε)µ in a reasonable
sense for small ε > 0 is part of the statement.

Proof. — [Sketch of proof] Let f be a tuple such that Z = Zf . We first
show that Rfp satisfies (5.1). From the arguments in Section 2, cf. Exam-
ple 3.2, we know that Rfp has a representation (2.1) such that π∗h is a pure
monomial (since the possible nonvanishing factor can be incorporated in
one of the coordinates) and none of the factors in π∗h occurs among the
residue factors in τ
. Therefore, the existence of the product in (5.1) and
the equality follow from the simple observation that

∫
s1,...,sµ

χ(|sc11 · · · scµ
µ |/ε) ψ(s)

sγ11 · · · sγµ
µ

→
∫
s1,...,sµ

ψ(s)
sγ11 · · · sγµ

µ
(5.2)

for test forms ψ, where the right hand side is a tensor product of one-variable
principal value integrals acting on ψ. Let temporarily CHcl

Z denote the class
of currents defined in the proposition. Since each µ ∈ CHZ admits the
representation (4.2) it follows that µ ∈ CHcl

Z . On the other hand, Lemma 3.6
and therefore Theorem 3.3 and (4.2) hold for CHcl

Z as well (with the same
proofs), and thus we get the other inclusion. �

6. Vanishing of Coleff-Herrera currents

We conclude with some equivalent condition for the vanishing of a Coleff-
Herrera current. This result is proved by the ideas above, it should be well-
known, but we have not seen it in this way in the literature.

Theorem 6.1. — Assume that X is Stein and that the subvariety Z ⊂
X has pure codimension p. If µ ∈ CHZ(X) and ∂̄V = µ in X, then the
following are equivalent:

(i) µ = 0.

(ii) For all ψ ∈ Dn,n−p(X) such that ∂̄ψ = 0 in some neighborhood of Z we
have that ∫

V ∧∂̄ψ = 0.

(iii) There is a solution to ∂̄w = V in X \ Z.

(iv) For each neighborhood ω of Z there is a solution to ∂̄w = V in X \ ω̄.

Proof. — It is easy to check that (i) implies all the other conditions.
Assume that (ii) holds. Locally on Zreg = {w = 0} we have (3.4), and by
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choosing ξ(z, w) = ψ(z)χ(w)dwβ∧dz∧dz̄ for a suitable cutoff function χ
and test functions ψ, we can conclude from (ii) that aβ = 0 if |β| = M .
By finite induction it follows that µ = 0 there. Hence µ = 0 globally by
the SEP. Clearly (iii) implies (iv). Finally, assume that (iv) holds. Given
ω ⊃ Z choose ω′ ⊂⊂ ω and a solution to ∂̄w = V in X \ ω′. If we extend
w arbitrarily across ω′ the form U = V − ∂̄w is a solution to ∂̄U = µ with
support in ω. In view of Lemma 3.6 thus µ = 0. �

Notice that V defines a Dolbeault cohomology class ωµ in X\Z that only
depends on µ, and that conditions (ii)-(iv) are statements about this class.
For an interesting application, fix a current µ ∈ CHZ . Then the theorem
gives several equivalent ways to express that a given φ ∈ O belongs to the
annihilator ideal of µ. In the case when µ = µf for a complete intersection
f , one gets back the equivalent formulations of the duality theorem from [7]
and [9].

Remark 6.2. — If µ is an arbitrary (0, p)-current with support on Z and
∂̄V = µ we get an analogous theorem if condition (i) is replaced by: µ =
∂̄γ for some γ with support on Z. This follows from the Dickenstein-Sessa
decomposition µ = µCH + ∂̄γ, where µCH is in CHZ . See [7] for the case Z
is a complete intersection and [4] for the general case.
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