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End-to-end gluing of constant mean curvature
hypersurfaces

Mohamed Jleli
(1)

RÉSUMÉ. — Il a été observé par R. Kusner et prouvé par J. Ratzkin
qu’on peut recoller ensemble deux surfaces à courbure moyenne constante
ayant deux bouts de même paramètre de Delaunay. Cette procédure de
recollement est connu comme « somme connexe bout-à-bout ». Dans ce
papier, nous donnons une généralisation de cette construction en dimen-
sion quelconque dans le but de construire des nouvelles hypersurfaces à
courbure moyenne constante à partir des hypersurfaces connues.

ABSTRACT. — It was observed by R. Kusner and proved by J. Ratzkin
that one can connect together two constant mean curvature surfaces hav-
ing two ends with the same Delaunay parameter. This gluing procedure
is known as a “end-to-end connected sum”. In this paper we generalize,
in any dimension, this gluing procedure to construct new constant mean
curvature hypersurfaces starting from some known hypersurfaces.

1. Introduction and statement of results

Surfaces of revolution whose mean curvature is constant equal to 1 are
classified in 1841 by C. Delaunay [1]. The profile curves of these surfaces
(known as Delaunay surfaces) are conic roulettes [2].

In higher dimension, a generalization of the Delaunay classification for
hypersurfaces with some symmetries is given in [4]. In particular, for n � 3,
there exist a constant mean curvature hypersurface of revolution in R

n+1

denoted by n-Delaunay hypersurfaces. These hypersurfaces construct a one

(∗) Reçu le 29/02/08, accepté le 21/11/08
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parameter family Dτ for

τ ∈ (−∞, 0) ∪ (0, τ∗].

Let us denote by Mk, for k ∈ N
∗, the set of complete noncompact

constant mean curvature hypersurfaces in R
n+1 with k ends asymptotic

to n-Delaunay hypersurface. Then, any element Σ of Mk is said to be
nondegenerate if the linearized operator (the Jacobi operator)

LΣ : L2(Σ) −→ L2(Σ)

is injective. In general, it is difficult to prove that a given hypersurface is
nondegenerate. But, we will prove in the beginning of the paper that any
n-Delaunay hypersurface is nondegenerate.
The structure of the set Mk is now fairly well understood. In particular,
it is proved in [5] that if Σ is a nondegenerate element of Mk and if the
Delaunay parameters τ� of the ends of Σ satisfy τ� ∈ [τ∗, 0) ∪ (0, τ∗], for
some τ∗ depends only in n, there exists an open set U ⊂ Mk containing Σ
which is a smooth manifold of dimension k (n + 1). This result generalizes
in any dimension and for constant mean curvature hypersurfaces with ends
asymptotic to n Delaunay with negative parameter the result of R. Kusner,
R. Mazzeo and D. Pollack [14].

In 1990, a method of construction of constant mean curvature surfaces is
elaborated by N. Kapouleas to construct a compact surfaces [9], [10] and a
noncompact completes surfaces of R

3 [8]. This method is based in analogous
method used by R. Schoen to construct a constant scalar curvature in a
finitely punctured sphere. Later, this technique has been adopted in [15],
[16], [3] and generalized in [6]. More precisely, starting from a nondegenerate
element of Mk1 we can add a finite number (k2 ∈ N

∗) of constant mean
curvature hypersurfaces asymptotic to n-Delaunay to this hypersurface to
construct a new nondegenerate element of Mk1+k2 .

Recently, a new method of construction of constant mean curvature sur-
faces which is known as a “end-to-end connected sum” in introduced by J.
Ratzkin [19]. This gluing method is crucial in the construction of many ex-
amples of compact constant mean curvature surfaces with nontrivial topol-
ogy [7].
In this paper, we give a generalization of this technique in any dimension in
the aim to construct new constant mean curvature hypersurfaces starting
from some known hypersurfaces. We start in Section 2 by giving a parame-
terization of a one parameter family of hypersurfaces of revolution in R

n+1,
which have constant mean curvature normalized to be equal to 1. These
hypersurfaces, which were originally studied in [12], generalize the classical
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constant mean curvature surfaces in R
3 which were discovered by Delaunay

in [1] in the middle of the 19-th century. Next, we define the Jacobi operator
about a n-Delaunay hypersurface and we give the expression of the geomet-
ric Jacobi fields (some solutions of the homogenous problem LDτ

w = 0 ).
In Section 3, we recall some important results of the moduli space concern-
ing the Fredholm properties of the Jacobi operator acting in some weighted
functional space. Next, we describe the construction by considering two non-
degenerate hypersurfaces Σ1 ∈Mk1 and Σ2 ∈Mk2 and we assume that the
ends E1 ⊂ Σ1 and E2 ⊂ Σ2 are asymptotic to the same n-Delaunay Dτ

with parameter τ ∈ [τ∗, 0)∪ (0, τ∗). Then, we can align Σ1 and Σ2 such that
the axis of E1 and of E2 coincide (with opposite directions ). Finally, we
assume that E1 or E2 is a ”regular end” then we can translate one of these
hypersurface along this axis and we prove

Theorem 1.1. — Let Σ1 ∈Mk1 and Σ2 ∈Mk2 two nondegenerate con-
stant mean curvature hypersurfaces described as above. There exists a family
of hypersurfaces which is a connected sum of Σ1 and Σ1. These hypersur-
faces can be perturbed into a constant mean curvature hypersurface which is
element of Mk1+k2−2.

The principal advantage of this construction (in addition to the fact that it
can be used to construct new examples of compact or complete noncompact
constant mean curvature hypersurfaces) is the simplicity of its proof.

2. Delaunay hypersurfaces

2.1. Parameterization:

It will be more interesting to consider an isothermal type parameteriza-
tion for which will be more convenient for analytical purposes. Hence, we
looking for hypersurfaces of revolution which can be parameterized by

X(s, θ) = (|τ | eσ(s) θ, κ(s)), (2.1)

for (s, θ) ∈ R × Sn−1. The constant τ being fixed, the functions σ and κ
are determined by asking that the hypersurface parameterized by X has
constant mean curvature equal to H and also by asking that the metric
associated to the parameterization is conformal to the product metric on
R × Sn−1, namely

(∂sκ)2 = τ2e2σ
(
1 − (∂sσ)2

)
. (2.2)

We choose the orientation of the hypersurface parameterized by X so that,
the unit normal vector field is given by

N :=
(
− ∂sκ

|τ |eσ
θ, ∂sσ

)
. (2.3)
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This time, using (2.2) the first fundamental form g of the hypersurface
parameterized by X is given by

g = τ2 e2σ (ds⊗ ds+ dθi ⊗ dθj),

and its second fundamental form b is given by

b =
(
∂2

sκ ∂sσ − ∂sκ (∂2
sσ + (∂sσ)2)

)
ds⊗ ds+ ∂sκ dθi ⊗ dθj .

Therefore, the mean curvature H of the hypersurface parameterized by X
is given by

H =
1

nτ2e2σ

(
(n− 1) ∂sκ− ∂sκ (∂2

sσ + (∂sσ)2) + ∂2
sκ ∂sσ

)
.

This is a rather intricate second order ordinary differential equation in the
functions σ and τ which has to be complimented by the equation (2.2). In
order to simplify our analysis, we use of (2.2) to get rid of the factor τ2 e2σ

in the above equation. This yields

∂sσ ∂
2
sκ = ∂sκ

(
1 − n+ ∂2

sσ + (∂sσ)2 + nH ∂sκ
(
1− (∂sσ)2

)−1
)
.

Now, we can differentiate (2.2) with respect to s, and we obtain

∂sκ ∂
2
sκ = τ2e2σ∂sσ

(
1− ∂2

sσ − (∂sσ)2
)
.

The difference between the last equation, multiplied by ∂sσ, and the former
equation, multiplied by ∂sκ, yields

∂2
sσ + (1− n)(1− (∂sσ)2) + nH ∂sκ = 0. (2.4)

Hence, in order to find constant mean curvature hypersurfaces of revolution,
we have to solve (2.2) together with (2.4).

Let us define
τ∗ :=

1
n

(1− n)
n−1

n .

For all τ ∈ (−∞, 0)∪ (0, τ∗], we define στ to be the unique smooth noncon-
stant solution of

(∂sσ)2 + τ2
(
eσ + ι e(1−n)σ

)2

= 1, (2.5)

with initial condition ∂sσ(0) = 0 and σ(0) < 0. Next, we define the function
κτ to be the unique solution of

∂sκ = τ2
(
e2σ + ι e(2−n)σ

)
, with κ(0) = 0. (2.6)
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Here, ι is the sign of τ .

In particular, the hypersurface parameterized by

Xτ (s, θ) := (|τ |eστ (s)θ, κτ (s)),

for (s, θ) ∈ R × Sn−1, is an embedded constant mean curvature hypersur-
face of revolution when τ belongs (0, τ∗], this hypersurface will be referred
to as the “n-unduloid” of parameter τ . In the other case, if τ < 0, this
hypersurface is only immersed and will be referred to as the “n-nodoid” of
parameter τ .

Remark 2.1. — Thanks to the Hamiltonian structure of (2.5), the func-
tion s �→ σ(s) is periodic. Let denote by sτ this period. Then, it is proved
in [6]

sτ = − n

n− 1
log τ2 +O(1) (2.7)

as τ tends to 0.

2.2. The Jacobi operator about a n-Delaunay

It is well known [20] that the linearized mean curvature operator about
Dτ , which is usually referred to as the Jacobi operator, is given by

Lτ := ∆τ + |Aτ |2,

where ∆τ is the Laplace-Beltrami operator and |Aτ |2 is the square of the
norm of the shape operator Aτ on Dτ .

Let us define the function ϕτ := |τ | eστ . We find the expression of the
Jacobi operator in term of the function ϕτ

Lτ := ϕ−n
τ ∂s(ϕn−2

τ ∂s) + ϕ−2
τ ∆Sn−1 + n+ n (n− 1) τ2n ϕ−2n

τ . (2.8)

It will be convenient to define the conjugate operator

Lτ := ϕ
n+2

2
τ Lτ ϕ

2−n
2

τ , (2.9)

which is explicitly given in terms of the function ϕτ by

Lτ = ∂2
s +∆Sn−1 −

(
n− 2

2

)2

+
n(n+ 2)

4
ϕ2

τ +
n(3n− 2)

4
τ2n ϕ2−2n

τ . (2.10)

Since the operators Lτ and Lτ are conjugate, the mapping properties of
one of them will easily translate for the other one. With slight abuse of
terminology, we shall refer to any of them as the Jacobi operator about Dτ .

Now, we give the following definition.
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Definition 2.2. — Let us denote by θ �→ ej(θ), for j ∈ N, the eigen-
functions of the Laplace-Beltrami operator on Sn−1, which will be normal-
ized to have L2 norm equal to 1 and correspond to the eigenvalue λj. That
is

−∆Sn−1 ej = λj ej ,

and

λ0 = 0, λ1 = . . . = λn = n− 1, λn+1 = 2n, . . . and λj � λj+1.

We ended this section by giving only the expression of some Jacobi fields,
i.e., solution of the homogeneous problem

Lτ ω = 0,

since these Jacobi fields follow from a rigid motion or by changing the De-
launay parameter τ . More details are given in [5].

• For τ ∈ (−∞, 0)∪ (0, τ∗), we define Φ0,+
τ to be the Jacobi field corre-

sponding to the translation of Dτ along the xn+1 axis

Φ0,+
τ := ϕ

n−4
2 ∂sϕ.

It is easy to check that Φ0,+
τ only depends on s and is periodic. Then,

this Jacobi field is bounded.

• Since we have n directions orthogonal to xn+1, there are n linearly
independent Jacobi fields which are obtained by translating Dτ in a
direction orthogonal to its axis. We get for j = 1, . . . , n

Φj,+
τ :=

(
ϕ

n
2 ± |τ |nϕ−n

2
)
ej .

Again, we see that Φj,+
τ is periodic (hence bounded) for all j =

1, . . . , n.

• For j = 1, . . . , n, we define

Φj,−
τ (s, θ) := ϕ

n−4
2

(
ϕ ∂sϕ+ κ ∂sκ

)
ej

to be the Jacobi field corresponding to the rotation of the axis of Dτ .
Observe that Φj,−

τ is not bounded, but grows linearly.
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• Finally, The Jacobi field corresponding to a change of parameter τ ∈
(−∞, 0) ∪ (0, τ∗) is given by

Φ0,−
τ := ϕ

n−4
2 (∂τκ ∂sϕ− ∂τϕ ∂sκ) .

Because of the rotational invariance of the operator Lτ , we can introduce
the eigenfunction decomposition with respect to the cross-sectional Laplace-
Beltrami operator ∆Sn−1 . In this way, we obtain the sequence of operators

Lτ,j = ∂2
s − λj −

(
n− 2

2

)2

+
n(n+ 2)

4
ϕ2 +

n(3n− 2)
4

τ2nϕ2−2n (2.11)

for j ∈ N. By definition, the indicial roots of the operator Lτ,j characterize
the rate of growth (or rate of decay) of the solutions of the homogeneous
equation

Lτ,j ω = 0

at infinity (see [14]). Observe that the explicit knowledge of some Jacobi
fields yields some information about the indicial roots of the operator Lτ .
Indeed, since the Jacobi fields Φj,±

τ , described below, are at most linearly
growing, the associated indicial roots are all equal to 0. Hence, we conclude
that for all τ ∈ (−∞, 0) ∪ (0, τ∗]

γj(τ) = 0, for j = 0, . . . , n.

The situation is completely different when j � n + 1. Indeed, its proved in
[5]:

Proposition 2.3. — There exists τ∗ < 0, depending only on n, such
that for all
τ ∈ [τ∗, 0) ∪ (0, τ∗],

γj(τ) > 0, for all j � n+ 1.

Remark 2.4. — Thanks to the last analysis, it is easy to see that the
n-Delaunay is a nondegenerate element of Mk.
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3. End-to-End connected sum

3.1. Moduli space theory

Assume that we are given Σ a complete noncompact, constant mean
curvature hypersurfaces in R

n+1, with k ends which are modeled after n-
Delaunay hypersurfaces.

We recall that, for all τ ∈ (−∞, 0) ∪ (0, τ∗], the Delaunay hypersurface
Dτ is parameterized by

Xτ = (ϕτ θ, κτ ) ,

where κτ and ϕτ are defined respectively in subsection 2.1 and section 2.2.

Now, we denote by E1, . . . , Ek the ends of the hypersurface Σ. We require
that these ends are asymptotic to half n-unduloids or a half n-nodoids.
More precisely, we require that, up to some rigid motion, each end can be
parameterized as the normal graph of some exponentially decaying function
over some Delaunay hypersurface, i.e. up to some rigid motion, the end E�

is parameterized by
Y� := Xτ�

+ ω� Nτ�
, (3.12)

where Y� is defined in (0,+∞) × Sn−1 and where the function ω� is expo-
nentially decaying as well as all its derivatives. Hence, for all k ∈ N, there
exists ck > 0 such that

|∇k ω�| � ck e
−γn+1(τ�) s (3.13)

on (0,+∞)× Sn−1.

The Jacobi operator about the end E� is close to the Jacobi opera-
tor about the n-Delaunay hypersurface Dτ�

. The content of the following
Lemma is to make this result quantitatively precise.

Lemma 3.1. — The Jacobi operator about Σ, restricted to the end E� is
given by

LΣ := ∆Σ + |AΣ|2 = Lτ�
+ L�,

where the L� is a second order linear operator whose coefficients and their
derivatives are bounded by a constant times e−γn+1(τ�) s.

Proof. — This follows at once from the fact that the coefficients of the
first and second fundamental forms associated to the end E� are equal to
the coefficients of the first and second fundamental form of Dτ�

up to some
functions which are exponentially decaying like e−γn+1(τ�) s. �
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Now, we decompose Σ into slightly overlapping pieces which are a com-
pact piece K and the ends E�. Then, we define the following functional
space

Definition 3.2. — For all r ∈ N, δ ∈ R and all α ∈ (0, 1), the function
space Cr,α

δ (Σ) is defined to be the space of functions w ∈ Cr,α
loc (Σ) for which

the following norm is finite

‖w‖Cr,α
δ

(Σ) :=
k∑

�=1

‖w ◦ Y�‖Er,α
δ

((0,+∞)×Sn−1) + ‖w‖Cr,α(K),

where the space
E�,α

δ ([s0,+∞)× Sn−1)

is the set of functions C�,α
loc which are defined on [s0,+∞) × Sn−1 and for

which the following norm is finite :

‖ ω ‖E�,α
δ

(R×Sn−1):= sup
s�s0

| e−δs ω |C�,α([s,s+1]×Sn−1) .

Here, | . |C�,α([s,s+1]×Sn−1) denotes the usual Hölder norm in [s, s+ 1]×
Sn−1.

Let χ� be a cutoff function which is equal to 0 on E� ∩K and equal to
1 on Y�((c�,+∞) × Sn−1) for some c� > 0 chosen large enough. We define
the deficiency space W(Σ) by

W(Σ) := ⊕k
�=1Span {χ� Φj,±

� | j = 0, . . . , n}.

The analogue of the following result for n = 2 is usually known as the
“Linear Decomposition Lemma” (see [18] and [15]).

Proposition 3.3 [5]. — We assume that τ� ∈ [τ∗, 0) ∪ (0, τ∗],
δ ∈ (− inf� γn+1(τ�), 0), α ∈ (0, 1) and Σ is nondegenerate. Let N (Σ) the
trace of the kernel of LΣ over the deficiency space WΣ, then N (Σ) is a
k (n+ 1) dimensional subspace of W(Σ) which satisfies

Ker(LΣ) ⊂ C2,α
−δ (Σ)⊕N (Σ).

If K(Σ) is a k (n+ 1) dimensional subspace of W(Σ) such that

W(Σ) = K(Σ) ⊕N (Σ),

we have
LΣ : C2,α

δ (Σ)⊕K(Σ) −→ C0,α
δ (Σ)

is an isomorphism.
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3.2. Regular ends of constant mean curvature hypersurfaces

We need to introduce the following

Definition 3.4. — Let M be a constant mean curvature 1 hypersurface
with k ends of Delaunay type. We will say that the end E of M , which is
asymptotic to some Delaunay hypersurface Dτ , is regular if there exists a
Jacobi field Ψ which is globally defined on M and which is asymptotic to
Φ0,−

τ (the Jacobi field on Dτ which corresponds to the the change of the
Delaunay parameter τ) on E.

Of course, n-Delaunay hypersurfaces have regular ends. In the case where
M is a nondegenerate element of the moduli space of k ended constant mean
curvature hypersurfaces, we have the following characterization of regular
ends:

Proposition 3.5. — Assume that M is a nondegenerate element of Mk

and let E be one of the ends of M . Then, the following propositions are
equivalent :

(i) The end E is regular.

(ii) There exists t0 > 0 and (Mt)τ∈(−t0,t0) a one parameter family of
constant mean curvature 1 hypersurfaces in Mk such that

M0 = M

and the Delaunay parameter of the end of Mt which is close to E is
equal to τ − t.

Proof. — The fact that (ii) implies (i) should be clear. The fact that
(i) implies (ii) just follows from the application of the implicit function
Theorem and the analysis of the moduli space Mk. Indeed, as explained
in the end of the paper [5], the Jacobi fields span the tangent space to the
moduli space Mk at the point M . Therefore, we simply have

Mt = expM (t ψ)

as the one parameter family of constant mean curvature 1 hypersurfaces
close to M which have the right properties. �

3.3. Connecting two constant mean curvature hypersurfaces to-
gether

Assume that we are given two nondegenerate complete noncompact con-
stant mean curvature hypersurfaces Mi ∈ Mki

, for i = 1, 2. We denote by
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Ei,1, . . . , Ei,ki
the ends of the hypersuface Mi, each of which are assumed

to be asymptotic to a n- Delaunay hypersurfaces Dτi,j , j = 1, . . . , ki.

We further assume that M1 and M2 have one end with the same Delau-
nay parameter. For example, let us assume that the Delaunay parameter of
E1,1 and E2,1 are the same, both equal to

τ := τ1,2 = τ2,1.

Further more we assume that τ �= τ∗ i.e. E1,1 and E1,2 are not asymptotic
to a cylinders.

Given m ∈ N, we can use a rigid motion to ensure that the end E1,1 is
parameterized by

Y1,1(s, θ) := Xτ (s, θ) + w1(s+msτ , θ)Nτ (s, θ),

for all (s, θ) ∈ (−msτ ,+∞)×Sn−1 and that the end E2,1 is parameterized
by

Y2,1(s, θ) := Xτ (s, θ) + w2(s−msτ , θ)Nτ (s, θ),

for all (s, θ) ∈ (−∞,m sτ )×Sn−1. Though this is not explicit in the notation,
Yi,1 does depend on m. In addition, we know from (3.12) and (3.13) that
the functions w1 and w2 are exponentially decaying as s tends to +∞ (resp.
−∞). More precisely,

w1 ∈ E2,α
−γn+1(τ)((0,+∞)× Sn−1)

and also that
w2 ∈ E2,α

γn+1(τ)((−∞, 0)× Sn−1),

where the function spaces E2,α
δ are introduced in Definition 3.2.

Given s > −msτ , we define the truncated hypersurface

M1(s) := M1 − Y1,1((s,+∞)× Sn−1))

and given s < msτ we define the truncated hypersurface

M2(s) := M2 − Y2,1((−∞, s))× Sn−1).

Again, Mi(s) depends on m. Now let s −→ ξ(s) be a cutoff function such
that ξ ≡ 0 for s � 1 and ξ ≡ 1 for s � −1. We define the hypersurface M̃m

to be
M̃m := M1(−1) ∪ C(1) ∪ M2(1), (3.14)
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where, for all s ∈ (0,m sτ ), the cylindrical type hypersurface C(s) is the
image of [−s, s]× Sn−1 by

(s, θ) −→ ξ(s) Y1,1(s, θ) + (1− ξ(s)) Y2,1(s, θ). (3.15)

By construction M̃m is a smooth hypersurface whose mean curvature is
identically equal to 1 except in the annulus C(1) where the mean curvature
is close to 1 and tends to 1 as m tends to +∞. Indeed, in C(msτ ), the
hypersurface M̃m is a normal graph over the n-Delaunay hypersurface Dτ

for some function w3. But the estimates we have on w1 and w2 imply that

w3 = OC2,α(e−γn+1(τ) (s+m sτ )) +OC2,α(eγn+1(τ) (s−m sτ )) (3.16)

on C(msτ ). The mean curvature of M̃m in C(msτ ) can then be computed
using Taylor’s expansion

HM̃m
= HDτ

+OC0,α(w3).

It then follows from (3.16) that the mean curvature of M̃m can be estimated
by

‖ HM̃m
− 1 ‖C0,α(C(1))� c e−m γn+1(τ) sτ . (3.17)

3.4. Mapping properties of the Jacobi operator about M̃m

In this subsection, we develop the linear analysis which will be needed in
the next subsection in order to perturb M̃m into a constant mean curvature
hypersurface. In particular, our aim is to find function spaces on which the
mapping properties of the Jacobi operator about M̃m do not depend (too
much) on m.

We further assume that the Delaunay parameters of the ends of M1 and
M2 are greater than or equal to τ∗ which has been introduced in Proposition
2.3. In particular, we can define

δ̃ := inf
i=1,2

inf
j=1,...,ki

γn+1(τi,j),

and we know that δ̃ > 0. Furthermore, the moduli space theory, as described
in subsection 3.1 applies. We fix

−δ̃ < δ < 0.

We have already assumed that the hypersurfaces Mi are nondegenerate.
Using the notations of subsection 3.1, we define the deficiency subspace
W(Mi) associated to Mi and we decompose

W(Mi) = N (Mi)⊕K(Mi),
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where N (Mi) and K(Mi) are both (n + 1) ki dimensional, in such a way
that the Jacobi operator about Mi

LMi : C2,α
δ (Mi)⊕K(Mi) −→ C0,α

δ (Mi) (3.18)

is an isomorphism. The elements of K(Mi) are supported in the complement
of a compact set of Mi. Recall that, on each end Ei,j there are 2 (n + 1)
locally defined Jacobi fields Φk,±

Ei,j
, where k = 0, . . . , n. These Jacobi fields

are a priori only defined for s large enough, say s � si,j and are asymptotic
to the corresponding Jacobi fields on Dτ

Φk,±
Ei,j

= Φk,±
τ +OC2,α(eδs)

for any δ ∈ (−γn+1(τi,j), 0). By definition, W(Mi) is the vector space
spanned by χi,j Φk,±

Ei
j

for j = 1, . . . , ki and k = 0, . . . , n, where χi,j are

cutoff functions which are equal to 0 on Mi − Ei,j , still equal to 0 on Ei,j

for s ∈ (0, si,j) and identically equal to 1 on the Ei,j , when s � si,j + 1.
Finally, recall that any globally defined Jacobi field which is at most linearly
growing on the ends of Mi belongs to

C2,α
δ (Mi)⊕N (Mi).

Observe that, on a given end Ei,j , all Jacobi fields, except the Jacobi
field Φ0,−

Ei,j
which corresponds to a change of Delaunay parameter, come

from the action of the group of rigid motions. Hence, these Jacobi fields
are all globally defined on Mi. By assumption, the Jacobi field Φ0,−

E1,1
also

corresponds to a globally defined Jacobi field on M1, this is precisely the
meaning of the fact that E1,1 is a regular end. Hence, for each k = 0, . . . , n,
the space N (M1) contains an element which is equal to χ1,1 Φk,±

E1,1
on E1,1.

As a consequence, one can choose K(M1) in such a way that it does not
contain any χ1,1 Φk,±

E1,1
, for k = 0, . . . , n. Since elements of K(M1) are not

supported on the end E1,1, they can be extended to M̃m.

A similar analysis can be performed on M2, with the Jacobi fields defined
on the end E2,1. However, this time we have not assumed that the end E2,1

was a regular end. Hence, one can still choose K(M2) in such a way that it
does not contain any χ2,1 Φk,±

E2,1
, for k = 1, . . . , n and also does not contain

χ2,1 Φ0,+
E2,1

. But there might exist an element of K(M2) which is equal to
χ2,1 Φ0,−

E2,1
on E2,1. Therefore, all elements of K(M2) can be extended to

M̃m except possibly the elements which are collinear to χ2,1 Φ0,−
E2,1

on E2,1.
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We now explain how to extend the function χ2,1 Φ0,−
E2,1

to a function which
is globally defined on M̃m and is equal to a Jacobi field on M1(−1). This
construction again uses the fact that E1,1 is a regular end. We parameterize
C(msτ ) by (3.15). As already mentioned, Φ0,−

E2,1
is asymptotic to Φ0,−

τ . This
means that ∀ (s, θ) ∈ [−msτ ,m sτ ]× Sn−1,

Φ0,−
E2,1

(s, θ) = Φ0,−
τ (msτ − s) +OC2,α(eδ (m sτ−s)).

Similarly, Φ0,−
E1,1

is asymptotic to Φ0,−
τ . This means that

∀ (s, θ) ∈ [−msτ ,m sτ ]×Sn−1, Φ0,−
E1,1

(s, θ) = Φ0,−
τ (msτ+s)+OC2,α(eδ (m sτ+s)).

Now, there exists cm ∈ R such that

Φ0,−
τ (msτ − s)− Φ0,−

τ (msτ + s) = cm Φ0,+
τ (s)

since the function of the left hand side is a Jacobi field on Dτ which is
bounded and only depends on s. In addition, it is easy to see that

|cm| � cτ m,

where the constant cτ only depends on τ .

Now, on M1 the Jacobi fields Φ0,−
E1,1

and Φ0,+
E1,1

are globally defined. Ob-
serve that we also have

Φ0,+
E1,1

(s, θ) = Φ0,+
τ (s) +OC2,α(eδ (m sτ+s))

on [−msτ ,m sτ ]×Sn−1. This being understood, we use the cutoff function ξ
which has already been defined in (3.15) to define the function Φ̃0,−

E2,1
which

is equal to Φ0,−
E2,1

on E2,1 ∩M2(1), which is equal to Φ0,−
E1,1

+ cm Φ0,+
E1,1

on
M1(−1) and which interpolates smoothly between these definitions in C(1),
namely

Φ̃0,−
E2,1

:= ξ (Φ0,−
E1,1

+ cm Φ0,+
E1,1

) + (1− ξ) Φ0,−
E2,1

on C(1). Granted (3.15) and (3.17) one easily checks that

Lemma 3.6. — Let LM̃m
denote the Jacobi operator about M̃m. Then,

LM̃m
Φ̃0,−

E2,1
= OC0,α(C(1))(eδ m sτ )

on C(1).
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We now define K̃(M2) to be the space of functions of K(M2) which have
been extended on all M̃m either by 0 or by replacing Φ0,−

E2,1
by Φ̃0,−

E2,1
. We set

K(M̃m) := K(M1)⊕ K̃(M2).

We agree that the norm on K(M̃m) is the product norm on K(M1)×K̃(M2).

Granted the decomposition of M̃m given in (3.14), we define the weighted
spaces :

Definition 3.7. — Given δ ∈ R, k ∈ N and α ∈ (0, 1), we define
Dk,α

δ (M̃m) to be the subspace of functions u ∈ Ck,α
loc (M̃m) for which the

following norm

‖ u ‖Dk,α
δ

(M̃m) := ‖ u ‖Ck,α
δ

(M1(−1)) + ‖ u ‖Ck,α
δ

(M2(1))

+ e−δ m sτ ‖ u ‖Ck,α((−2,2)×Sn−1)

is finite. Here, Ck,α
δ (Mi(s)) is the restriction of functions of Ck,α

δ (Mi) to
Mi(s) and this space is endowed with the induced norm.

We can now state the

Proposition 3.8. — Assume that δ ∈ (−δ̃, 0) is fixed and E1,1 is a
regular end of M1. There exist m0 > 0 and c > 0 and, for all m � m0, one
can find an operator

Gm : D0,α
δ (M̃m) −→ D2,α

δ (M̃m)⊕K(M̃m),

such that w := Gm(f) solves LM̃m
w = f on M̃m. Furthermore,

‖ w ‖D2,α
δ

(M̃m)⊕K(M̃m)� c ‖ f ‖D0,α
δ

(M̃m) .

Proof. — Given f ∈ D0,α
δ (M̃m), we want to solve the equation

LM̃m
w = f

on M̃m. To this aim, we use the cutoff function ξ defined in (3.15) and we
start to solve

LM1 w1 = ξ f

on M1 and also
LM2 w2 = (1− ξ) f
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on M2. The existence of wi follows at once from (3.18) and we have the
estimate

‖ wi ‖C2,α
δ

(Mi)⊕K(Mi)
� c ‖ f ‖D0,α

δ
(M̃m), (3.19)

where the constant c > 0 does not depend on m. Observe that on E2,1 the
function w2 can be decomposed as

w2 := v2 + a2 Φ0,−
E2,1

, (3.20)

with v2 decays exponentially. We define on C(msτ ) a cutoff function χ1

which is identically equal to 1 for s � msτ − 2 and identically equal to 0 for
s � msτ − 1. We also define a cutoff function χ2 which is identically equal
to 1 for s � −msτ + 2 and identically equal to 0 for s � −msτ + 1. This
being understood, we define a function w as follows :

• w is equal to w2 on M2(msτ ),

• w is equal to w1 + a2 Φ̃0,−
E2,1

on M1(−msτ ),

• w := χ1 w1 + χ2 v2 + a2 Φ̃0,−
E2,1

, on C(msτ ).

To begin with observe that

‖w‖D2,α
δ

(M̃m)⊕K(M̃m) � c ‖f‖D0,α
δ

(M̃m)

for some constant which does not depend on m. This estimate follows at
once from (3.19) and (3.20). We now estimate

LM̃m
w − f.

Obviously, this quantity is equal to 0 on M1(1−msτ )∪M2(msτ−1). Hence,
it remains to evaluate it on C(msτ − 1).

Case 1 First assume that −msτ + 2 � s � −1, then

LM̃m
w − f = LM1 w − f = LM1 v2

since LM1w1 = f and LM1Φ̃
0,−
E2,1

= 0 in this set. Further observe that
LM2 v2 = 0 in this set, hence we conclude that

LM̃m
w − f = LM1 w − f = (LM1 − LM2) v2.

We use the fact that E1,2 and E2,1 are graphs over the same Delaunay
hypersurface Dτ , hence we can write

LM1 = Lτ + L1,
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where L1 is a second order partial differential operator whose coefficients,
computed at s, are bounded by a constant times e−γn+1(τ)(s+m sτ ) in C0,α((s−
1, s+ 1)× Sn−1). Similarly, we can write

LM2 = Lτ + L2,

where L2 is a second order partial differential operator whose coefficients,
computed at s, are bounded by a constant times eγn+1(τ)(s−m sτ ) in C0,α((s, s+
1)×Sn−1). Using this, it is easy to show that, there exists a constant c > 0
which does not depend on m such that

||LM̃m
w − f ||C0,α((s−1,s+1)×Sn−1) � c e−γn+1(τ)(s+m sτ ) e−δ(s−m sτ ) (3.21)

for all s ∈ [−msτ + 2,−2].

Case 2 Now, assume that −msτ + 1 � s � −msτ + 2. In this set, we
have to take into account the effect of the cutoff function χ2, in addition to
the estimate established in the previous case. This yields

||LM̃m
w − f ||C0,α((−m sτ+1,−m sτ+2)×Sn−1) � c e2 δ m sτ . (3.22)

Case 3 Finally, assume that s ∈ [−1, 0]. Then, we have to take into
account the effect of the cutoff function ξ, in addition to the estimate es-
tablished in the first case. This yields

||LM̃m
w − f ||C0,α((−1,0)×Sn−1) � c e−(γn+1(τ)−δ) m sτ . (3.23)

Case 4 The cases where s ∈ [0,m sτ − 1] can be treated similarly.

Collecting the previous estimates, we conclude that

||LM̃m
w − f ||D0,α

δ
(M̃m) � c (e−γn+1 m sτ + e2 δ m sτ ) ‖ f ‖D0,α

δ
(M̃m) .

So far, we have produced an operator G0, defined by G0(f) = w, which is
uniformly bounded as m tends to +∞ and which satisfies

||LM̃m
◦G0 − I|| � c (e−γn+1 m sτ + e2 δ m sτ δ).

The result then follows from a simple perturbation argument, provided m
is chosen large enough. �

3.5. The perturbation argument

In this subsection, we construct a constant mean curvature hypersurface
by perturbing M̃m.
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Proposition 3.9. — There exists m0 ∈ N such that, for all m � m0

the hypersurface M̃m can be perturbed into a constant mean curvature 1
hypersurface.

Proof. — As usual, we consider Mw a normal graph over M̃m for some
small function w ∈ D2,α

δ (M̃m) ⊕ K(M̃m). Now, on each end Ei,j of M̃m,
when j �= 1, we decompose

w = v + χi,j

n∑
k=0

ak,±Φk,±
Ei,j

and consider the normal graph for the function v over the hypersurface

expEi,j
(χi,j

n∑
k=0

ak,± Φk,±
Ei,j

).

Now, the equation we have to solve reads

H(M̃m) + LM̃m
w +Qm(w) = 1, (3.24)

where LM̃m
is the Jacobi operator about M̃m and Qm contains all the

nonlinear terms resulting from the Taylor expansion of the mean curvature
H(Mw). We fix −δ̃ < δ < 0. Using the result of Proposition 3.8, our problem
reduces to finding a fixed point for

w −→ Gm

(
1−H(M̃m)−Qm(w)

)
, (3.25)

in the space D2,α
δ (M̃m)⊕ K̃(M̃m). Using Proposition 3.8 and (3.17), we see

that
||Gm(1−H(M̃m))||D0,α

δ
(M̃m) � c e−(γn+1(τ)+δ) m sτ .

Now, we claim that

||Gm(Qm(w))||D0,α
δ

(M̃m) � cm2 e−m δ sτ ||w||2C2,α
δ

(M̃m)
. (3.26)

This follows at once from the fact that the operator Qm is quadratic in
w and from the fact that w can be decomposed as

w = v + Φ,

where v ∈ D2,α
δ (M̃m) and Φ ∈ K(M̃m). Now, because of the modifica-

tion of χ2,1 Φ0,−
E2,1

into χ2,1 Φ̃0,−
E2,1

, we see that on M1 and away from the
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ends E1,j , the function Φ is bounded, in C2,α norm, by a constant times
m ||w||D2,α

δ
(M̃m)⊕K(M̃m). Similarly, on each end E1,j , for j �= 1, the function

Φ is a linear combination of the Φk,±
E1,j

, the coefficients of which are bounded
by a constant times m ||w||D2,α

δ
(M̃m)⊕K(M̃m). Using these observations, we

get
||(1− χ2)w||C2,α(M1)⊕K(M1) � cm ||w||D2,α

δ
(M̃m)⊕K(M̃m)

from which we obtain easily the bound

||Gm(Qm(w))||C0,α
δ

(M1(−m sτ )) � cm2 ||w||2D2,α
δ

(M̃m)⊕K(M̃m)
.

On M2(msτ ) we simply have

||(1− χ1)w||C2,α(M2)⊕K(M2) � c ||w||D2,α
δ

(M̃m)⊕K(M̃m)

from which we obtain easily the bound

||Gm(Qm(w))||C0,α
δ

(M2(m sτ )) � c ||w||2D2,α
δ

(M̃m)⊕K(M̃m)
.

Next, we evaluate Qm(w) in C(msτ ). Again the key observation is that
the function Φ is bounded by a constant times m ||w||D2,α

δ
(M̃m)⊕K(M̃m) on

C(msτ ). Hence,

||w||C2,α((s,s+1)×Sn−1) � c

(
m+

(
cosh s

cosh(msτ )

)−δ
)

||w||D2,α
δ

(M̃m)⊕K(M̃m)

for each s ∈ [−msτ + 1,m sτ − 1]. And this implies easily that

e−δ m sτ ||(cosh s)δ Gm(Qm(w))||C0,α � cm2 e−δ m sτ ||w||2D2,α
δ

(M̃m)⊕K(M̃m)
,

on (−msτ ,m sτ )× Sn−1. The proof of (3.26) is therefore complete.

Finally, it is not hard to check that

‖Gm(Qm(w1)−Qm(w2))‖D2,α
δ

(M̃m)⊕K(M̃m) � 1
2
‖w1 −w2‖D2,α

δ
(M̃m)⊕K(M̃m).

(3.27)
provided m is chosen large enough. We leave the details to the reader.

The previous analysis shows that, if δ ∈ (−δ̃/2, 0), then, there exists
a constant c > 0 and m0 � 0 such that, for all m � m0, the mapping
defined in (3.25) is a contraction from the ball of radius c e−m(δ+γn+1) sτ
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in D2,α
δ (M̃m)⊕K(M̃m) into itself. In particular, this mapping has a unique

fixed point wm in this ball. As explained, the graph of the function wm is a
constant mean curvature 1 hypersurface which is close to M̃m. �

Remark 3.10. — Two n-Delaunay hypersurfaces with the same Delaunay
parameter will be a trivial condidate for the construction. But, in [6] we
construct many other constant mean curvature hypersurfaces which satisfy
the gluing hypotheses of Theorem 1.
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