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RÉSUMÉ. — Il est connu que l’espace des feuilletages holomorphes de codi-
mension 1 dont les singularités ont un fibré normal donné a la structure
d’une variété algébrique. Le but de cet article est de décrire ses com-
posantes irréductibles. Pour ceci, nous nous intéressons au problème de
l’existence d’un facteur intégral pour une 1-forme différentielle tordue sur
une variété projective. Nous ferons une analyse géométrique du feuilletage
de codimension 1 associé à cette forme. Le point essentiel de cet article
consiste en la compréhension du rôle joué par une condition de positivité
sur un objet associé au feuilletage.

ABSTRACT. — It is a known fact that the space of codimension one
holomorphic foliations with singularities with a given ‘normal bundle’ has
a natural structure of an algebraic variety. The aim of this paper is to
consider the problem of the description of its irreducible components. To
do this, we are interested in the problem of the existence of an integral
factor of a twisted integrable differential 1–form defined on a projective
manifold. We are going to do a geometrical analysis of the codimension
one foliation associated to this form. The essential point of this paper
consists in understanding the role played by a positive condition on some
object associated to the foliation.
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0. Introduction

The present paper is essentially a summary of the papers [5], [6], [7], [8],
[9], [12] and [10], which mainly study deformations of codimension one sin-
gular holomorphic foliations with a meromorphic first integral, represented
by logarithmic forms or foliations arising by actions of the affine group, and
the geometric properties of the Kupka singular set of a foliation. The main
point in this note, is to explain the role played by a positivity condition
of some object associated with the foliation, in order to get some stability
properties under deformations of the foliation, with these ideas, we are going
to give new proofs of some results of the papers cited above.

Let M be a complex manifold, let E → M be a holomorphic vector
bundle over M and let L be a holomorphic line bundle. Recall that the
vector space of holomorphic sections of the vector bundle E ⊗ L, is in one
to one correspondence with the space of meromorphic sections of E with a
pole along a hypersurface D ⊂M which is the zero locus of a holomorphic
section of the line bundle L.

A codimension one holomorphic foliation with singularities on a manifold
M , may be defined by a holomorphic section ω of T ∗M ⊗ L, where L is a
holomorphic line bundle, satisfying the integrability condition ω∧dω = 0 as
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Positivity, vanishing theorems and rigidity of codimension one holomorphic foliations

a section of
∧3
T ∗M⊗L⊗2. Two sections ω and ω1 define the same foliation

if there exists a nowhere vanishing holomorphic function ϕ on M , such that
ω = ϕ ·ω1, in this case, we say that the sections ω and ω1 are equivalent. We
denote by F(M,L), the set of equivalence classes of integrable, holomorphic
sections of T ∗M ⊗L, the cotangent bundle of M twisted by a holomorphic
line bundle L. If M is a compact complex manifold, it is a well known
fact, that F(M,L) is an algebraic variety, with singularities in general. The
first natural problem is the enumeration and description of the irreducible
components of the space F(M,L). We will give a partial solution to this
problem when the line bundle L is positive.

When trying to determine an irreducible component of F(M,L), one
can proceed in two steps :

1. Describe some irreducible subvariety A(Q, L) ⊂ F(M,L), where Q
denotes a discrete invariant, which is related to the main discrete
invariant of the foliation, c = c1(L) ∈ H2(M,Z) the Chern class of
the line bundle L

2. Study a neighborhood U ⊂ F(M,L) of a generic member F of the
family A(Q, L).

In some cases, one can show that all such foliations on the neighborhood
U ⊂ F(M,L), also belong to the family A(Q, L). In this case, the closure
A(Q, L) will be an irreducible component of the space F(M,L).

One of the simplest families of foliations are those which are defined by
a meromorphic closed 1–form. Theorem (2.5) gives us a normal form of such
families of foliations. One of the first problems is

Problem 0.1. — Under which conditions a foliation ω ∈ F(M,L) may
be represented by a meromorphic, closed one form?

The local, non–singular case is well understood: An integrating factor of
a holomorphic 1–form ω is a holomorphic function g, such that

Ω =
ω

g
is closed.

If the function g does not vanish, then

ω = g · df for some f ∈ O, (0.1)

and in such a case the function f is called a holomorphic first integral
of the 1–form ω. The leaves of the foliation are the level surfaces of the
function f = c.
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The classical Frobenius theorem states that a germ of a nowhere van-
ishing 1–form ω has a nowhere vanishing integrating factor if and only if it
satisfies the following integrability condition :

ω ∧ dω = 0⇐⇒ ω = g · df g ∈ O∗ and f ∈ O. (0.2)

B. Malgrange has generalized this result to the singular case [28]. He
showed that if the singular set Sω = {x |ω(x) = 0} of a germ of an integrable
holomorphic 1–form ω has codimension at least three, then ω has a nowhere
vanishing integrating factor, i. e. ω = g · df, g ∈ O∗.

Also in the local case, Cerveau and Mattei in [17] have obtained nu-
merous results relating to this problem, even when the singular set has
codimension two, and the integrating factor vanishes on a hypersurface.

The global case has been considered by Poincaré. Let ω be a polynomial
1–form in the complex projective plane P2:

Under which conditions has ω a rational first integral?

The following result is known: A foliation ω has a rational first integral
if and only if the closure of any leaf is an algebraic hypersurface. Therefore,
the above question is equivalent to :

Under which conditions the closure of any solution of the differential
equation ω = 0 is an algebraic hypersurface?

The Poincaré problem can be divided in two parts:

1. Under which conditions has ω an integrating factor?

2. If ω has an integrating factor, by integration along paths we get a
multi valuate function, then the question is when it is a rational
function.

We are going to consider the first problem. Our viewpoint will be the
following:

Some hypothesis on the foliation and positivity condition =⇒ Existence
of an integrating factor.

The notion of positivity as well as many of its consequences has been
recently generalized, and we believe that many of the results of this work,
can be proved in other cases.
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The paper is organized as follows:

We begin with the notion of positivity, and we will give generalizations
of three classical theorems: Lefschetz’s theorem on hyperplane sections,
Hartogs extension theorem and Zariski’s theorem on fundamental group
of quasi–projective manifolds. Those results will be used later.

In section 2 we define (2.1) codimension one holomorphic folia-
tions as an equivalence class of sections ω of the holomorphic vector bun-
dle T ∗M ⊗L, where L is a holomorphic line bundle. In this section, we will
also introduce the notions of families of foliations (2.3) and integrating
factors (2.4).

Section 3 is dedicated to the study of the Kupka singular set (defini-
tion 3.1), and we introduce the Zariski open set K(M,L), of those foliations
having a single compact, connected component of the Kupka singular set.

In section 4 we prove that holomorphic foliations arising from the fibers
of a generic rational map φ :M → P1, describe some irreducible components
of K(M,L). Furthermore, a generic element of this component is structurally
stable, and on the other hand, the Kupka component is precisely the set of
base points of the pencil.

In section (5) we describe some geometric properties of the Kupka set.
The main point in this section is the description of the irreducible compo-
nents of K(M,L).

In section (6) we describe other irreducible components of F(M,L): the
logarithmic foliations. Finally, in the last section (7) we consider foliations
on projective spaces and describe several irreducible components.

1. Positive Vector Bundles

In this section we will discuss the notion of positivity of holomorphic
vector bundles in complex manifolds and some of its consequences.

LetM be a compact, complex manifold. Set OM or simply O the sheaf of
holomorphic functions on M . Let E →M be a holomorphic vector bundle.
In what follows we are going to denote by O(E) the sheaf of holomorphic
sections of the vector bundle E. It is well known that O(E) is a locally free
sheaf of O–modules and conversely, any locally free sheaf S of O modules
overM corresponds to a holomorphic vector bundle : i. e. there exists a holo-
morphic vector bundle E →M such that S = O(E). In the cases E = TM
or E = T ∗M we are going to denote the sheaf of its holomorphic sections by
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ΘM and Ω1
M respectively. We will denote by Γ(E), the (finite dimensional)

complex vector space of holomorphic sections of the bundle E →M. Recall
that Γ(E) corresponds to the cohomology group H0

(
M,O(E)

)
.

Now, we are going to present three classical results in complex algebraic
geometry, these theorems will be generalized and we are going to use later.

1. Lefschetz’s Theorem of hyperplane sections: Let M ⊂ Pm be
smooth complex submanifold of dim(M) = n, and let X be a generic
hyperplane section X = Pm−1 ∩ M . Denote by  : X ↪→ M the
inclusion map. Then the natural map

Hq() : Hq(M,Q)→ Hq(X; Q)

induced by the inclusion, is an isomorphism for q < n−1 and injective
for q = n− 1

2. Hartog’s extension theorem: Let M be a Stein manifold of di-
mension m � 2 and K ⊂M be a compact subset such that Mm−K
is connected. Then every holomorphic function

f : (M −K)→ C

can be extended to M.

3. Zariski’s Theorem: Let C ⊂ P2 be a nodal curve, then the funda-
mental group of P2 − C is Abelian.

We will give some generalizations of each of these results. In order to do
this we are going to introduce the notion of positivity as in [23].

Definition 1.1. — Let M be a compact complex manifold, and let E →
M be a holomorphic vector bundle. We say that E is positive if there exists
a hermitian metric 〈 · , · 〉 in E whose curvature tensor Θ = (Θρ

σij) has
the property that the hermitian quadratic form

Θ(ζ, η) =
∑
ρ,σ,i,j

Θρ
σijζ

σζ
ρ
ηiηj

is positive definite in the variables ζ, η.

Recall that a divisorD on a projective manifoldM is called very ample,
if there exists an embedding in the projective space ı : M ↪→ PN such that
M ∩ PN−1 = D. A holomorphic line bundle L → M is very ample if
it is the line bundle associated with a very ample divisor (L = [D]); in
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other words, the holomorphic line bundle L induces an embedding into the
projective space given by

ıL : M ↪→ PN � PΓ(L).

x �−→ [σ0(x) : . . . : σN (x)],

where {σ0, . . . , σN} is a basis of the vector space Γ(L) � H0
(
M,O(L)

)
, in

particular, for each point p ∈ M the fiber of L at p is generated by the
sections.

Kodaira embedding Theorem states that if L → M is a positive line
bundle, there exists n0 ∈ N, such that for all n > n0, the holomorphic line
bundle L⊗n is very ample, see for instance [24, pag. 181].

Now, we can state in terms of line bundles the Lefschetz’s theorem as
follows: Let L→M be a positive line bundle, and let σ ∈ H0

(
M,O(L)

)
be

a holomorphic section whose zero set X ⊂ M is a smooth submanifold of
M. Then, the natural map

Hq(M,Q)→ Hq(X,Q)

induced by the inclusion is an isomorphism for q � n − 1 and injective for
q = n− 1.

Let L be a very ample line bundle and let σ be a holomorphic section of
L with zero set {σ = 0} = X. Consider the embedding ıL :M ↪→ PN . Then
X is a hyperplane section i.e. X = M ∩ PN−1. It is a well known fact that
a closed analytic subset (in this case M − X) of a Stein manifold (CN =
PN − PN−1), is a Stein manifold, in which case an open neighborhood U of
X is the complement of a compact subset of a Stein manifold. Furthermore,
if we put a Hermitian metric on L compatible with the complex structure,
then the function

log〈σ;σ〉 :M −X → R,

is plurisubharmonic, and this result generalizes as follows:

Let E →M be a rank r holomorphic vector bundle with a holomorphic
section σ. Assume that E is positive respect to the Hermitian metric 〈·, ·〉,
and the zero set X = {σ = 0} is a r–codimensional smooth submanifold of
M . Consider the C∞ function φ(z) = 〈σ(z);σ(z)〉. Then the function

ψ :M −X → R

z �−→ log φ(z),
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is an exhaustion function on M −X, that is,

M −X =
⋃
a∈R

ψ−1(a,∞) and ψ−1(−∞) = X,

moreover, the Levi form

L(ψ) =
(
∂2ψ

∂zi∂zj

)
has at least n − r + 1 positive eigenvalues, in particular, when the rank of
the vector bundle E is 1, this function has n positive eigenvalues, and the
function is plurisubharmonic, and hence the complement of X is a Stein
manifold. [23, pag. 205].

The calculation of the eigenvalues of the Levi form of the function ψ
implies, by a Morse theoretic argument, the generalization of Lefschetz’s
Theorem. On the other hand, since the function logφ(z) is an exhaustion
function, we have the generalization of Hartog’s Theorem, because, when
the rank of the vector bundle E is 1, we have seen that M −X is a Stein
manifold.

Now, Lefschetz’s and Hartogs Theorems may be generalized as follows:

Theorem 1.2. — Let E → M be a rank–k, positive vector bundle, and
let σ be a holomorphic section whose zero set X = {σ = 0} is a smooth,
codimension k submanifold. Then

• Lefschetz: The natural map induced by the inclusion

Hq(M,Q)→ Hq(X,Q)

is an isomorphism for q < n− k and injective for q = n− k.

• Hartogs: Let G be a locally free analytic sheaf, and let X ⊂ U be
an open, connected neighborhood of X, such that M − U is compact.
Then the map

Γ(M,G)→ Γ(U,G),

is surjective.

The proof of this theorem appears in [23].

Remark 1.3. — In the extension of the Hartogs theorem above, when the
vector bundle E has rank k > 1 the manifoldM−X is not a Stein manifold.
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A generalization of Zariski’s theorem is the following result [31, p. 314–
315]:

Theorem 1.4. — Let V be an algebraic manifold and let D ⊂ V be
a divisor with normal crossings. If any irreducible component Ci of D is
positive, then the kernel of the inclusion ı∗ : π1(V −D, p)→ π1(V, p) consists
of central elements.

Theorem (1.4) implies that, if V is a simply connected surface, the fun-
damental group of the complement of a normal crossing divisor with positive
irreducible components is abelian, in particular when M = P2 and D is a
nodal curve we have Zariski’s theorem.

2. The Space of Holomorphic Foliations

A codimension one holomorphic foliation F with singularities on a com-
plex manifold M , may be given by a family (ωα) of holomorphic non–
identically vanishing 1–forms defined in an open cover U := {Uα} of M ,
satisfying for any α the integrability condition ωα ∧ dωα = 0, and the co-
cycle condition ωα = λαβωβ , where {λαβ} are never vanishing holomorphic
functions in the open sets Uαβ := Uα ∩Uβ �= ∅ satisfying λαβ ·λβγ ·λγα = 1
when Uαβγ := Uα∩Uβ ∩Uγ �= ∅. Let (ω′

α) be another family of holomorphic
1–forms satisfying the integrability and the co–cycle condition ω′

α = λ′αβω
′
β ,

where λ′αβ ∈ O∗(Uα ∩ Uβ). The families (ωα) and (ω′
α) are equivalent if

there exists a family of holomorphic functions {ρα} ∈ O∗(Uα) such that
ωα = ρα · ω′

α. In this case, it is not difficult to see that the cocycles {λαβ}
and {λ′αβ} are cohomologous in H1(U,O∗). Thus, if L denotes the line bun-
dle represented by the cocycle {λαβ}, the families {ωα} and {ω′

α} define
holomorphic sections of the bundle T ∗M ⊗ L. We are going to denote by
Ω1(L) the sheaf of holomorphic sections of the bundle T ∗M ⊗ L.

Definition 2.1. — A codimension one holomorphic foliation with
singularities in a complex manifold M is an equivalence class of sections

ω ∈ H0
(
M,Ω1(L)

)
,

where L is a holomorphic line bundle and ω ∧ dω = 0.

Given a codimension one foliation F = Fω represented by an integrable
section ω ∈ H0

(
M,Ω1(L)

)
, we define the tangent sheaf of the foliation

as the subsheaf TF ⊂ ΘM of the germs of holomorphic vector fields that
vanishes the section ω, that is

TF := {X ∈ ΘM |ıXω = 0}, (2.1)
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The sheaf TF is a coherent subsheaf of Θ, but in general it is not locally
free. Foliations with locally free tangent sheaf are considered in [10], [14],
[18] and in chapter 7 in section (7.3). On the other hand, the subsheaf TF is
closed under the Lie bracket of holomorphic vector fields, and we have the
exact sequence

0 → TF → Θ→ Q→ 0 Q � Θ/TF (2.2)

where Q is a rank one coherent and not locally free sheaf.

The set of singularities Sω = {p ∈ M |ω(p) = 0} is an analytic subset
of M . In what follows, we are going to assume that the singular set of a
codimension one holomorphic foliation has codimension greater or equal
than two, and it corresponds to the set of points where the quotient sheaf
Q is not locally free. In fact, if JSω denotes the ideal sheaf of the singular
set Sω, we have

Q � O(L)⊗ JSω
. (2.3)

Now, in the complement of the singular set M − Sω, by Frobenius the-
orem, we get a codimension one holomorphic foliation in the usual sense.

The leaves of the foliation with singularities Fω are the leaves of the
foliation defined in M − Sω. If V ⊂M is a compact hypersurface invariant
by a foliation Fω, then V −V ∩Sω is a leaf of the codimension one foliation
defined in M − Sω. In general, we have that V ∩ Sω �= ∅. In any case by
abuse of language, we will say that V is a compact leaf of the foliation
Fω.

We will denote by F(M,L) the set of codimension one foliations, repre-
sented by an equivalence class [ω] of an integrable section ω ∈ H0

(
M,Ω1(L)

)
.

If M is compact and has complex dimension � 3, the set F(M,L) is an al-
gebraic subvariety of the projective space PH0(M,Ω1(L)) in general with sin-
gularities and with several irreducibles components [22, pag. 133]. It is also
defined by quadratic equations, A first natural problem is the following:

Problem 2.2. — Let M be a compact complex manifold with complex
dimension � 3 and let L be a holomorphic line bundle over M . Describe
and enumerate the irreducible components of the space F(M,L).

This problem remains open even when M is a projective space Pn. The
Picard group Pic(Pn) � Z and it is generated by the hyperplane bundle H,
with associated sheaf denoted by O(1). In what follows, let us denote by
F(n, ν) instead F(Pn,Hν), then it is known that :

• For n = 2 the set of foliations F(2, ν) is a Zariski open subset of the
projective space associated to the vector space H0

(
P2,Ω1(ν)

)
[20].
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• For n � 3

– F(n, ν) = ∅ for ν < 2.

– F(n, 2) is smooth and irreducible.

– For ν > 2 the set F(n, ν) has several irreducible components
that are described only for ν � 4 [16].

One of the objectives of this paper is to consider this problem when the
line bundle L is positive. In order to do this, we will need the following
notion.

Definition 2.3. — A holomorphic family {Ft}t∈T of codimension
one holomorphic foliations with singularities parameterized by a com-
plex analytic space T consists of :

• A holomorphic family of complex manifolds {Mt} given by a smooth
map π :M→ T between complex spaces with Mt = π−1(t).

• A holomorphic foliation F̃ on M such that its leaves are contained
on the t–fibers, and the restriction F̃ |Mt = Ft is a codimension one
holomorphic foliation (with singularities) on Mt.

Usually, we are going to considerM = T ×M π−→ T , where 0 ∈ T ⊂ CN ,
is an open set, and π(t, z) = t.

Let {Ft}t∈T be a family of foliations given as a foliation F̃ on M→ T .
The perturbed holonomy of a leaf L of the foliation F0 is the holonomy
of L as a leaf of foliation F̃ .

Let Σ be a transversal section to the foliation F0 at the point p ∈ L,
i. e. ΣpL. Now, let U ⊂ T a neighborhood of 0 ∈ T . The set U × Σ, is a
transversal section to the foliation F̃ at the point (p, 0). It is not difficult
to see, that the perturbed holonomy has the form :

Hδ(t, z) =
(
t, hδ(t, z)

)
: U × Σ −→ U × Σ, δ ∈ π1(L, p),

where the map hδ(z, 0) : (Σ, p) → (Σ, p), is the holonomy associated to the
loop δ ∈ π1(L, p), when we consider L as a leaf of the foliation F0.

A compact leaf V of the foliation F is stable for the family {Ft}t∈T if
for any tubular neighborhood π : V → V of V , there exists a neighborhood
N of 0 ∈ T such that for t ∈ N there exists a compact leaf Vt ⊂ V of Ft,
such that the map π|Vt

: Vt → V is a diffeomorphism.
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A necessary condition for the stability of a compact leaf V , is the ex-
istence of a fixed point for the perturbed holonomy, that is, let V = L,
then Hδ(t, y) =

(
t, hδ(t, y)

)
, and we must find an analytic function t �→ yt

satisfying:

y0 = 0 hδ(t, yt) = yt ∀ t and ∀δ ∈ π1(L).

The closure of leaf Lyt of the foliation Ft through the point yt, is diffeo-
morphic to V .

The other important notion that we need is the following :

Definition 2.4. — A holomorphic integrating factor of a foliation
Fω ∈ F(M,L) represented by a section ω ∈ H0(M,Ω1(L)) is a holomorphic
section ϕ ∈ H0

(
M,O(L)

)
such that the meromorphic 1–form

Ω =
ω

ϕ

is closed.

Let ω ∈ F(M,L) and ϕ ∈ H0(M,O(L)) be a holomorphic integrating
factor of the foliation represented by ω. Assume that the decomposition of
the divisor

D = {ϕ = 0} =
k∑
i=1

ri ·Di, Di ∈ Div(M) ri ∈ N.

Now, for all i = 1, . . . , k, let Li = [Di] be the holomorphic line bundle
associated with the divisor Di, and let ϕi ∈ H0

(
M,O(Li)

)
be a holomorphic

section of the line bundle Li such that {ϕi = 0} = Di. With this notation,
the line bundle L = Lr11 ⊗ · · · ⊗ Lrk

k , and the integrating factor ϕ may be
written as ϕ = c · ϕr11 · · ·ϕrk

k , for some c ∈ C∗. In [8] may be found the
following result [8].

Theorem 2.5. — Let M be a projective manifold with H1(M,C) = 0,
and let ϕ = ϕr11 · · ·ϕrk

k ri ∈ N be an integrating factor of ω ∈ F(M,L),
where ϕi are as above, then:

Ω =
k∑
i=1

λi
dϕi
ϕi

+ d

(
ψ

ϕr1−1
1 · · ·ϕrk−1

k

)
,

where λi ∈ C and ψ is a holomorphic section of the line bundle[
k∑
i=1

(ri − 1){ϕi = 0}
]
,
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therefore

ω = ϕr11 · · ·ϕrk

k

[
k∑
i=1

λi
dϕi
ϕi

+ d

(
ψ

ϕr1−1
1 · · ·ϕrk−1

k

)]
.

The residue Theorem implies the relation:

k∑
i=1

λi · [{ϕi = 0}] =
k∑
i=1

λi · c1(Li) = 0 ∈ H2(M,C),

where [X] denotes the fundamental class of the submanifold X ⊂ M, and
c1(L) ∈ H2(M,Z) denotes the first Chern class of a line bundle L.

We say that an integrating factor is reduced when for all i = 1, . . . , k,
the numbers ri = 1, and in this case, Theorem 2.5 shows that

ω = ϕ1 · · ·ϕk

(
k∑
i=1

λi
dϕi
ϕi

)
,

and the foliation is represented by a closed logarithmic 1–form, in this case,
the foliation is called logarithmic.

Another important case for us is when the integrating factor has the
form ϕ = ϕp+1

2 p ∈ N, and {ϕ2 = 0} is an irreducible positive divisor. In
this case, the foliation is represented by a section with the expression

ω = ϕp+1
2 · d

(
ϕ1

ϕp2

)
= ϕ2dϕ1 − pϕ1dϕ2,

and the foliation has the meromorphic first integral ϕ = ϕ1/ϕ
p
2 :M −→ P1.

The existence of two linearly independent integrating factors ϕ1 and ϕ2,
implies that the foliation has a meromorphic first integral, namely, the
leaves of the foliation are the level hypersurfaces of the rational map

ϕ1

ϕ2
:M − {ϕ1 = 0} ∩ {ϕ2 = 0} → P1.

In fact an easy calculation shows that if ω is a section which defines the
foliation, then

ω ∧ (ϕ1 dϕ2 − ϕ2 dϕ1) = 0.

Let ϕ ∈ H0
(
M,O(L)

)
be an integrating factor of the foliation repre-

sented by ω ∈ F(M,L). Suppose that in an open covering {Uα} of M
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such that the sections ω and ϕ are locally defined by ωα ∈ Ω1(Uα) and
ϕα ∈ O(Uα), then

dωα = θα ∧ ωα where θα =
dϕα
ϕα

.

The meromorphic 1–forms {θα} are closed and have a simple pole along
an invariant divisor of the foliation. Moreover, they satisfy the relation

θβ − θα =
dλαβ
λαβ

, in Uα ∩ Uβ

hence, they define a flat connection of the line bundle L|M−{ϕ=0}.

Also observe that, if a foliation ω has a holomorphic integrating factor
ϕ = ϕr11 · · ·ϕrk

k , the hypersurfaces {ϕi = 0}ki=1 are compact leaves of the
foliation, and any other leaf has trivial holonomy, furthermore, depending
on the residues, and the periods of the closed holomorphic 1–form η, there
will be no more compact leaves.

Finally, we suppose that when H1(M,C) �= 0, under suitable positivity
conditions on the divisors {ϕi = 0}, the meromorphic 1–form Ω has the
expression:

Ω =
k∑
i=1

λi
dϕi
ϕi

+ d

(
ψ

ϕr1−1
1 · · ·ϕrk−1

k

)
+ η,

where η is a closed, holomorphic 1–form on M .

3. Kupka Singularities

In this section, we are going to consider the Kupka set of a foliation. It
is a class of singularities of codimension one holomorphic foliations, which
have stability properties under deformations, therefore, they appear on an
open subset of F(M,L).

Definition 3.1. — Let ω ∈ F(M,L). The Kupka singular set of the
foliation ω consists of the points:

Kω = {p ∈M |ω(p) = 0; dω(p) �= 0 }.

As the reader may check, the Kupka set is well defined, it does not
depend on the section ω which represents the foliation. The main properties
of the Kupka singular set are summarized in the following result, the proof
of which may be found in [29].
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Theorem 3.2. — LetM be a complex manifold of dimension n � 3, and
let ω be an integrable 1–form on M . The Kupka set Kω is a codimension
two smooth submanifold of M , and moreover :

1. The Kupka set a the local product structure: for every connected
component K ⊂ Kω, there exists a holomorphic 1–form

η = A(x, y) dx+B(x, y) dy

called the transversal type at K, defined on a neighborhood V of
0 ∈ C2 and vanishing only at 0, an open cover {Uα} of a neighborhood
of K in M and a family of submersions ϕα =: Uα → C2, such that:

ϕ−1
α (0) = K ∩ Uα, and : ωα = ϕ∗

αη

where ωα defines F in Uα.

2. Kω is persistent under variation of ω; namely, for p ∈ Kω with
transversal type η as above, and for any foliation ω′ sufficiently close
to ω, there is a holomorphic 1-form η′, close to η and defined on a
neighborhood of 0 ∈ C2 and a submersion ϕ′ close to ϕ, such that ω′

is defined by (ϕ′)∗η′ on a neighborhood of p.

We are going to do the proof of the first part of the Theorem (3.2) in
the three dimensional case.

Since the problem is local, we are going to assume that M ⊂ C3 is an
open neighborhood of p = 0 ∈ C3. Let Z be a holomorphic vector field
defined by the equation

ıZdz1 ∧ dz2 ∧ dz3 = dω. (3.4)

The formula for the Lie derivative LXω = ıXdω + d(ıXω) = 0 and the
integrability condition on ω ∧ dω = 0 implies the equations

ıZω = 0 and LZω = 0 (3.5)

Now, since Z(0) �= 0, there exits a holomorphic change of coordinates
ψ(t, x, y) = (z1, z2, z3) defined on a neighborhood of 0 ∈ C3 such that

ψ∗

(
∂

∂t

)
= Z

(
ψ(t, x, y)

)
(3.6)

and then, the equations (3.5) and (3.6) implies that

ψ∗ω(t, x, y) = A(x, y)dx+B(x, y)dy = η.
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Now ϕ(t, x, y) = (x, y) is the desired submersion, the Kupka set is the
set of the points (t, 0, 0) and corresponds to the orbit through p = 0 of the
local one parameter group defined by the vector field Z. �

The germ at 0 ∈ C2 of η is well defined up to biholomorphism and
multiplication by non–vanishing holomorphic functions. We will call it the
transversal type of the foliation at K. Let X be the dual vector field of η.
Since dω �= 0, we have that DivX(0) �= 0, thus the linear part D = DX(0),
which is well defined up to linear conjugation and multiplication by scalars,
has at least one non–zero eigenvalue. We will say that D is the linear type
of K. After normalizing, we may assume that the eigenvalues are 1 and µ.
We will distinguish three possible types of Kupka type singularities:

• Saddle–node : µ = 0. In this case, the transversal type has the normal
form :

η(x, y) =
(
x(1 + λyp) + yR(x, y)

)
dy − yp+1 dx,

where λ ∈ C p ∈ N and R ∈ O.

• Semi-simple: if µ �= 0 and D is semi-simple.

• Non–semisimple : when µ = 1 and the matrix D is not semisimple.
In this case, the transversal type is in a suitable coordinate system
equal to

η(x, y) = (x+ y) dx− x dy.

Given a point p of the Kupka set, as a consequence of the local product
structure, we have the following result concerning with the tangent sheaf of
the foliation at p

Theorem 3.3. — Let ω ∈ F(M,L) and let p ∈ Kω. Then the tangent
sheaf is locally free at p.

Proof. — In fact, let be p ∈ Kω, and let

ϕ : U → C2 and η = a(x, y) dx+ b(x, y) dy,

be as in theorem (3.2). The tangent sheaf of the foliation, on a coordinate
neighborhood U of p is generated by

TFω
(U) =

{
X(x, y) = b(x, y)

∂

∂x
− a(x, y) ∂

∂y
,
∂

∂z3
, . . . ,

∂

∂zn

}
. �
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Now, consider a compact connected component of the Kupka set. The
topological properties of the embedding  : K ↪→M, which can be measured
in terms of the Chern classes of the normal bundle νK(M), and the linear
transversal type are strongly related.

Let K be a compact connected component of the Kupka singular set of
the foliation represented by the section ω. If the linear type of the component
K has eigenvalues 1 and µ �= 1, then it is shown in [21] that the normal
bundle νK(M) splits in a direct sum of holomorphic line bundles L1 and Lµ,
corresponding to the eigenvectors of the linear transversal type. Moreover,
the Chern classes of these line bundles satisfy the relation

µ · c1(L1)− c1(Lµ) = 0 ∈ H2(K,C).

This relation implies that, if the first Chern class of the normal bundle
does not vanish, then the eigenvalue µ must be a rational number.

When µ = 1, there exists the following exact sequence of holomorphic
line bundles

0→ L1 → νK → L1 → 0,

which are classified by the group H1
(
K,O(L1 ⊗ L−1

1 )
)
� H1(K,O).

Recall that a linear vector field on D with eigenvalues 1 and µ belongs to
the Poincaré Domain if µ is not a negative real number. In this case, the
Poincaré–Dulac’s theorem, shows that a holomorphic vector field X with
linear part D, is analytically linearizable when µ /∈ {2, 3, . . . , 1/2, 1/3, . . .},
and in case µ ∈ N, the holomorphic normal form is

X(x, y) = (x+ ayµ)
∂

∂x
+ µ · y ∂

∂y
a ∈ C.

When the Linear type of a compact connected component of the Kupka
set belongs to the Poincaré Domain, it is shown in [21] the following result.

Theorem 3.4. — Let K be a compact connected component of Kω such
that the first Chern class of the normal bundle of K in M is non–zero
and has linear type in the Poincaré domain. Then the transversal type is
linearizable and semisimple with eigenvalues 1, µ ∈ Q. Moreover, for any
deformation, the transversal type is constant through the deformation.

We say that a foliation ω has a Kupka component when Kω contains
a compact, connected component K. We denote by K(M,L) ⊂ F(M,L),
the Zariski open set of those foliations having a single Kupka component,
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and by K(M,L, η) ⊂ K(M,L), the set of foliations whose Kupka component
has transversal type η.

Problem 3.5. — Determine the decomposition into irreducible compo-
nents of the sets K(M,L) and K(M,L, η).

The next two sections are devoted to give some partial solutions on the
above problem.

4. Rational Maps

Let L −→M be a holomorphic line bundle on the complex manifold M .
Given a (k+ 1)–dimensional subspace V ⊂ Γ(L) generated by holomorphic
sections {ϕi}ki=0, we may define a meromorphic map


V

: M −→ Pk � P(V ).
x �−→ [ϕ0(x) : . . . : ϕk(x)],

observe that the map is not well defined on the set of the base points of


V
, the set defined by

{ϕ1 = 0} ∩ · · · ∩ {ϕk = 0} = {x ∈M |ϕ(x) = 0 for all ϕ ∈ V }.

In particular, when the subspace V has dimension two, we obtain a
meromorphic map to P1 given by x �→ ϕ(x) := [ϕ1(x) : ϕ2(x)].

Given a map ϕ = [ϕ1 : ϕ2], we are able to define the holomorphic section

ω = ϕ1 dϕ2 − ϕ2 dϕ1 ∈ H0
(
M,Ω1(L⊗2)

)
,

which is integrable, but in general, it may not define a codimension one
foliation, this is because its singular locus could be of codimension one.
This case holds for example, if one of the sections {ϕi}i=1,2 is a power. To
solve this problem, we proceed as follows.

Let L1 and L2 be holomorphic line bundles on M such that Lp1 = Lq2,
where p and q are relatively prime positive integers. Given ϕ1 and ϕ2 holo-
morphic sections of the line bundles L1 and L2 respectively, the holomorphic
section:

ω = pϕ1 dϕ2 − qϕ2 dϕ1 ∈ Γ(M,T ∗M ⊗ L1 ⊗ L2),

has the integrating factor ϕ1 · ϕ2, and thus, it is integrable. Moreover the
leaves of the foliation represented by ω, are the fibers of the meromorphic
map ϕ = ϕp1/ϕ

q
2. In what follows, we will say that the map ϕ is a mero-

morphic first integral of the foliation represented by ω.

Through this section, we will assume the following generic conditions:
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1. The holomorphic line bundles L1 and L2 are positive.

2. The hypersurfaces {ϕ1 = 0} and {ϕ2 = 0} are irreducible, reduced,
smooth, and meet transversely along a codimension two submanifold
K.

3. The subvarieties defined by λϕp1 − µϕ
q
2 = 0 with [λ : µ] ∈ P1, are

smooth onM−K, except for a finite set of points {[λi : µi]}{i=1,...,k},
where they have just a non–degenerate critical point.

A meromorphic map satisfying conditions (1) (2) and (3) is called a Lef-
schetz Pencil, if p = q = 1, and a branched Lefschetz pencil otherwise.

Observe that the second generic condition, implies that the Kupka set
of the foliation is precisely the set where the rational map ϕ is not defined,
i. e., the Kupka set consists of base points of the map ϕ. Therefore, the
Kupka set is the intersection of two positive divisors

Kω = {ϕ1 = 0} ∩ {ϕ2 = 0},

and the foliation ω ∈ K(M,L).

Also observe that the normal bundle of the Kupka set has non–vanishing
first Chern class, since

νK = [{ϕ1 = 0}]|K ⊕ [{ϕ2 = 0}]|K ,

and by hypothesis both divisors are positive.

The transversal type is given by the linear 1–form η = px dy−qy dx, that
belongs to the Poincaré domain. Theorem (3.4) implies that the transversal
η type is fixed under deformations of the foliation.

Now, Lefschetz’s theorem implies that the first cohomology group with
a complex coefficients of a generic leaf of the foliation represented by ω, is
isomorphic to the first cohomology group of the ambient space M . On the
other hand, the topological behavior of the fibers of a generic rational map
looks like a Seifert fibration. Thus, if H1(M,C) = 0, the generic leaf has
a vanishing first cohomology group and the foliation may be stable, just as
in the case of foliations without singularities [27], [19].

Let ω = pϕ2 dϕ1− qϕ1 dϕ2 be a section satisfying only the first and sec-
ond generic conditions. The leaves {ϕi = 0}i=1,2 are the only ones without
(a priori) trivial holonomy, because ϕ1 · ϕ2 is an integrating factor. Let γiK
be the generator of the kernel of ı∗ : π1({ϕi = 0} − K) → π1({ϕi = 0}),
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where K = {ϕ1 = 0} ∩ {ϕ2 = 0}, Now, by Theorem (1.4), this element is
central in π1({ϕi = 0} −K; ∗). Moreover, the holonomy map is given by:

hγ1
K

(y) = exp
(

2πi
q

p

)
· y

hγ2
K

(y) = exp
(

2πi
p

q

)
· y.

Thus, if p/q /∈ N or q/p /∈ N, at least one compact leaf has finite and non–
trivial (linear) holonomy, and since γiK is central in π1({ϕi = 0}−K; ∗), the
leaves without trivial linear holonomy are stable under deformations, that
means, the branching locus of the foliation must be stable under deforma-
tions of the foliation. This fact is proved in [7] and [8].

The following results describe some irreducible components of K(M,L),
when the line bundle L is positive.

Theorem 4.1. — Let M be a projective manifold of complex dimension
� 3 and H1(M,C) = 0. Let F be a foliation arising from the fibers of
a Lefschetz or a Branched Lefschetz Pencil. Then any deformation of a
foliation F , has a meromorphic first integral.

Proof. — (Idea) The Kupka set of the foliation F , are the base points
of the map. Moreover, the transversal type is fixed under the deformations
[21]. Now, we have two cases.

In the branched case, we first prove that the branching locus is stable,
the main steps of the proof are the following (see [8] for details).

1. One of the leaves {ϕi = 0} i = 1, 2 is stable.

2. The existence of such a compact leaf implies the existence of an in-
tegrating factor, which can be calculated explicitly.

The first point comes from the discusion above and the conclusion follows
now from theorem (2.5).

To prove the unbranched case, we proceed as follows [21]: The transversal
type of the Kupka set is x dy − y dx, and it remains constant under defor-
mations. Now, let {Ft}, be a family of foliations, and the foliation F0 = F ,
arise from the fibers of a Lefschetz Pencil.

It is possible to obtain a desingularization of the family, after a blowing–
up along the Kupka set, and then we obtain a family of foliations which are
fibrations over a Zariski open subset of the projective line P1 such that
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its fibers have vanishing H1(M,C) = 0. As a consequence, the strict trans-
formed of the foliations Ft are fibrations. After a blowing–down, we see that
the foliations Ft have a meromorphic first integral. �

Another proof on the unbranched case using infinitesimal methods, may
be found in [29].

Corollary 4.2. — Let M be a projective manifold of complex dimen-
sion � 3 and H1(M,C) = 0. Then, there exist irreducible components of
F(M,L) such that a generic element has a meromorphic first integral and
its generic foliation is structurally stable.

These irreducible components, may be parameterized as follows. For the
branched case, consider the map:

Φ : PΓ(L1) × PΓ(L2) → F(M,L), L = L1 ⊗ L2

( [ϕ1], [ϕ2] ) �→ pϕ1 dϕ2 − qϕ2 dϕ1,

where Γ(Li) denotes the vector space of holomorphic sections of the line
bundle Li.

For the unbranched case, let L = L1⊗L1. Now, we consider G(2,Γ(L1))
the Grassmanian manifold of two planes in the vector space Γ(L1), and let
〈ϕ1, ϕ2〉 be the two plane generated by the sections ϕ1 and ϕ2. The map :

G(2,Γ(L1)) −→ F(M,L)
〈ϕ1, ϕ2〉 �−→ ϕ1 dϕ2 − ϕ2 dϕ1,

gives a parameterization of an irreducible component. Moreover, the generic
element is a Lefschetz Pencil [21].

Remark 4.3. — Theorem (4.1) and its Corollary (4.2) are not true with-
out the hypothesis H1(M,C) = 0.

In fact, if H1(M,C) �= 0, we can find a non–zero holomorphic closed
1–form θ on M and consider the one parameter family of foliations

ωt := pϕ1 dϕ2 − qϕ2 dϕ1 + t · ϕ1ϕ2 · θ ∈ H0
(
M,Ω1(L1 ⊗ L2)

)
, t ∈ C.

The foliation represented by ωt has an integrating factor ϕ1 · ϕ2, but it
has a meromorphic first integral if and only if t = 0.
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When we study the deformations of an unbranched rational function,
we are able to make the following construction involving the fundamental
group of the manifold M , in order to get deformations of the holonomy of
the foliation.

Let L1 be a very ample line bundle. Consider the plane generated in the
vector space H0

(
M,O(L1))

)
by two linearly independent sections 〈ϕ1, ϕ2〉.

Such sections define a meromorphic map ϕ := ϕ1/ϕ2 that we assume to be
a Lefschetz Pencil. Observe that σ = (ϕ1, ϕ2) defines a holomorphic section
of the rank two vector bundle E = L1⊕L1, and its zero locus is the Kupka
set of the foliation ω = ϕ1 dϕ2 − ϕ2 dϕ1.

Let Hom
(
π1(M),PSL2(C)

)
be the analytic set of representations of the

fundamental group π1(M, ∗) of M to PSL2(C). We are going to denote by
e : π1(M) → PSL2(C) the trivial representation e(γ) = id ∈ PSL2(C)
for each γ ∈ π1(M, ∗). Finally we consider the holomorphic line bundle
L = L1 ⊗ L1 = det(E).

Now, let p : M̃ → M be the universal covering space of M . For any
representation ρ ∈ U ⊂ Hom

(
π1(M),PSL2(C)

)
, where U is a neighborhood

of the trivial representation, consider P1 ⊂ Pρ → M, the holomorphic P1

flat bundle overM defined by the representation ρ ∈ U , that is, the quotient
space

P1 × M̃ → P1 × M̃/ � (z,m) �
(
ρ(γ)[z], γ−1 ·m

)
(4.1)

These flat bundles are a deformation of the trivial P1 bundle over M ,
and it is the projectivization of the holomorphic vector bundle E = L1⊕L1.

In this way, we have constructed a family of P1 flat bundles parame-
terized by the neighborhood U ⊂ Hom

(
π1(M),PSL2(C)

)
. This family is a

deformation of the bundle P(L1⊕L1) � P1×M , that is, we have constructed
a P1 bundle P → U ×M with P|{e}×M = P(L1 ⊕ L1). Then there exists
a family of holomorphic vector bundles E → U ×M such that P(E) = P.
Moreover, we are able to choose E such that det(E) defines a trivial defor-
mation of the bundle det(E) = L. With this additional assumption, the
holomorphic vector bundle E is uniquely determined (see [4, page 121]).

Now, consider the family of holomorphic vector bundles constructed
above, and satisfying the condition of det(E) = L1 ⊗ L1 = L. Since by
hypotheses, the holomorphic line bundle L1 is very ample, Kodaira van-
ishing theorem implies that, Hi

(
M,O(L1)

)
= 0 for all i > 0, this implies

that the same holds for the vector bundle Ee = L1 ⊕ L1, in particular
H1

(
M,O(Ee)

)
= 0, then, for the analytic family of holomorphic vector

bundles Eρ parameterized by an analytic set U ⊂ Hom
(
π1(M),PSL2(C)

)
,
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any holomorphic section σ of E0 may be extended to a holomorphic section
σρ of Eρ, that is, there exists a holomorphic section σ̃ of the vector bundle
E such that σ̃(e, ·) = (ϕ1, ϕ2).

Consider now the section σρ = σ̃(ρ, ·) of the vector bundle Eρ for
ρ ∈ U , and consider it as a meromorphic section of its projectivization
the P1 bundle Pρ. The section [σρ] has its base points along a codimension
two smooth submanifold Kρ = {σρ = 0}.

Finally, let Hρ be the horizontal foliation on the P1 bundle Pρ, then we
get a codimension one foliation on M by Fρ := [σρ]∗(Hρ), this foliation has
a Kupka component of radial transversal type along the submanifold Kρ
with radial transversal type, and moreover, each foliation belongs to the set
K(M,L, x dy − y dx).

Observe that, if we consider the trivial representation e, the foliation
σ∗ϕ,e(He) is the foliation defined by the fibers of the map ϕ. The important
point is that this construction gives all deformations of a Lefschetz Pencil
as a foliation, and any representation close to the trivial representation e
may be realized as the deformation of the holonomy of a Lefschetz Pencil.
In other words, we have shown the following result :

Theorem 4.4. — Let L1 be a very ample holomorphic line bundle over
M with hi

(
M,O(L1)

)
= 0 for all i > 0 and let F ∈ F(M,L) L = L1⊗L1

be a holomorphic foliation arising by the fibers of a Lefshetz Pencil then any
representation ρ : π1(M, ∗) → PSL2(C) sufficiently close to the identity
may be realized as the deformation of the holonomy of the foliation F .

We observe, that the family of projective flat bundles with the mero-
morphic section (P, [σρ]) described in the proof of the theorem (4.4) above,
defines the developing map of the family of transversely projective foliations.

Question 4.5. — Assume that H1(M,C) = 0. Does any irreducible com-
ponent of the algebraic set K(M,L) for L positive, consists of foliations with
a meromorphic first integral?.

This question will be considered in the next section.

5. Geometric Properties of the Kupka Set

In this section, we discuss some ideas concerning the irreducible compo-
nents of the set K(M,L). We will assume that the line bundle L is positive
or very ample and M is embedded in the projective space PΓ(L).
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Let ω ∈ K(M,L) with compact and connected Kupka set Kω = K. The
Kupka set K has the following important geometric property: It is sub-
canonically embedded, i.e, the canonical bundle of a Kupka component
K can be extended to a globally defined holomorphic line bundle [12].

In fact, an easy calculation involving the local product structure (The-
orem (3.2) part (1)), and the exact sequence

0 → TK → TM |K → νK(M)→ 0, (5.1)

gives the adjunction formula for the Kupka singular set [12]

Ωn−2
K = ΩnM ⊗ L|K , and ∧2 νK(M) = L|K (5.2)

where Ωn−2
K and ΩnM denote the canonical bundles of the Kupka set K and

M respectively.

The formula above implies that when the line bundle L is positive, the
first Chern class of the normal bundle νK does not vanish.

Let  : K ↪→ M be the inclusion map, then c1(νK) = ∗(c1(L)) ∈
H2(K,Z), since the line bundle L is positive, it has a non–zero first Chern
class and the same is true for the restriction to K.

Hence, by Theorem (3.4), the linear transversal type is equivalent to the
1–form η = px dy−qy dx, where p, q are relatively prime integers. Moreover,
by a Serre’s construction ([32], or [12, appendix]), the normal bundle of the
Kupka set can be extended to a rank–2 holomorphic vector bundle E →M,
and K can be viewed as the zero locus of a global holomorphic section σ
of E. Many properties of K are strictly related to the properties of E. The
section σ defines the exact sequence :

0 → OM ·σ−→ E → JK ⊗ L→ 0, (5.3)

which gives the Koszul resolution of the sheaf of ideals JK of the Kupka
set. The total Chern class of the vector bundle E is given by

c(E) = 1 + c1(L) + [K] ∈ H∗(M,C), (5.4)

where [K] denotes the fundamental class of K in H4(M,Z).

The following result is a generalization of the Cerveau–Lins theorem [15].

Theorem 5.1. — Let ω ∈ K(M,L) be a foliation with L a positive line
bundle. If the rank–2 vector bundle E associated with the Kupka set is pos-
itive then:
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1. If H1(M,C) = 0, the foliation has a meromorphic first integral.

2. If the transversal type is not the radial vector field, then the folia-
tion has at least one compact leaf, and has an affine transversal
structure.

3. If the transversal type is the radial vector field, then the foliation has
a transversal projective structure.

The main point in the proof of this theorem, lies in the fact that in the
complement M − K, we have the Hartog’s theorem 1.2, the argument of
proof may be found in [9].

In [15], Cerveau and Lins use the hypothesis that the Kupka set is a
complete intersection. When the transversal type is different to the radial
vector field, they use the fact that the complement of a codimension two
complete intersection is n−2+1 plurisubharmonic, so the hypothesis of the
second part of the Theorem (1.2) is satisfied.

Question 5.2. — Let ω ∈ K(M,L) where the line bundle L is positive.
Is the vector bundle E associated with the Kupka component positive?.

The main result towards an affirmative answer to this question is the
following Theorem [12]:

Theorem 5.3. — Let ω ∈ K(M,L), with L a very ample line bundle. If
the linear part of the transversal type of the Kupka component is given by
the form ηpq = px dy − qy dy, then the total Chern class of E is :

c(E) =
(

1 +
p

p+ q
c1(L)

)
∧

(
1 +

q

p+ q
c1(L)

)
∈ H∗(M,C).

Moreover the linear transversal type ηpq belongs to the Poincaré Domain
and the transversal type is linearizable.

Proof. — We have seen that the linear transversal type is ηpq for some
relatively prime integers p, q.

The second Chern class c2(E) = [K] of the vector bundle associated
with the Kupka set, is computed with the Baum–Bott formula [1]. Since
the linear transversal type is ηpq we have

(p+ q)2

pq
[K] = c1(L)2,
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and then

c2(E) = [K] =
pc1(L)
p+ q

∧ qc1(L)
p+ q

,

and we get the desired formula.

We are going to prove that the transversal type belongs to the Poincaré
Domain. Consider the embedding of  : M ↪→ P

(
H0(M,O(L))

)
; the degree

of the Kupka set, which is a positive integer, is given by:(
1

2πi

)n ∫
M

[K] ∧ c1(L)n−2 =
(

1
2πi

)n ∫
M

p · q
(p+ q)2

c1(L)n

=
p · q

(p+ q)2
· vol(M),

hence, p · q > 0, the linear transversal type belongs to the Poincaré domain
and by theorem (3.4) the transversal type is linearizable. �

As a consequence, whenever L is a very ample holomorphic line bundle,
we obtain a decomposition

K(M,L) =
⋃

(p,q)

K(M,L, ηpq) (5.5)

where p and q are positive integers such that the cohomology classes

p · c1(L))
p+ q

q · c1(L))
p+ q

∈ H2(M,Z)

If the transversal type is different to the radial vector field, Lübke in-
equality [26] implies that the rank two vector bundle E, associated to the
Kupka set, can not be stable or semistable with respect to the Kähler form
c1(L)), which is given by the embedding induced by the line bundle L.

On the other hand, if the transversal type is the radial vector field, the
total Chern class of the bundle E is given by

c(E) =
(

1 +
c1(L)

2

)2

∈ H∗(M,C),

which is compatible with the existence of a projectively flat structure
on the vector bundle E.

If the vector bundle E is projectively flat, then the P1 bundle P(E) is
flat, and it is defined by a representation ρ : π1(M) → PSL(2,C). In this
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case the foliation is the pull–back by the meromorphic section [σ] of the
horizontal foliation H of the flat bundle P(E). The section [σ] has its base
points in the Kupka set, and the foliation has a projective transversal
structure just as in Theorem (4.4).

In the last section, we will state some consequences of Theorem (5.3) for
foliations in projective spaces.

6. Logarithmic Foliations

In this section, we are going to describe other irreducible components of the
set F(M,L) for some positive line bundle L overM . We will assume through
this section that M has complex dimension n � 3 and H1(M,C) = 0.

Recall [24, page 449] that a meromorphic 1–form Ω over M is called
logarithmic, if for any local defining equation ϕ of its polar divisor Ω∞,
the forms ϕ · Ω and ϕ · dΩ are holomorphic.

Now, let Ω be a closed logarithmic 1–form with polar divisor Ω∞. Given
a section ϕ ∈ H0

(
M,O([Ω∞])

)
, whose zero set is Ω∞, by theorem (2.5), the

twisted 1–form ω = ϕ ·Ω is an integrable section of the bundle T ∗M⊗ [Ω∞].
Now, let

Ω∞ =
k∑
i=1

Di ∈ Div(M)

be the decomposition in irreducible components of the polar divisor Ω∞,
then

Ω =
k∑
i=1

λi
dϕi
ϕi
, λi =

1
2πi

∫
γi

Ω,

where ϕi ∈ H0
(
M,O([Di])

)
, is a holomorphic sections that vanishes on

the divisor Di, and γi denotes the generator of the kernel of the inclusion
ı∗ : π1(M −Di)→ π1(M). Moreover, by the residue theorem, the following
relation holds :

k∑
i=1

λi · c1([Di]) = 0 ∈ H2(M ; Z).

The singular set of the integrable 1–form

ω = ϕ1 · · ·ϕk
k∑
i=1

λi
dϕi
ϕi
,
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has codimension � 2 whenever the complex numbers λi �= 0 for all i =
1, . . . , k .

From now on we will assume that k � 3. We are going to suppose that
the following generic conditions are verified :

• The line bundles Li := [Di] i = 1, . . . , k are ample.

• The hypersurfaces {ϕi = 0}k1=1 are irreducible, reduced and the di-
visor {ϕ1 · · ·ϕk = 0} is a divisor with normal crossings.

• Hyperbolicity: λi/λj /∈ R for i �= j.

We can state our other result [6] :

Theorem 6.1. — Let M be a projective manifold such that

dimCM � 3 and H1(M,C) = 0.

Then any deformation of a generic logarithmic foliation is a logarithmic
foliation.

As a corollary, we get :

Corollary 6.2. — Let M be a projective manifold such that

dimCM � 3 and H1(M,C) = 0.

Then there are irreducible components of F(M,L) such that a generic ele-
ment is represented by a logarithmic 1–form.

The proof of the theorem (6.1) begin with the following remarks.

Consider the 1–form

ω = ϕ1 · · ·ϕk
k∑
i=1

λi
dϕi
ϕi
,

the hypersurfaces {ϕi = 0}ki=1 are the compact leaves of the foliation defined
by ω and they have linearizable holonomy. Moreover, any other leaf has
trivial holonomy.

In fact, given a point p ∈ L1 = {ϕ1 = 0}−S(ω) and a transversal Σ |∩pL1

at p, which we identify with an open disk ∆ ⊂ C, let γ ∈ π1(L1, p) and γ̃y
be a lift of the curve γ, tangent to the leaves and beginning at y ∈ Σ. The
holonomy map associated to γ is, by definition, hγ(y) = γ̃y(1).
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Take β : [0, 1] → Σ − {p} a differentiable curve with β(0) = γ̃y(1) and
β(1) = γ̃y(0). The curves γ and β ∗ γ̃y are homotopic in the manifold M .

Consider the meromorphic 1–form

Ω =
k∑
i=1

λi
dϕi
ϕi
.

It is possible to find a holomorphic coordinate system ϕ : ∆×Cn−1 → V
satisfying the conditions

• ϕ(0, 0) = p ∈ V

• ϕ(0, w) = V ∩ L1

• ϕ(z, 0) = Σ.

• ϕ∗(Ω|V ) = λ1
dz

z
.

In this way we get: ∫
β∗γ̃y

Ω = 2iπ
k∑
i=1

niλi

for some ni ∈ Z.

Now, since γ̃y is tangent to the foliation and β ∗ γ̃y is free homotopic to
γ, we have: ∫

β∗γ̃y

Ω =
∫
β

Ω = λ1 log
(
γ̃y(1)
y

)
,

and we conclude that:

hγ(y) =
( k∏
i=2

µni
i1

)
µγ1 · y,

where

µi1 := exp
(

2iπ
λi
λ1

)
, and µγ1 := exp

(
1
λ1

)
.

On the other hand, any leaf in M −{ϕ1 · · ·ϕk = 0} has trivial holonomy
since the foliation is defined by a holomorphic closed 1–form there. �

We now have a partial converse of the last statement:
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Theorem 6.3. — Let M be a projective manifold, ω ∈ F(M,L). Let
V be a smooth, ample compact leaf of ω which has linearizable holonomy
and V ∩ Sω = ∪ki=1Ki, where Ki ⊂ Kω are connected components with
transversal type ηi = x dy + λiy dx, λi /∈ Q. Then, there exists a reduced
integrating factor whose zero locus contains V .

In [17], it is proved that on a neighborhood of the hypersurface V , the
foliation has a reduced integrating factor ϕ, since V is an ample hypersur-
face. By the second part of the Theorem (1.2), this integrating factor may
be extended to M . The details may be found in [5], [6] and [13]. �

Now, let

ω = ϕ1 · · ·ϕk
k∑
i=1

λi
dϕi
ϕi
,

be a generic logarithmic 1–form. For any subset I ⊂ {1, . . . , k} the analytic
sets

SI = {p ∈M | p ∈ {ϕi = 0}i∈I},
define a Whitney stratification for the divisor {ϕ1 · · ·ϕk = 0}. We will
denote by I the number of elements of I. Note that SI has codimension I.
We set:

ΩI =
I∑
j=1

λij
dzj
zj

I = {i1, . . . , iI}.

In [33, page 399] it is demonstrated that if ω is like above, for any
I ⊂ {1, . . . , k} there exists an open covering UI = {Uα} of SI and a family
of submersions {ϕα = (y1α . . . y

I
α) : Uα → CI} such that:

• {ϕji = 0} ∩ Uα = {yiα = 0}.

• ϕ∗
α(y1α · · · yIαΩI) = ω|Uα .

Let KI ⊂ SI be a compact subset and W = ∪αUα, where {Uα} is as in
the above theorem. The following result may be found in [6] or [5].

Proposition 6.4. — Let ω be as above. If λi �= λj for all i, j ∈ I, and
there is a pair (λk, λl) with λk/λl /∈ R, then for any compact KI ⊂ SI, and
any deformation ωt of ω, there exists a family of embeddings Φt : KI →W , a
family of submersions ϕα,t : Uα → CI , and a family of logarithmic 1–forms
ΩI,t such that :

• ϕ−1
α,t(0) = Φt(KI) ∩ Uα.
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• The 1–form ϕ∗
α,t(y

1
α,t . . . y

I
α,tΩI,t) defines the foliation on the open set

Uα.

This result means that the singular set of a deformation of a generic
logarithmic 1–form, still looks like the singular set of a logarithmic 1–form.

We are now in position to prove Theorem 6.1:

Proof. — Let ωt be a family of foliations with ω0 = ω with

ω = ϕ1 . . . ϕk

k∑
i=1

λi
dϕi
ϕi
.

The proof consists on two steps [6]:

• By our generic conditions, we show that all the leaves {ϕi = 0}, are
stable, thus there exist holomorphic line bundles Lit with holomor-
phic sections {ϕit} such that {ϕit = 0} are compact leaves of the
foliation ωt.

• Theorem 6.4 implies that ϕ1t · · ·ϕkt is a reduced integrating factor
of the foliation represented by the section ωt.

Remark 6.5. — In Theorem 6.1 it is necessary that the line bundles Li
for i = 1, . . . , k, and hence L = L1 ⊗ · · · ⊗ Lk, to be ample line bundles as
the following example shows :

Let M = P1 × P2, then we have that H1(M,C) = 0 and H2(M,C) =
C⊕ C. Now, we are going to consider a holomorphic line bundle L over M
with Chern class (0, n) where n > 1.

In this case, the set F(M,L) is an open set of the projective space asso-
ciated to H0(M,Ω(L)) � H0(P2,Ω1(n)). If ω is an integrable holomorphic
section of T ∗M ⊗L, the induced foliation Fω has the form P1×F , where F
is a foliation with singularities of Chern class n in P2; thus the set Log({Li})
does not contains an open subset of F(M,L).

7. Foliations in Projective Spaces

In this section, we are going to study the set F(n, c) of codimension one
holomorphic foliations on the projective space Pn and having Chern class
c ∈ H2(Pn,Z) � Z.

We recall the following well known facts on the geometry of the projective
space.
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1. The Picard group Pic(Pn) � Z and it is generated by the hyperplane
bundle denoted O(1), and for each c ∈ Z we denote O(c) = O(1)⊗c

for c � 0 and (O(1)∗)⊗(−c) for c < 0.

2. Given c ∈ N, the vector space of holomorphic sections of the bundle
O(c) over Pn is isomorphic to the space of homogeneous polynomials
of degree c on Cn+1 [24].

3. The Euler sequence.

0 → OPn −→
⊕
n+1

OPn(1) E→ TPn → 0, (7.1)

4. After dualizing and twisting the above sequence by the line bundle
O(c) we get

0→ TPn
∗ ⊗O(c)→

⊕
n+1

O(c− 1)→ O(c)→ 0, (7.2)

and from the exact long cohomology sequence,

0→ H0
(
Pn,Ω1(c)

)
→

⊕
n+1

H0
(
Pn,O(c− 1)

)
→ H0

(
Pn,O(c)

)
→ 0

As a consequence, we have that the holomorphic sections of the sheaf
Ω1

Pn(c) is identify with the set of dicritical 1–forms in Cn+1 of degree c− 1,
that is

ω(z0, . . . , zn) =
n∑
i=0

Ai(z0, . . . , zn) dzi (z0. . . . , zn) ∈ Cn+1

0 =
n∑
i=0

zi ·Ai(z0, . . . , zn)

Ai homogeneous polynomials of degree c− 1

Therefore, the space of codimension one holomorphic foliations F(n, c)
with Chern class c may be identified with 1–forms ω in Cn+1 as above such
that

1. ω ∧ dω = 0.

2. Cod(Sω) � 2, where Sω = {p ∈ Pn|ω(p) = 0} is the singular set.
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7.1. Logarithmic and Rational Components

Logarithmic and rational foliations on the space F(n, c) are obtained as
follows.

First observe that a holomorphic integrating factor ϕ of a foliation ω ∈
F(n, c) is a holomorphic section of the bundle OPn(c), i. e. a homogeneous
polynomial of degree c in the variables (z0, . . . , zn) ∈ Cn+1.

Given a partition P = (n1, . . . , np) p � 2 of c ∈ N, c � 2, i. e. ni are
positive integers such that

p∑
i=1

ni = c,

the (c− 1)–homogeneous 1–form in Cn+1 defined by

ω = ϕ1 · · ·ϕp
p∑
i=1

λi
dϕi
ϕi
,

where ϕi ∈ H0
(
Pn,O(ni − 1)

)
, i. e. ϕi are homogeneous polynomials of

degree ni in Cn+1, and λi ∈ C.

By the Euler formula, the 1–form ω is dicritical, if and only if the residues
λ = (λ1, . . . , λp) satisfy the relation

p∑
i=1

λi · ni = 0.

We denote by

ΛP =

{
(λ1 : · · · : λp) ∈ Cp such that

p∑
i=1

λi · ni = 0

}
.

Observe that when p = 2, we obtain λ1 ·n1 +λ2 ·n2 = 0, and then, λ1/λ2 =
−n2/n1, we are able to choose p1 and p2 positive integers with (p1, p2) = 1
or p1 = p2 = 1 such that λ1/λ2 = p1/p2 foliation represented by ω has the
meromorphic first integral ϕp21 /ϕ

p1
2 .

Now, we consider the projective space P(ΛP) associated with the hyper-
plane ΛP ⊂ Cp, and we define the algebraic map

ΦP : P(ΛP)×
p∏
i=1

PH0(Pm,O(ni)) −→ F(m, c)

([λ1 : . . . : λp], [ϕ1], . . . , [ϕp]) �→ ϕ1 · · ·ϕp
p∑
i=1

λi
dϕi
ϕi
.
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Observe that if P(n1, . . . , np) and Q = (m1, . . . ,mq) are partitions of
the same number c, the images under the maps ΦP and ΦQ may have non–
empty intersection. In fact, assume for instance that q = p − 1 � 2, and
that m1 = n1 + n2 and mi = ni, for i = 2, . . . q, then the 1–form:

([λ1 : . . . : λp], [ϕ1], . . . , [ϕp]) �→ ϕ1 · · ·ϕp
p∑
i=1

λi
dϕi
ϕi

where λ1 = λ2,

belongs to the intersection.

Theorem 7.1 Assume n � 3, and k � 2. Let

ω = ϕ1 · · ·ϕk
k∑
i=1

λi
dϕi
ϕi

∈ F(n, c),

be generic. If ω′ is a deformation of ω, then there exists homogeneous poly-
nomials ϕ′

i where deg(ϕ′
i) = deg(ϕi) for all i = 1, . . . , k, and λ′i such that

ω′ = ϕ′
1 · · ·ϕ′

k

k∑
i=1

λ′i
dϕ′

i

ϕ′
i

.

Proof. — It follows from Theorem (4.1) if k = 2, and from corollary (6.2)
when k � 3. �

Let L(n,P, c) ⊂ F(n, c) be the image of the map ΦP. Then the set of
logarithmic foliations L(n,P, c) is parameterized by a product of projective
spaces and this implies the result which follows.

Corollary 7.2. — For n � 3, p � 3, and for any partition P =
(n1, . . . , np) of c > 1 the set L(n,P, c) is an irreducible component of F(n, c).
Furthermore, the dimension of this component is:

p∑
i=1

(
n+ ni
ni

)
− 2.

Proof. — It follows from corollary (6.2) and the fact that

dimCH0
(
Pn,O(ni)

)
= h0

(
Pm,O(ni)

)
=

(
n+ ni
ni

)
.
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Remark 7.3. — Observe that if p = 2 in the above theorem, the set

L
(
n, (n1, n2), c

)
,

coincide with the set of foliations with a meromorphic first integral, we are
going to denote by R(m,n1, n2) ⊂ F(m,n1 + n2).

Observe that the generic element of R(c, n1, n2) belongs to K(n, n1+n2).

7.2. Foliations with Kupka component on the projective space

In this section, we want to describe the set K(n, c) ⊂ F(n, c). Towards
this description, we have the following remarkable result due to Cerveau
and Lins [15].

Theorem 7.4. — [15] Let ω ∈ K(n, c) with Kupka component Kω = K
then ω = pf dg − qg df if and only if K is a complete intersection.

The main conjecture is that the Kupka set K is always a complete in-
tersection. In this direction, the following results are known.

Let ω ∈ K(n, c) with Kupka component Kω = K. As we have seen in
section 5, the Kupka set K is subcanonically embedded, the formula (5.2)
of the canonical bundle Ωm−2

K of K and the second exterior power of the
normal bundle of the Kupka set ∧2νK(Pn) are given by:

Ωn−2
K =

(
ΩnPn ⊗O(c)

)
|K = OK(c− n− 1), ∧2νK(Pn) = OK(c).

This property, by a Serre contruction implies that there exists a couple
(E, σ), where E → Pn is a rank two holomorphic vector bundle and σ a
holomorphic section of E inducing the exact sequence

0 → O σ→ E → JK(c)→ 0 (7.3)

and the Kupka set is a complete intersection if and only if E splits as a
direct sum of line bundles.

By using this properties of the Kupka set, Theorem (4.1) in the case of
foliations in projective space, may be shown as follows.

Theorem 7.5. — Let F be a foliation arising from the fibers of a Lef-
schetz or a Branched Lefschetz Pencil on the projective space Pm m � 3.
Then any deformation of a foliation F , has a meromorphic first integral.
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Proof. — Let {Ft}t∈T be a family of foliations parameterized by the
analytic set T , such that F0 correspond to a foliation arising from the fibers
of a Lefschetz or a Branched Lefschetz pencil on Pn n � 3.

Since any foliation Ft has a compact Kupka component Kt, we obtain a
holomorphic family of holomorphic vector bundles with a section (Et, σt).

Since E0 = L1⊕L2 and L1, L2 are holomorphic line bundles implies that
H1(Pn, End(E0)) vanishes, it follows that the family of vector bundles Et is
rigid, i. e. Et � E0 [4], the conclusion follows from theorem (5.1). �

Let ω ∈ K(m, c) with Kupka component Kω = K. The linear the
transversal type is of the type ηpq = px dy − qy dx, p, q ∈ Z therefore,
the associated vector bundle E, has total Chern class given by

c(E) = 1 + ν · h +
(
p · c
p+ q

q · c
p+ q

)
· h2,

(
p · c
p+ q

q · c
p+ q

)
= degKω,

and may be written as

c(E) = c(O(a)⊕O(b)) where a =
(
p · c
p+ q

)
, b =

(
q · c
p+ q

)
,

moreover, the numbers a, b ∈ N. In particular, the linear transversal type
belongs to the Poincaré domain, and the transversal type is linearizable.

In this way, we obtain the decomposition of K(n, c) in terms of their
admissible transversal type

K(n, c) =
⋃

(p,q)∈C(c)

K(n, c, ηpq), (7.4)

with

C(c) =
{

(p, q) ∈ N

∣∣∣ (
pc

p+ q
,
qc

p+ q

)
∈ N× N

}
.

The main consequence is the following result [12].

Theorem 7.6. — Let ω ∈ K(m, c) with a Kupka component K = Kω,
then K is a numerically complete intersection.

The question if any foliation ω ∈ K(n, c) n � 3 has a meromorphic first
integral, is related to the question on rank–two holomorphic vector bundles
over Pn :
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Question 7.7. — Does a rank–two holomorphic vector bundle on Pn,
which has the same Chern classes as a split bundle, split?

The answer of this question is not true in dimension 3 [32]. On the
other hand, Theorem (7.6) shows that the vector bundle associated to a
Kupka component is not stable in the sense of Mumford–Takemoto [32],
furthermore, there is a conjecture postulated by Grauert–Schneider which
states the following :

Conjecture 7.8. — Any holomorphic vector bundle of rank–two on Pn

with n � 5, which is not stable, splits.

Let K(n, c, η) ⊂ K(n, c) be the set of those foliations with a Kupka com-
ponent with transversal type η. The affirmative solution of the Grauert–
Schneider conjecture, implies that K(n, c, η) n � 4 is an irreducible com-
ponent of F(n, c) and the generic element is structurally stable. [8]

In dimension 3, any smooth, non–complete intersection and projectively
normal curve cannot be the Kupka set of a foliation [12]. This fact gives
many examples of smooth curves, which are not complete intersections and
cannot be the Kupka set of any foliation. In particular, this shows that the
twisted cubic cannot be the Kupka set of a foliation in P3.

Finally, since the vector bundle E associated with a Kupka set can not
be stable, the result in [25] and theorem (7.6) shows that the Kupka set
cannot be an abelian surface in P4.

Finally, a positive solution of this problem, is given in the following
results [2, 3, 9].

Theorem 7.9. — Let ω ∈ K(n, c) with m � 6 or n � 3 and the
transversal type η �= η11, then the vector bundle E associated to the Kupka
component splits in a direct sum of holomorphic line bundles, and the foli-
ation ω has a meromorphic first integral.

If the transversal type η is not the radial foliation, the same conclusion
holds for any n � 3 [9], the proof is a consequence of the fact that the nor-
mal bundle of the Kupka component K of a foliation with positive normal
bundle, and with transversal type ηpq = px dy − qy dx, 1 � p < q is posi-
tive, and then, Hartogs extension theorem (1.2) also holds in this situation.
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7.3. Polynomial Representations of the Affine Lie Algebra

Other irreducible components of the space of codimension one holomor-
phic foliations on the projective space P3, which are defined by a polynomial
action of the affine group Aff(C)× C3 −→ C3.

For each 1 � ν ∈ N, consider the couple of polynomial vector fields on
the affine 3–space Az = {(1 : z1 : z2 : z3)} ⊂ P3 :

Tν(z1, z2, z3) =
∂

∂z1
+ ν · zν−1

1

∂

∂z2
+ k · zν−1

2

∂

∂z3

Lν(z1, z2, z3) = z1
∂

∂z
+ ν · z2

∂

∂z2
+ k · z3

∂

∂z3

where k := ν(ν − 1) + 1.

The main properties of these vector fields that we are going to use, as
the reader may easily check, are the following :

1. The vector fields Tν and Lν are complete.

2. [Tν ,Lν ] = Tν .

3. They are linearly independent outside the affine rational curve

Γν(t) = (t, tν , tk).

The first two conditions, implies that the vector fields Tν and Lν , are
the infinitesimal generators of an action

ϕν : Aff(C)× C3 → C3

of the affine group on C3, the tangent space at the orbit trough the point
z ∈ C3, is generated by the vectors Tν(z) and Lν(z) in TzC3.

The third condition implies that for each point z ∈ C3−Γν , the ϕν–orbit
through z has dimension two, and the curve Γν is one orbit of this action.

The orbits of the action ϕν , are the leaves of the foliation represented
by the polynomial 1–form ων = ıTν ıLνdz1∧dz2∧dz3, explicitly, the 1–form
ων has the expresion

ων = kν(zν−1
1 z3 − zν2 )dz1 + k(z1zν−1

2 − z3)dz2 + ν(z2 − zν1 )dz3.

A direct calculation gives dων = (ν+k)ıTν
dz1∧dz2∧dz3, consequently,

the diffeomorphism

Φν(t, u, v) =
(
t, u+ tν , v + k

∫ t

0

[u+ sν ]ν−1
ds

)
= (z1, z2, z3)
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which is the time t of the flow of the vector field Tν with initial conditions
(0, u, v) ∈ C3, satisfies the equation

(Φν)∗

(
∂

∂t

)
(z1, z2, z3) = Tν(z1, z2, z3),

and then, by using equation (3.5), we get

Φ∗
ν(ων) = −kv du+ νu dv,

therefore, the leaves of the foliation are diffeomorphic to C∗ × C, and the
foliation has a rational first integral given by

(z2 − zν1 )k
/z3 − ν−1∑

j=0

(
ν − 1
j

)
1

(νj + 1) · νj (z2 − zν1 )(ν−1−j)
z
(νj+1)
1

ν

.

The homogeneous 1–form

ων :=
(
(ν − 1)z1zν2 + (k − ν)zν−1

0 z2z3 − (k − 1)zν1 z3
)
dz0

+kνz0(zν−1
1 z3 − zν2 )dz1 + kz0(z1zν−1

2 − zν−1
0 z3)dz2

+νz0(zν−1
0 z2 − zν1 )dz3

defines a foliation Fν ∈ F(3, ν+2). From this expression, it follows that the
hyperplane {z0 = 0} is invariant by the foliation.

The singular set of the foliation, consists of three curves defined by the
equations :

Γν = {zν−1
1 z3 − zν2 = z1zν−1

2 − zν−1
0 z3 = zν−1

0 z2 − zν1 = 0}
Λ = {z0 = z1 = 0}

Ξν = {z0 = zν2 − νzν−1
1 z3 = 0}.

It is important to observe, that these three curves are invariant by a
holomorphic vector field Lν on the projective 3 space P3, which is an ex-
tension of the linear vector field Lν on C3, and then, they are rational and
moreover, they are fixed by a one parameter group of automorphisms of P3;
the flow of the vector field Lν . These curves meet at the point [0 : 0 : 0 : 1].
Moreover, the Kupka set of the foliation, is

K(ων) = Γν ∪ Λ ∪ Ξν − {[0 : 0 : 0 : 1]},

and at the point [0 : 0 : 0 : 1] the 2–form dων has an isolated singularity.
As has been pointed in [16] and [10], this property of the singular set of the
foliation, is stable under deformations.
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Finally, observe that all leaves of these foliations are biholomorphic to
C∗ × C.

It is possible to prove that, if F ∈ F(3, ν+2) is any foliation sufficiently
close to Fν , then it has an invariant hyperplane HF , and moreover, in the
affine space P3 −HF the foliation is defined by the orbits of an action

ϕF : Aff(C)× (P3 −HF )→ (P3 −HF )

This implies the following result

Theorem 7.10. — For any 2 � ν ∈ N there exists at least an irreducible
component of Aν ⊂ F(3, ν + 2) with the following properties:

• The generic element F ∈ Aν , has an invariant hyperplane HF .

• In the affine space P3 −HF , the leaves of the foliation are the orbits
of an action of the affine group Aff(C).

The proof of the theorem is based in the following remarks :

The foliation is defined by a linear vector field Lν , and it extends to a
global vector field Lν ∈ H0(P3,ΘP3), and the polynomial vector field Tν ,
defines a bundle map Tν : O(2 − ν) −→ ΘP3 , therefore, the tangent sheaf
TF of the foliation is locally free and isomorphic to O⊕O(2−ν), and defined
by the linear map

Lν ⊕Tν : TF � O ⊕O(2− ν) −→ Θ3
P.

The main idea lies in the following two facts

1. Any deformation of a generic foliation F ∈ Aν has a locally free
tangent sheaf.

2. Since H1
(
P3, End(TF )

)
� 0 any deformation of a generic foliation

F ∈ Aν has tangent sheaf isomorphic to O ⊕O(2− ν).

The first point follows from the stability of the singular set, and the
second by well known results on deformation of holomorphic vector bundles
[4].

The details of the proof may be found in [16] for ν = 2. The general case
is proved in [10] and [11].

The irreducible component Aν ⊂ F(3, ν + 2) is rigid, therefore, it is the
orbit of the natural action of PGL(4,C) × F(3, ν + 2) → F(ν, 3) on the
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space of foliations of the foliation F . This implies that the dimension of the
irreducible component

dimC(Aν) = dimCPGL(4,C)− h0(P3,O(TF )) =
{

13 if ν = 2
14 if ν > 2 .

The family defined above may be extended to a foliation on Pn n � 4
by considering a fixed linear projection G : Pn → P3, and defining the set of
foliations

Aν(n) = G∗(Aν) := {G ∈ F(n, ν + 2)|G = G∗(F) F ∈ Aν},

it is shown in [10], that the set of foliations Aν(n), is an irreducible compo-
nent of the space F(n, ν + 2).

There are many other examples of foliations of P3 which are defined
by actions of the affine group Aff(C), or more generally, by polynomial
representations of the affine Lie algebra aff(C) on polynomial vector fields
of an affine subspace A � C3 ⊂ P3, but in many cases, these families not
define irreducible components of the space of foliations [10].

One example of this situation, is the one parameter family of foliations
of degree 3 defined by the vector fields

Xσ =
∂

∂z1
+ 2 · z1

∂

∂z2
+ 3 · ((1− σ) · z2 + σz21)

∂

∂z3

L = z1
∂

∂z1
+ 2 · z2

∂

∂z2
3z3

∂

∂z3

on the affine space A = {[1 : z1 : z2 : z3]}.

The extension ωσ of this one parameter family of foliations to the pro-
jective 3–space, has the meromorphic first integral

Hσ(z0, z1, z2, z3) =
(z0z2 − z22)3

(z20z3 − 3σ · z0z1z2 + (3σ − 1)z31)2
=
F 3

G2
σ

, (7.5)

and for any value of σ �= 0, the family is contained in the irreducible
component R(3, 2, 3) ⊂ F(3, 5), but the value σ = 0 corresponds to a
member of the family A2 ⊂ F(3, 4). As the reader can check, the 1–form
ω = 3G0 dF − 2F dG0, is singular along the hyperplane z0 = 0.

The tangent sheaf TFσ for any member of the family {Fσ|C + σ �= 0}
of the one parameter family defined above, is locally free and isomorphic
to TFσ

� O ⊕ O(−1), in particular, the foliation is preserved by a one
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parameter group of automorphism of P3, this property does not hold for a
generic member of the irreducible component R(3, 2, 3).

Other examples of foliations on projective spaces are given by rational
pull–backs of foliations on the plane, that is, let n � 2 and let ϕ : Pn →
(P2,F) be a rational map and F ∈ F(2, c). Then we get a foliation G = ϕ∗F .

When the map ϕ is a linear projection, we have that G ∈ F(n, c), the
tangent sheaf is locally free and isomorphic to O(3− c)⊕O(1)⊕n−2.

We denote by

PB(1, n, c) = G∗F(2, c), G : Pn → P2 a fixed linear projection (7.6)

It is proved in [15] the following theorem:

Theorem 7.11. — The sets PB(1, n, c) are irreducible components of
F(n, c).

There is a systematic study of foliations with locally free tangent sheaf,
the main references are [14] and [18].
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