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The Way to the Proof of Fermat ’s Last Theorem

Gerhard Frey
(∗)

1. Fermat’s Claim and Wiles’ Theorem

More than 360 years ago one of the most exciting stories in the history
of Mathematics began when Pierre de Fermat stated on the margin of a
copy of Diophant’s work the

Conjecture 1. — Cubum autem in duos cubos, aut quadratoquadratum
in duos quadratoquadratos, et generaliter nullam in infinitum ultra quadra-
tum potestatem in duas ejusdem nominis fas est dividere...

or in modern language

There are no natural numbers n � 3, x, y, z such that

xn + yn = zn (FLT).

In fact Fermat did not state a conjecture but he claimed to have a
proof:
... cujus rei demonstrationem mirabilem sane detexi. Hanc marginis exigu-
itas non caperet.

(∗) This article is based on a lecture delivered at the conference « Fermat, Quatre cents
ans après » at the University of Toulouse in 2001. Though it was written immediately
after the conference and hence a long time ago the author decided not to change it
thoroughly during proof reading. He only wants to remark that very important new
results were obtained in the areas discussed in the paper. So Serre’s conjecture was
proved in full generality by work of Khare, Kisin, Wintenberger, et al. The author would
like to thank the organizers of the conference very much for the warm hospitality and
the interesting lectures he could enjoy in Tou- louse, and for their persisting eorts which
nally led to the publication of the lectures.

Institute for Experimental Mathematics, University of Duisburg-Essen, Ellernstrasse 29,
D-45326 Essen, Germany.
frey@iem.uni-due.de
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The content of Fermat’s statement is easy to understand and the me-
thods to prove it seem to lie at hand: Use the symmetry of the equation
and then try to find conditions for solutions by factorization of both sides of
the equation. For small exponent n this elementary approach is successful.
Fermat himself gave a proof for n = 4 by using the beautiful method of
descente infinie. But already for n = 3 Euler had to go to new grounds of
number theory and compute with third roots of unity (and he made some
minor mistakes at the first attempt), and though the exponents 5 and 7 still
can be treated “by elementary number theory” (Lamé) it becomes clear that
one has to replace the field of rational by algebraic number fields, especially
cyclotomic fields obtained by adjoining n−th roots of unity ζn to Q.

It is easily seen that it will be enough to prove FLT for exponents
which are odd prime numbers and so we shall replace the exponent n by the
exponent p with p a prime different from 2 from now on.

Here E. E. Kummer did his ground breaking and celebrated work. One
high point is his theorem that Fermat’s claim is true if the exponent is a
regular prime p. It may be worth while to state this result in the frame of
Galois theory:

Theorem 1.1 (Kummer). — If Q(ζp) has no unramified cyclic exten-
sion of degree p then Fermat’s claim is true for the exponent p.

But even if p does not have this property one can find conditions for
the truth of FLT by using Kummer congruences. Philosophically they
should establish a local-global principle (which is not true for the Fermat
equation itself):

By studying local conditions at the archimedean and non archimedean
places of Q(ζp) imposed on assumed solutions one hopes to find a contra-
diction.

These congruence conditions have been refined in a very remarkable way
during the development of algebraic number theory (for details cf. [Ri]) and
it cannot be excluded that eventually they will establish another proof of
FLT but the present situation led H.M.Edwards 1978 in a survey article
to the conclusion that though Fermat’s claim is one of the most famous
mathematical problems it is not subject to recent mathematical research
since no one knows how to attack it.

In fact the methods for the solution of the problems were available at
that time already but they do not come from “classical” number theory.
The aim of this article is to explain how Galois representations yield
local-global principles which finally are strong enough to prove Fermat’s
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claim.

In fact much more is proved!

The following result was announced by Andrew Wiles 1993 and proved
1994 ([W]) relying on a joint work with Richard Taylor ([T-W]:

Theorem 1.2. — Semi stable elliptic curves over Q are modular.1

In the following we try to explain the meaning of Wiles’ theorem and
why it settles Fermat’s claim and we would like to convince the reader that
Fermat’s Last Theorem is not true because of an accident but because of a
reason derived from general principles concerning the Galois group of the
rational numbers and its geometric and automorphic representations.

2. Arithmetic of torsion points of elliptic curves

In this section we shall explain how Fermat’s claim is related to torsion
points of very special elliptic curves.

2.1. Definitions

An elliptic curve E over a field K is (the K-isomorphy class of) a plane
irreducible projective cubic curve without singularities with a K-rational
point.

If we fix such a rational point as “point at infinity” we can describe E
by an affine plane cubic. If char(K) �= 2 we find for E an equation

Y 2 = X3 +AX2 +BX + C =: f3(X)

with A,B,C ∈ K.

The non singularity of E is equivalent to the fact that the discriminant
∆E of f3(X) is not equal to 0.

∆E is determined by E up to 12−th powers.

The absolute invariant jE is uniquely determined by E and determines
E over K̄.

We give its definition only if char(K)�= 2, 3. In this case we can transform
E to an isomorphic curve E′ given by

E′ : Y 2 = X3 − g2X − g3.

(1) In fact Wiles used semi stability only at the primes 3 and 5; the general result that
all elliptic curves are modular was proved by Breuil, Conrad, Diamond and Taylor in
1999. – 7 –
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Then

jE = 123 · 4 · g3
2

∆E′

with ∆E′ = 4g3
2 − 27g2

3 .

2.2. Reduction of Elliptic Curves

Take K = Q. It is easy to see that we can choose A,B,C ∈ Z and such
that ∆E has minimal absolute value.

From now on we shall always assume that this is the case.

Let p be a prime. For simplicity we shall assume in the following defi-
nitions that p is odd. But analogues definitions can be done for p = 2, too
(cf. [Si]).

The reduction of E at p is the cubic E(p) over Z/p =: Fp one gets by
taking the residues of A,B,C modulo p.

• E has good reduction at p if f3(X) mod p has three different zeroes
in Fp.
Otherwise E has bad reduction.

• E has semi stable reduction at p if f3(X) mod p has at least 2 different
zeroes in Fp.

The conductor NE is a number which is divisible exactly by the primes at
which E has bad reduction, hence NE | ∆E .

For all primes p including p = 2 we have:
E is semi stable at p iff vp(NE) � 1.

For p �= 2, 3 the exponent vp(NE) is bounded by 2, for p = 3 it is
bounded by 5 and for p = 2 by 8. The exact definition and an algorithm for
the computation of NE are given in [Ta].

2.3. Torsion points

The set of algebraic points of E is

E(Q̄) := {(x, y) ∈ Q̄ × Q̄; y2 = f3(x)} ∪ {∞}.

This set is an abelian group in which the addition law is given by rational
functions with coefficients in Q and so it is compatible with the action of
GQ [Si].
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For n ∈ N define

En := {P ∈ E(Q̄);n · P = ∞}.

This is a GQ-module which is isomorphic to Z/n× Z/n as abelian group.

The coordinates of points in En are zeroes of polynomials with coeffi-
cients in Q and hence are algebraic numbers.

Let Kn be the field obtained by adjoining the coordinates of all points
of order n of E. It is a Galois extension with Galois group embeddable into
Gl(2,Z/n).

There is a non degenerate GQ−compatible symplectic form on En with
values in the group µn of roots of unity of order n called Weil pairing.

Consequence: Kn contains Q(µn), and the Galois group of Kn over
Q(µn) is contained in Sl(2,Z/n). In general the image is as large as possible:

If E has no complex multiplication (e.g. if jE is not an integer) for almost
all primes p the Galois group of Kp/Q is equal to Gl(2,Z/p) ([Se1]).

So it is a highly interesting diophantine question to find curves E for
which the field Kp is ”small” for some p.

For instance one can look for elliptic curves for which a point of order p
has coordinates in Q or another given fixed number field K or, weaker, that
a cyclic subgroups of Ep is invariant under the action of the Galois group
of Q.

This question was already studied by B. Levi in the early years of the
last century. He gave a list of torsion points of elliptic curves over Q and
conjectured that it was complete. Much later (in the sixties of the last
century) this problem was brought to the attention of the mathematicians
again by the work of A. Ogg. But now the situation was better than at
Levi’s time. Due to the work of Néron and Kodaira the reduction theory
sketched above was well understood and an explicit classification of the
special fiber of the minimal model was available. Moreover the Tate curve
(cf. [Ro] or [Si]) described the rational points of semi stable elliptic curves
with bad reduction over p−adic fields by a p−adic analytic parametrisation
compatible with the Galois action of the local fields.

So the problem of torsion points could be studied locally to find neces-
sary conditions for the existence of torsion points. The hope was that they
were so sharp that contradiction to global properties would result (cf. [He]
and [F1]).
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To give a flavor of the results obtained we cite a result which can be
easily deduced from [F1]:

Proposition 2.1. — Let p � 5 be a prime.

Then E is semi stable at all primes of Kp and for primes q not dividing
2 the q-adic value of the minimal discriminant of E over Kp is divisible
by p.

These arithmetical properties of E can be expressed nicely by divisorial
properties of the X-coordinates of points of order 2:

Corollary 2.2. — We assume that the points of order 2 of E are
Q−rational. We can find an equation for E which is of the form

E : Y 2 = X(X − x1)(X − x2)

where {0, x1, x2} ⊂ Z are the X-coordinates of points of order 2.

Then the principal divisors (xi) are equal to p · di with di a divisor of
Kp, and for (x1 − x2) we get:
(x1 − x2) = d0 + p · d3 with d0 an effective divisor which is only divisible by
divisors of 2.

We remark that up to factors related to 2 we get a ”divisorial solution”
of Fermat’s equation with exponent p in the field Kp just by using the
coordinates of points of order. If Kp would be equal to Q(ζp) we would get
“nearly” a solution of Fermat’s equation!

2.4. The Turning Point

But this last condition will never be satisfied for in 1976 Barry Mazur
published his celebrated paper [Ma] and amongst other results he could list
all elliptic curves defined over Q with isogenies. As a consequence Mazur got
a bound for the order of cyclic isogenies rational over Q and of the primes
dividing the order of rational torsion points (� 7).

The tools Mazur used to get these results were global:

Mazur used the arithmetic of modular curves and their differentials
(modular forms).

So much of the research work devoted to the study of torsion points
of elliptic curves became obsolete. But now it was exciting to reverse the
argumentation.
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Thanks to Mazur we know now that for p > 7 and curves without
complex multiplication the field Kp is a large Galois extension. By the local
computations described above we can determine its ramification behavior.

So assume that

(a, b, c) is a solution ofXp + Y p = Zp

for abc �= 0 and p > 7.

Without loss of generality we can assume that a and b are odd and that
b ≡ 3 mod 4.

Then define
Ea,b : Y 2 = X(X − ap)(X − bp).

Reduction theory applied to this curve yields

Theorem 2.3. —

1. Ea,b is semi stable at all primes l.

2. Kp/Q is unramified outside of primes dividing 2p.

3. Kp is little ramified2 at places p dividing p, i.e. the completion Kp

is obtained by tamely ramified extensions of Qp followed by Kummer
extensions of degree p where the radicals are p-units.

4. The Galois group Gp = G(Kp/Q) is isomorphic to Gl(2, p).

For details of the proof cf. [F2].

Hence a solution of Fermat’s equation implies the existence of a nearly
unramified extension of Q with Galois group Gl(2, p) containing the p−th
roots of unity, and in order to prove FLT one has to prove the non-existence
of such extensions.

Here the reader should remember Kummer’s criterion. But this criterion
was about abelian extensions over Q(µp) and so we can (at least nowadays)
use class field theory to discuss it.

In our case we have a Galois extension with a large non solvable group,
and so class field theory cannot help. But we have translated the Fermat
problem into the question whether a certain representations of GQ of di-
mension 2 can exist, and as it is well known from work of Serre, Deligne,

(2) cf. [Se2]
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Ribet, Shimura and many others such representations are closely related to
modular forms which were so useful in Mazur’s paper.

3. Galois representations of Q

At the end of the last section we have seen that a non trivial solution of
Fermat’s equation with exponent p > 7 would imply that a nearly unram-
ified Galois extension of Q with Galois group isomorphic to Gl(2, p) would
exist. To deal with such extensions we have to study Galois representations.

3.1. Definitions and notation

A Galois representation of GQ is a continuous homomorphisms (with
respect to the Krull topology on GQ)

ρ : GQ → GLn(R)

with GLn(R) the set of invertible n×n−matrices over a ring R with a given
topology.

For us n = 2 is the most important case. As coefficients R we mostly use
finite fields, finite quotients of Z or finite extensions of Zl for some prime
number l. But one important ingredient in Wiles’ proof uses R = C.

3.1.1. Conductor

Let ρ be a representation of GQ with R a finite field k of characteristic
p.

Let Kρ be the fixed field of the kernel of ρ and let V be a representation
space of ρ.

Attached to ρ is the Artin conductor N ′
ρ defined in the following way:

Let q be a prime and q a divisor of q in Kρ. For i � 0 let Gi(q) be the
i− th ramification group of G(Kρ/Q with respect to q. Then

nq :=
∑
i�0

[G0 : Gi]−1 codimk(V Gi)

and
N ′

ρ =
∏

qprime

qnq .

Especially we get: A prime q divides N ′
ρ if and only if it is ramified in

Kρ/Q.
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Definition 3.1. — The Serre conductor Nρ is equal to the prime-to-p-
part of the Artin conductor N ′

ρ.

3.1.2. Example: the cyclotomic character

We describe a most important representation of dimension 1.

Take n ∈ N and ζn = e2πi/n. For all σ ∈ GQ we get:

σ(ζn) = ζkσ
n

where kσ is a number prime to n and uniquely determined modulo n.

χn : GQ → (Z/n)∗

with
σ �→ χn(σ) = kσ modn

is a one-dimensional representation with representation space Z/n. It is
called the cyclotomic character.

3.1.3. Semisimple representations

Let ρ be as above.

Let σ be an element of GQ.

By
χρ(σ)(T )

we denote the characteristic polynomial of ρ(σ).

For example take n = 2. Then

χρ(σ)(T ) = T 2 − Tr(ρ(σ))T + det(ρ(σ)).

Definition 3.2. — ρ is semisimple if ρ is determined (up to equiva-
lence) by {χρ(σ)(T );σ ∈ GQ}.

3.1.4. The Frobenius automorphisms

The key ingredient to relate arithmetic with group theory are the Frobe-
nius automorphisms:

Let l be a prime. We recall the simple polynomial identity

(X + Y )l ≡ X l + Y l mod l.

– 13 –
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By evaluating this with x and y in Z̄, the ring of algebraic integers, we get
that exponentiation with l is compatible with addition (and of course with
multiplication) in Z̄ modulo every prime ideal l containing l. (The error
term is in Z̄ divisible by l.)

Definition 3.3. — Let l be a prime number. σ ∈ GQ is a Frobenius
automorphism to l if there is a prime ideal l of Z̄ containing l such that for
all x ∈ Z̄ holds: σ(x) − xl ∈ l.

For fixed l there are (infinitely many) different Frobenius automorphisms
but they are closely related: they are conjugates in GQ. So we choose one
Frobenius automorphism σl for each prime l but we have to make sure that
our assertions and definitions do not depend on this choice.

3.1.5. Chebotarev’s density theorem

If we look at all primes l and at corresponding Frobenius automorphisms
we have a very important and powerful Local-Global-principle.

Chebotarev’s Density Theorem. — Let ρ be a semisimple Galois
representation of GQ. Let S be a finite set of prime numbers containing the
primes which ramify in Kρ. Then ρ is determined by

{χρ(σl)(T ); l runs over primes of Z \ S}.

3.2. Galois representations attached to elliptic curves

Let E be an elliptic curve defined over Q.

Recall that for n ∈ N the group En(Q) is isomorphic to Z/n× Z/n.

Choose a base (P1, P2) of En.

Take σ ∈ GQ and write
σ(P1) = aσP1 ⊕ cσP2;
σ(P2) = bσP1 ⊕ dσP2.

The map

σ �→
(
aσ bσ
cσ dσ

)

defines a two dimensional representation

ρE,n : GQ → Gl(2,Z/n).

– 14 –
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A generalization:

Take a prime p and define the p−adic Tate module Tp(E) as projective
limit of Epk .

It is not difficult to see that GQ acts continuously (w.r.t. the p-adic
topology) on Tp(E).

The corresponding Galois representation is denoted by

ρ̃E,p.

Since it is equal to ρE,p modulo p · Tp(E) it is called a lifting of ρE,p.

Remark. — ρE,p has many liftings to p−adic representations. They
are described by deformation spaces which will play a most important
role later on.

We have the following deep results:

Theorem 3.4. —

1. ρ̃E,p is semisimple (Faltings).

2. ρE,p is semisimple for almost all primes p (Serre).

So we can apply Chebotarev’s density theorem and it becomes impor-
tant to compute the characteristic polynomials of the images of Frobenius
automorphisms σl corresponding to prime numbers l .

This leads us to ...

4. L-series

4.1. Local L-series

We take a prime l different from p which does not divide the conductor
of E and hence not the conductor of ρ̃E,p.

σl can be interpreted as generator of the Galois group of the field Fl in
a natural way, and since E has good reduction E(l) modulo l it acts (by
Hensels Lemma) on the points of order prime to l of E(l) in “the same” way
as on the corresponding lifted points.

Moreover the fixed points of σl−idE(l) are exactly the Fl−rational points
of E(l).

– 15 –
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Using this and the properties of the Weil pairing we mentioned above
one shows the following

FACTS:

Let n be a natural number prime to l.

Let al be the number of points of Emod l. Then

Tr(ρE,n(σl)) ≡ l + 1 − almodn

and det(ρE,n(σl)) ≡ χn(σl) ≡ l modn.

Proposition 4.1. — The polynomials

{χl(T ) = T 2 + (al − l − 1)T + l; l prime numbers not dividing NE}

determine almost all representations ρE,p and all ρ̃E,p.

Definition 4.2. — χl(T ) is the local L-series of E at l.

To define the local L−function for primes dividing the conductor of E
one uses an explicit recipe depending on the special fiber of the minimal
model of E([Si]).

4.2. Global L-series

We assemble the local informations by forming the infinite product

LE(s) := f∗(s) ·
∏

l prime to NE

(1 − (l + 1 − al)l−s + l1−s)−1

with a rational function f∗(s) coming from the local factors belonging to
the divisors of NE .

This product has to be seen as an analogue of the Riemann Zeta-function
and it is called the L-series of E.

This series converges for complex numbers s with real part > 3/2 and
can be written in this half plane as Dirichlet series

LE(s) =
∞∑

n=1

bnn
−s.

Hence LE(s) is an analytic function in a complex half plane.

– 16 –
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Conjecture 2 (Hasse-Weil). — LE(s) has an analytic continuation to
C satisfying the following functional equation:
Put

ΛE(s) := N
s/2
E (2π)−2sΓ(s)LE(s).

Then
ΛE(s) = W (E)ΛE(2 − s)

with W (E) ∈ {1,−1}.

This means: the local data used to define LE are tied together in such a
way that a very special analytic function is created.

5. Modular Elliptic Curves

5.1. Modular curves and cusp forms

Finally we can explain the conjecture of Taniyama stated 1955. In
the last section we formulated the Hasse-Weil conjecture and said rather
vaguely that the L-series of E is expected to be a very special function. To
make this more precise we need the following notions:
Define

H := {z ∈ C | Im(z) > 0}

and
H∗ := H ∪ Q ∪ {∞}.

The group

Γ0(N) =
{
α =

(
a b
c d

)
∈ SL2(Z) | c ≡ 0 mod N

}

operates on H∗ by sending z to (az + b)/(cz + d). Define

Γ0(N)\H∗ =: X0(N).

X0(N) is a compact Riemann surface and so a projective algebraic curve
defined over C.

A modular form of level N , weight k and nebentypus χ (which is a
Dirichlet character) is a function f(z) on H∗ such that:

1. f(z) is holomorphic in H,

– 17 –
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2. f(α)(z) = χ(d)(cz + d)kf(z) ∀ z ∈ H, α =
(
a b
c d

)
∈ Γ0(N),

3. f(z) is holomorphic at the cusps.

If in addition f vanishes at the cusps, then f is called a cusp form.
Because of the transformation rules a cusp form f(z) has a Fourier expansion

f(z) =
∞∑

n=1

anq
n with q := e2πiz, an ∈ C

called q−expansion which determines f .

The space of cusps forms of weight k and trivial nebentypus is denoted
by Sk(N).

It is not difficult to see that the map

f(z) �→ 2πif(z)dz

is an isomorphism between S2(N) and the space of holomorphic differentials
Ω1(X0(N)) and hence S2(N) has dimension equal to the genus of X0(N).

By using the Hurwitz genus formula one can compute the genus ofX0(N)
as a function of N .

For instance we get:
The genus of X0(2) = 0.

This has the

Consequence:

There is no non trivial cusp form of weight 2 and level 2.

This observation will become important later on.

Till now we have discussed modular curves and modular forms over the
complex numbers. But since the points on X0(N) have a modular interpre-
tation (points which are not cusps correspond to pairs (E, η) where E is an
elliptic curve and η an isogeny of E with cyclic kernel of order N) it follows
that X0(N) can be defined over Z.

Hence it makes sense to speak about cusp forms defined over commuta-
tive unitary rings R. In fact these forms have a q−expansion with coefficients
in R and are determined by this expansion.

The cusp forms of weight 2 and level N over R are denoted by S2(N)(R).

– 18 –



The Way to the Proof of Fermat ’s Last Theorem

5.2. Modular elliptic curves

Taniyama stated the following conjecture:

Conjecture 3. — Assume that the Hasse-Weil conjecture is true for
the L-series

LE(s) =
∞∑

n=1

bn n
−s.

Then

fE(z) :=
∞∑

n=1

bn e
2πinz

is a cusp form.

This conjecture has been made more precise by A.Weil and G. Shimura:

Theorem 5.1. — Taniyama’s and the Hasse-Weil conjecture is equiva-
lent with the existence of an non trivial map

φ : X0(NE) → E

defined over Q.

We call an elliptic curve E over Q modular if a map φ like in the theorem
exists. With this notation we can reformulate Taniyama‘s conjecture:

Conjecture 4 (Taniyama-Shimura-Weil). — Every elliptic curve
defined over Q is modular.

We see that Theorem 1.1 of A.Wiles proves part of this conjecture.

5.3. Modular Representations

In this section we shall give a Galois theoretic criterion for the modularity
of an elliptic curve.

For this we need the notion of a modular representation in our special
situation.

Definition 5.2. — A representation

ρ : GQ → Gl(2,Z/pk)

– 19 –
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is modular of level N and weight 2 if there is a ring of integers O in a
number field K and a cusp form f ∈ S2(N)(O) given by

f(z) =
∞∑

n=1

bne
2πinz with bn ∈ O, b1 = 1

such that for all prime numbers l outside of a finite set we have:

Tr(ρ(σl)) ≡ blmod pk

where p is a split prime ideal of O containing p and σl is a Frobenius auto-
morphism to l.

Example. — Let E be a modular elliptic curve. Then ρE,pk is modular
of level NE and weight 2 for all primes p and all natural numbers k. As
modular form we can take fE(z).

Now we can characterize modular elliptic curves:

Theorem 5.3. — Let E/Q be an elliptic curve with LE(s) =
∑∞

n=1 bnn
s .

The following properties are equivalent:

1. E is modular.

2. The Hasse-Weil conjecture holds for LE(s).

3. d
∑∞

n=1 bnq
n ∈ S2(NE)(Z)

4. There is a number N such that for all primes l and all k ∈ N the
representations ρE,lk are modular of level N and weight 2.

5. There is a number N such that for one prime l and all k ∈ N the
representations ρE,lk are modular of level N and weight 2.

We have explained already that 1),2) and 3) are equivalent. To get the
connection to representation theory one uses the Eichler-Shimura-congruence
which relates Hecke operators to Frobenius automorphisms to construct 2-
dimensional l−adic representations attached to modular forms (cf. [Rib]).

6. A conditional proof of Fermat’s claim

6.1. Lowering the level

We recall that a solution (a, b, c) of Fermat’s equation with exponent
p gives rise to a two dimensional Galois representation ρp attached to the
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p−torsion points of an elliptic curve Ea,b with the additional property that
the conductor is very small.

Now assume that E were modular. Then ρp would be modular of level
NE . But since its conductor is much smaller than NE we can hope to find
a better modular description.

And indeed this is so. The key ingredient is the phenomenon that cusp
forms to different levels can become congruent modulo special primes q
called congruence primes and so they induce the same representations
modulo q.

Hence for a given ρ one can look for forms of minimal level related to ρ.
A recipe for this minimal level was given by J.P. Serre in principle already
in the seventies and precisely formulated 1986 (cf. [Se2]).

In the relevant example this recipe was proved by Ribet (cf.[Rib]) in the
same year.

We state his result for the example we need:

Theorem 6.1. — Assume that E is a modular elliptic curve which is
everywhere semi stable, that p > 7 and that the fixed field of the kernel of
ρE,p is little ramified at p.

Then ρE,p is modular of level NρE,p
and weight 2.

Now we can use our local results:

Corollary 6.2. — Take

E : Y 2 = X(X −A)(X −B)

with A,B ∈ Z relatively prime. Assume that E is modular and that p di-
vides AB(A−B) with a power divisible by p.
Then ρE,p is modular of level

Np = 2
∏

p � vl(AB(A−B))

l.

6.2. Application to FLT

Take A = ap, B = bp and assume that A−B = cp.

Take the corresponding elliptic curve Ea,b and assume that Ea,b is modu-
lar.
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Then ρE,p is modular of level 2. But we know already that there are no
non trivial cusp forms of this level and so we get a contradiction.

Conclusion: The conjecture of Taniyama-Shimura for semistable ellip-
tic curves implies Fermat’s Last Theorem.

This was the state of the art 1986 before Wiles’ work.

7. The Theorem of Wiles

In the last sections we have explained why the theorem 1.2 proves that
Fermat’ claim is true.

It is not possible even to sketch the proof of this result. So we have to
restrict ourselves to a short description of the strategy of the proof.

Wiles proves criterion 5 of theorem 5.3 for l = 3. His starting point is
ρE,3 so all his input information is the action of GQ on 8 points!

The reason for this choice is that Langlands and Tunnell proved Artin’s
conjecture for the complex representation attached to ρE,3. By Deligne-
Serre this implies that ρE,3 =: ρ is modular and so the first step is done.

Next he has to study the deformation problem for Galois representations
which can be described by a “tangent space”: This space is computable if
appropriate local conditions D (i.e. conditions for the restrictions of ρ′ to the
Galois group of l−adic fields) are imposed such that there exists a universal
deformation represented by a ring RD. Hence the deformations of ρ of type
D correspond one-one to homomorphisms of RD.

Modular deformations are described by a ring HD (related with the al-
gebra of Hecke operators on modular forms) and the first step implies that
there is a homomorphism

ηD : RD → HD

which is surjective because of Chebotarev’s density theorem.

The main step is to show that ηD is an isomorphism if D is chosen
carefully.

By using algebraic number theory Wiles can describe the algebraic prop-
erties of RD and he can control how this ring changes if one replaces the type
D by another (less or more restrictive) type. By using variants of Ribet’s
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theorem (used in the last section already) a similar computation can be done
for HD. This establishes the first important fact (based on the “numerical
criterion” of Wiles ) of the proof: It is sufficient to show the injectivity of ηD
for minimal types where minimality is determined by ρ (and not by ρE,3k).
For the proof in the minimal case Wiles uses another criterion which has a
more geometrical flavour. It is written up in the paper of Taylor and Wiles
and has been simplified by Faltings, Schoof, Diamond and others. To apply
it Wiles adds carefully chosen auxiliary primes to D which make the struc-
ture of RD and HD so ”easy” (Gorenstein property, complete intersection)
such that commutative algebra finally gives the result.
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